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Abstract. This work presents an analytical solution for the vaporization rate of an isolated droplet in quiescent environ-
ment by including a temperature dependence in the gas phase transport properties. The transport properties are well
described by the square root of temperature. The droplet heating and vaporization are described analytically considering
this dependence and the results are compared with that obtained with the classical model (constant transport properties).
They show that the droplet heating time is longer in the case including temperature dependence in the properties and,
consequently, the vaporization rate is smaller. Both models coincide in case of droplet cooling.
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1. INTRODUCTION

Spray combustion is mainly controlled by fuel atomization. It breaks liquid fuels in a huge number of droplets, whose
distribution is only described statistically. By producing a high number of droplets, the contact area between gas and liquid
phases is increased, permitting larger heat fluxes to the fuel droplets and, consequently, an expressive fuel vaporization
rate. Besides breaking the liquid fuel, atomization process spreads it in form of droplets inside the combustion chamber,
leading to the specification of the fuel concentration along this chamber and its mixture with the oxidant. Based on
this picture, the analysis of heating, vaporization and combustion problems of isolated droplets are fundamental for the
comprehension of more complex systems, what is reflected in a large number of articles involving those issues (Faeth,
1977; Law, 1982; Sirignano, 1983; Dwyer, 1989; Chen et al., 1996; Chiu, 2000; Sazhin, 2006; Birouk and Gakalp, 2006).

In order to develop a realistic running time numerical code for simulating spray combustion, analytical and low numer-
ical cost models are mandatory to describe heating and vaporization of isolated droplet (Williams, 1985). Two simplified
models are considered in literature: uniform temperature inside the droplet and temporal-spatial temperature determined
by the conduction limit (Gutheil, 1993; Eropoulos, 1984). In both models, the transport coefficient is constant for the
gas phase surrounding the droplet and the droplet is at a quiescent environment, permitting an analytical solution for the
vaporization rate to be found (Williams, 1985). Based on these results, heating and vaporization rates for droplets with
relative velocity with gas phase are calculated (Birouk and Gakalp, 2006). Therefore, an improvement in the model for
heating and vaporization rates considering a temperature dependence on the transport coefficients for the gas phase will
provide more reliable results.

In section 2, the mathematical formulation for a droplet vaporization model with variable transport coefficient in the
gaseous phase is developed. In section 3, results are presented and compared with the simple model normally considered
in literature. Finally, in section 4 conclusions are stated and applications of the model in future works are presented.

2. MATHEMATICAL FORMULATION

The conditions addressed in this work permit considering the gas phase close to the droplet in a quasi steady regime.
The formulation follows that of a quasi-steady droplet combustion problem (Fachini, 1999).

It is assumed that the density ρl, the specific heat cl and the thermal conductivity kl of the liquid phase are constants.
Far from the droplet, the gas has constant properties, more specifically, density ρ∞, thermal conductivity kg∞ and pressure
specific heat cp. The gas temperature far from the droplet is also held constant at T∞. However, for the gas phase, the
transport coefficients (thermal conductivity kg and fuel diffusion coefficient DF ) depend only on temperature according
to kg/kg∞ = DF /DF∞ = (T/T∞)n = θn. The normalized fuel mass fraction is identified by YF ≡ yF .

The radial coordinate r relative to the initial droplet radius ā0 and the dimensionless droplet radius a are defined
as x = r/ā0 and a = ā/ā0, respectively. The description of the liquid phase is given by following mass and energy
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dimensionless conservation equations

da3

dτ
= −3λ, (1)
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x2 ∂θ
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)
, (2)

valid for x < a(τ), in which τ ≡ t/tc is the dimensionless time according to the order of magnitude of the droplet
lifetime tc ≡ (ρ∞cpā

2
0/kg∞)(ρl/ρ∞), λ ≡ cpṁ/(4πā0kg∞) is the vaporization rate and αl ≡ klcp/(kgcl). The quantity

ṁ describes the dimensional vaporization rate.
The set of mass, species and energy conservation equations describing the processes in the gas phase [x > a(τ)] is

given by
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in which the density ϱ ≡ ρ/ρ∞ is measured in terms of ambient atmosphere density, the fuel Lewis number is LeF ≡
kg∞/(ρ∞cpDF∞) and the parameter ε = ρ∞/ρl measures the thermal inertia of the gas phase in terms of that of the
liquid phase. It is worth noting that the diffusion terms in Eqs.(4) and (5) contain a temperature dependence in the form
θn. For 0 ≤ n ≤ 1, the higher its value the slower is the heat transfer.

