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Abstract. The ground resonance phenomenon has been studied in the last decades in order to advance the comprehension
and to find out means to prevent helicopters from unstable oscillations. Elastomeric dampers have been the preferred
devices employed to reduce such instabilities rather than conventional hydraulic dampers. Recent studies have devoted
their attention to the investigation of the influence of the aging effects on the boundaries of the instability. The introduc-
tion of blade-to-blade dissimilarities creates new unstable zones. The present work aims at analyzing the instability of
helicopters having the elastomeric dampers in the fuselage and blades. A parametric study is developed for analyzing the
influence of different dissipative power of dampers on the boundaries of the instability. The treatment of the governing
equations with time dependent coefficients are conducted by using the Method of Multiple Scales.

Keywords: Viscoelastic Material, Parametric Instability, Method of Multiple Scales, Fractional Derivative Viscoelastic
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1. INTRODUCTION

Attention has been devoted in the literature on the study of the stability of helicopters when they are on the ground.
The ground resonance instability can be accurately predicted for hinged and bearingless rotor by using the linearized
periodic equations of motion (Donham et al., 1969; Lytwyn et al., 1971; Hodges, 1979).

Recent studies verify the influence of blade-to-blade dissimilarities on the boundaries of the ground resonance (Wang
and Chopra, 1992; Gandhi and Malovrh, 1999; Sanches et al., 2011, 2012). The rotor asymmetries might be caused by the
aging effects and it is modeled by altering the lag stiffness. Depending on the level of blade dissimilarities, new instability
regions are found.

The appearance of these new instability regions is studied in (Sanches et al., 2012).The periodic governing equations
of the ground resonance phenomenon is interpreted as a parametrically excited system. Studies showed the existence of
parametric resonances, in which some are unstable (Dufour and Berlioz, 1998; Driot et al., 2006). A perturbation method
known as the Method of Multiple Scales (MMS) was used for the stability analysis. The results showed that the coupling
terms between the fuselage and rotor (i.e.: the periodic terms) lead to parametric instability of primary and second order.

The suppression of such instabilities can attained by adding dampers on the fuselage or on the blades. Over the
last years, elastomeric lag dampers have been preferred to be incorporated to articulated rotors (Panda et al., 1996).
In the quest for reducing parts count, weight and maintenance costs, elastomeric lag dampers offer several advantages
over conventional hydraulic dampers. Several authors have directed their research to the characterization of viscoelastic
materials (i.e.: including nonlinear effects) (Gandhi and Chopra, 1996) and on the design of elastomeric dampers (Kunz,
1999; Brackbill, 2000; Kunz, 2002).

The design of elastomeric dampers is complex and it needs to be accurate in predicting the energy dissipated, since its
principal function is to provide sufficient damping to prevent instability.

The viscoelastic materials are characterized by their dependency of the stiffness and damping with respect to the
operational conditions (i.e.: frequency and amplitude of oscillations) and environmental condition (i.e.: temperature).

Several models have been developed for viscoelastic materials, both in frequency-domain and time-domain. Those,
in frequency-domain, express the damping and stiffness by loss and storage moduli (i.e.: imaginary and real parts of the
complex modulus).

Inserted in the group of modern models for viscoelastic materials, the fractional Zener model considers a general order
of differentiation to the derivative operator (Lakes, 2009; Sales, 2012; Näsholm and Holm, 2013). This model leads to
simple constitutive equations and has been used in different applications (Lakes, 2009; Näsholm and Holm, 2013).

The present work aims at treating the ground resonance phenomenon in helicopters with viscoelastic dampers on the
fuselage and on the blades. For this Method of Multiple Scales is used. Further, a parametric study on the boundaries
of ground resonance instability by assuming different levels of viscoelastic damping is developed. Conclusions and
perspectives are finally presented.
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2. MECHANICAL MODEL OF THE FUSELAGE-ROTOR SYSTEM

Figure 1 shows the mechanical model adopted for analyzing the ground resonance phenomenon in helicopters with
hinged blades and under the aging effects. It is based on that used by (Sanches et al., 2011; Sanches, 2011; Sanches et al.,
2012). The fuselage, modeled as a rigid body, contains one translational movement x(t) along its longitudinal direction.