For the conditions addressed in this work ε ≪ 1, which justifies the quasi-steady behavior for the gas phase.
The initial conditions for Eqs.(1) and (2) are

a = 1, θ(x < a) = θ0 for τ = 0. (6)

It is also considered that the fuel molecular weight equals that of the ambient gases mixture. At the liquid-gas interface,
the vapor and liquid are assumed in equilibrium, so that Clausius-Clapeyron expression

YFs = exp[γ(1− θB/θs)], (7)

in which γ = L/RTB , can be used to relate the temperature θs to the fuel mass fraction YFs at the droplet surface. The
boundary conditions necessary to solve the problem are

∂θ
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∣∣∣∣
x=0

= 0, a2θn
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∣∣∣∣
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= λl + Ka2
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,
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LeF

∂YF
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x=a+

= −λ(1− YFs),

θ(x → ∞) = θ∞ = 1, YF (x → ∞) = YF∞, (8)

in which l ≡ L/cpT∞ is the dimensionless latent heat and K ≡ kl/kg∞ is the ratio of thermal conductivities of the
droplet and ambient gaseous phase.

The quasi-steady behavior for the gas phase leads allows the integration of Eqs.(3) to (5), simplifying them to

x2ϱv = λ, (9)

x2θn

LeF

∂YF

∂x
= λ(YF − C1), (10)

x2θn
∂θ

∂x
= λ(θ + C2), (11)

in which C1 and C2 are constants of integration. Applying boundary condition (8) for YFs at droplet surface, C1 must
equal one. Eqs.(10) and (11) can be combined, leading to

(θ + C2)

LeF

∂YF

∂θ
= YF − 1. (12)

Integrating it and applying the ambient atmosphere condition, the relation θ = θ(YF ) is found

θ(YF ) = −C2 + (θ∞ + C2)

(
1− YF

1− YF∞

)1/LeF

. (13)
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By imposing the boundary condition at the droplet surface, the constant of integration C2 is determined to be

C2 = −θs

[
1− θ∞

θs

(
1− YFs

1− YF∞

)1/LeF
]
/

[
1−

(
1− YFs

1− YF∞

)1/LeF
]
. (14)

A qualitative analyses of Equations (11) and (14) shows that λC2, which represents the conservation of local thermal
energy and heat flux, describes a relation between conduction and convection. In case of droplet heating, the conduction
term is positive, which means that heat is transferred to the droplet, then C2 > 0; in case of droplet cooling, this term is
negative, hence C2 < 0. It is worth noting that C2 does not depend on the exponent n.

The temperature profile can be obtained by integrating Eq.(11), which leads to∫ θ

θs

θn

θ + C2
dθ = λ

(
1

a
− 1

x

)
. (15)

Once the energy conservation problem in the gas phase is solved, θ = θ(x) and C2 are specified and it is possible to
integrate Eq.(10) leading to,

LeFλ

∫ x

a

dx

x2θn(x)
= ln
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)
. (16)

The droplet vaporization rate can be calculated from Equations (15) or (16) by imposing the ambient atmosphere
boundary condition, that is

λ =
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LeF
ln

(
1− YF∞

1− YFs

)(∫ ∞
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= a
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dθ. (17)

An analysis is performed for n = 0 and 1/2. The description of droplet vaporization considering the solution for
n = 0 is usual in literature and can be easily provided by Equations (15) and (17), leading to the following temperature
and fuel mass fraction profiles

θ(x) = −C2 + (θs + C2)exp
[
λ

(
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x

)]
, (18)

YF (x) = 1 + (YFs − 1)exp
[
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(
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)]
. (19)

For this case, the vaporization rate β ≡ λ/a obtained from Eq.(18) gives

β = ln
(
1− YF∞

1− YFs

)1/LeF

= ln
(
θ∞ + C2

θs + C2

)
. (20)

This expression agrees with the the expression obtained in Eq.(14) for the constant C2.
The integration Eq.(15) for n = 1/2 corresponds to a more realistic condition. Two cases must be considered in this

situation: C2 > 0 and C2 < 0. Defining Θ ≡
√
θ/|C2|, the solution of this equation is given by

1

2
√
|C2|

[
−λ

x
+

λ

a

]
= Θ−Θs −

{
arctanΘ− arctanΘs for C2 > 0,
arctanhΘ− arctanhΘs for C2 < 0.

(21)

The expression for β in this case can be evaluated by applying the ambient boundary condition in Eq.(21), giving

β

2
√
|C2|

= Θ∞ −Θs −
{

arctanΘ∞ − arctanΘs for C2 > 0,
arctanhΘ∞ − arctanhΘs for C2 < 0.

(22)

In the limit of αl large in Eq.(2), the temperature profile inside the droplet changes slightly with position, explaining
the approximation θ(τ, x) ∼ θ(τ). With this property, this equation can be integrated over the range 0 ≤ x ≤ a, which
leads to

a3

3

dθs
dτ

= αla
2 ∂θ

∂x
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x=a−

. (23)

Taking Eqs.(11) into the boundary condition (7) at the droplet surface, an equation for describing droplet temperature
evolution is found according to

Ca3
dθs
dτ

= −λl + λ(θs − C2) = λ(θs − l − C2), (24)

in which C ≡ cl/3cp. Therefore, the integration of Eq.(24) occurs simultaneously with integration of Eq.(1), solving at
each time step Eqs.(14) and (20) or (22), for n = 0 or 1/2, respectively.
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3. RESULTS AND DISCUSSION

The simulations were performed for n = 0 and 1/2. After a heating (or cooling) time the temperature does not change
and this final state is defined as equilibrium because there is balance between the conduction heat from the gas phase
to the liquid phase and the heat lost through vaporization. For cases of droplet cooling, the models considering n = 0
and 1/2 produce the same results: the surface temperature and mass fraction present the same behavior for both cases,
reaching its equilibrium state, characterized by the values [θS ]eq and [YFs]eq , respectively. Unlike this case, the models
present different results for droplet heating. Besides that, heat will be absorbed or released by the droplet, depending if its
initial surface temperature is lower or higher than the equilibrium values. It can be advanced that the more realistic model
(n = 1/2) presents a lower vaporization rate than that with n = 0 and longer heating time. Also, both models provide the
same equilibrium state.
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Figure 1: (a) Temperature and (b) fuel mass fraction profiles at the surface for T∞ = 800K and initial surface temperature
295, 320, 345 and 370 K.

Following the time evolution of the droplet surface temperature and the respective mass fraction, they increase slower
for n = 1/2; hence, the equilibrium state is reached later, as depicted in Fig. 1. The reason for that is related to the heat
flux from the gas phase to the liquid phase, which is smaller for n = 1/2 because θ

1/2
s < 1 in the thermal conductivity

(with θs < 1).
From Fig. 1 it is possible to see that for all situations the droplet surface tends to an equilibrium state described by

[θs]eq . The dependence of this value on the ambient temperature is plotted in Fig. 2. For both n = 0 and 1/2 the curve
obtained is the same, indicating an independence on the conductivity model.
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Figure 2: Equilibrium surface temperature as a function of T∞

Although the equilibrium surface temperature independs on the ambient temperature and thermal conductivity model,
it is interesting to analyse how the vaporization rate varies during vaporization for both cases. The evolution of both λ
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Figure 3: (a) λ and (b) β profiles for T∞ = 800K and initial surface temperature 295, 320, 345 and 370 K.

and β are presented in Fig. 3. From this figure, the classical results are recuperated, i.e. β is constant after the heating
(cooling) period.

The square of droplet radius decrease linearly in time, as can be seen in Fig.4 a. Although the heating time depends on
the droplet initial temperature, which defines the droplet lifetime, the slope of the curve is independent of this temperature
for a given value of n. It happens because the vaporization rate measured from the slope reaches a constant value that is
determined by the atmospheric ambient via the heat flux to the droplet.

From Fig. 1, one can see that the heating time for the droplet to reach the equilibrium surface temperature depends on
the value of n. The heating times for the droplet to reach 0.99 of the equilibrium surface temperature for n = 0 and 1/2
are defined as t0 and t1/2, respectively. Figure 4 b shows the relative difference (t1/2 − t0)/t0 as a function of ambient
temperature. The initial droplet surface temperature practically does not influence the heating time. This plot summarizes
the importance of substituting the previous model with n = 0 by the one presented in this work for n = 1/2, as almost
30% of relative vaporization time difference can be observed for high ambient temperature.
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Figure 4: (a) Droplet radius evolution for T∞ = 800K and initial surface temperature 295, 320, 345 and 370 K. (b)
Relative time difference adopting n = 0 or n = 1/2 in the model for initial surface temperature 295, 320, 345 and 370 K.

3.1 CONCLUSION

In this work a model for droplet vaporization with a more realistic expression for the gas phase thermal conductivity
was presented. The model is able to simulate a heating time about 10 − 30% higher than the classical model (n = 0)
for the droplet heating problem. In case of droplet cooling, the model with n = 1/2 presents no important improvement
on that one with n = 0. The droplet surface temperature and the fuel mass fraction reach an equilibrium state which
independs on the model.

These results provide an analytical solution that can be included in spray combustion models for droplet vaporization
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(Maionchi and Fachini, 2013). Besides that, a constant was found in terms of the surface and ambient temperature and
fuel mass fraction, which is independent of the value n considered in the diffusion term on both species and energy
conservation equations.
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