(a) (b)
Figure 1: Sketch of the Mechanical System: (a) General View and (b) Blade View

The helicopter at its equilibrium position has the center of mass of the fuselage (point O) coincident with the origin of
inertial reference frame (X0, Y0, Z0).

The rotor head system is composed of one rigid rotor hub and an assembly of Nb blades. The blades have mass mb

and a moment of inertia Izb around the z - axis located at its center of mass. The radius of gyration is denoted b. The
kth blade owns an in-plane lead-lag motion defined by ϕk(t) and an azimuth angle defined as ζk = 2π (k − 1) /Nb with
respect to the x - axis.

A rotational reference frame (x, y, z) is parallel to the inertial one and its origin is located at the geometric center of
the rotor hub (coincident at point O). The rotating reference frame revolves at the same speed as the rotor, indicated by Ω.

The fuselage and the rotor head are connected to each other by a rigid shaft. Aerodynamic forces on the blades are not
taken into account. Such an assumption is quite realistic since the helicopter is on the ground. In the present work, the
rotor is composed of Nb = 4 blades.

3. MODEL OF ELASTOMERIC DAMPERS

Figure 2 shows a scheme of an elastomeric lag damper. The principal elements of the elastomeric rotor configuration
considered in this study is the flexbeam, spherical elastomeric bearing and the elastomeric shear damper.

The flexbeam and the spherical elastomeric bearing elements are directly connected to the blade and they give addi-
tional lag stiffness to blades. The elastomeric shear damper is composed of n bounded layers of viscoelastic materials.
These layers are slightly deformed by the blade loads, under dynamic conditions.

Viscoelastic materials are characterized by the temporal dependency of the stress σ(t) and strain ε(t). Experimental
tests have shown that the response of viscoelastic materials to step strain is stress relaxation and the response to step stress
is creep. Among different classical and modern models for these materials, the one used here is the Zener Fractional
Model.

According to Lakes (2009), the time-domain and frequency-domain representation of Zener Fractional Model is rep-
resented in Eq.(1).

σ(t) + τα
dασ(t)

dtα
= E0ε(t) + ταE∞

dαε(t)
dtα

(1a)
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Figure 2: Schema of an Elastomeric Rotor Configuration (obtained from Panda et al. (1996))

E∗ (ω) =
E0 + E∞ (Iωτ)

α

1 + (Iωτ)
α ; G∗ (ω) =

E∗ (ω)

2 (1 + ν)
(1b)

where, E∗ and G∗ is the frequency-domain Young and shear complex modulus. E0, E∞, τ and α are parameters
determined from curve-fitting of experimental data. They are dependent of the temperature. At 25oC, the viscoelastic
material ISD112TM from 3M has E0 = 1.2883 [MPa], E∞ = 411.6754 [MPa], τ = 0.7993e− 3 [ms] and α = 0.64855
(Sales, 2012).

The present work considers elastomeric dampers connected to blades and fuselage (see Fig. 1). Figure 3 illustrates,
schematically, the geometry and the deformation of the viscoelastic materials of both dampers. The dashed lines represent
the deformed configuration of the viscoelastic materials under the loads T (i.e.: twist moment) and F (i.e.: shear force).

(a) Lag Dampers (b) Fuselage Dampers
Figure 3: Geometrical Characteristics and Deformations (dashed lines) of the Viscoelastic Material at: (a) Lag Dampers
and (b) Fuselage Dampers

In Fig. 3a, the applied torque T rotates the blade with an angle ϕ. Since the blade root is attached at the upper surface
of the viscoelastic material, this latter is twisted along its longitudinal axis. γmax is the obtained shear strain.

Concerning Fig. 3b, the transmitted force F from the fuselage deforms the viscoelastic material with δ. The shear
stain deformation of the material is γ = δ

h .
The complex stiffness of the blade and fuselage elastomeric dampers are represented byKvb andKvf X , respectively.

As mentioned above, due to viscoelastic material properties both Kvb and Kvf X are time dependent functions. In
the frequency domain, the blade and fuselage complex stiffness might be obtained from the relations of the structural
mechanics and expressed as:

• Blade Lag Damper:

Kv∗b (ω) =
Ip
L
G∗ (ω) = AG∗ (ω) (2a)
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• Fuselage Damper:

Kv∗f X (ω) =
S

h
G∗ (ω) = BG∗ (ω) (2b)

where, G∗ is the complex modulus given in Eq.(1b). The parameters Ip, L, S and h are geometric properties of the
elastomeric dampers (see Fig. 3). These geometrical parameters are included in the variables A and B.

4. GOVERNING EQUATIONS

In order to obtain the governing equations of motion, Lagrange equations are applied after formulating the kinetic and
potential energies and the virtual work of the external forces and moments applied to of the dynamical system.

In Sanches et al. (2012), it can be found that the matrix equations of motion can be expressed as:

Mü + Gu̇ + Ku = Fext (3)

where,

u(t) =
{
x(t) ϕ1(t) ϕ2(t) ϕ3(t) ϕ4(t)

}T
(4)

M, G and K correspond to the mass, damping and stiffness matrix, respectively. Fext is equal to zero once all
blades possess the same inertial and geometrical properties. The matrices are non-symmetric and non-diagonal due to the
presence of periodic terms, as shown by Eq.(5).

M(t) =


1 −rm sin(ψ1) −rm sin(ψ2) −rm sin(ψ3) −rm sin(ψ4)

−rb sin(ψ1) 1 0 0 0
−rb sin(ψ2) 0 1 0 0
−rb sin(ψ3) 0 0 1 0
−rb sin(ψ4) 0 0 0 1

 (5a)

G(t) =


0 −2Ωrmcos(ψ1) −2Ωrm cos(ψ2) −2Ωrm cos(ψ3) −2Ωrm cos(ψ4)
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 (5b)

K(t) =


ω̃2
x + ω̂2

x(t) Ω2 rm sin(ψ1 ) Ω2 rm sin(ψ2 ) Ω2 rm sin(ψ3 ) Ω2 rm sin(ψ4 )
0 ω̃2

b + ω̂2
b (t) + Ω2 r2

a 0 0 0
0 0 ω̃2

b + ω̂2
b (t) + Ω2 r2

a 0 0
0 0 0 ω̃2

b + ω̂2
b (t) + Ω2 r2

a 0
0 0 0 0 ω̃2

b + ω̂2
b (t) + Ω2 r2

a


(5c)

F(t) =
{

0 0 0 0 0
}T

(5d)

where,
rm = bmb

mf+Nbmb
, rb = bmb

b2mb+Izb
, r2a = a rb, ψk = Ωt + ζk , ω̂2

x(t) =
Kvf X(t)
mf+Nbmb

, ω̂2
b (t) = Kvb(t)

b2mb+Izb
Table 1 gives the approximated numerical data for a real helicopter.

Table 1: Numerical Data of the Helicopter
Fuselage Rotor

mf = 2902.9 [Kg] mb k = 31.9 [Kg] a = 0.2 [m] b = 2.5 [m]
ω̃x = 6.0π [rad/s] ω̃b = 3.0π [rad/s] Izb = 259 [Kg m2]
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5. STABILITY ANALYSIS

The stability analysis of the periodic governing equation of motion - Eq.(3) - can be performed by using nonlinear
techniques. Based on the development given by Sanches et al. (2012) for treating the ground resonance phenomenon with
anisotropic rotor, the Method of Multiple Scale (MMS) is used.

The perturbation method MMS considers an asymptotic development on the time response functions of the dynamical
system. Based on this, the variable u(t) has the form of:

un(t) = un0 (T0, T1) + ε un1 (T0, T1) +O(2), n = 1..5

where, ε is the bookkeeping parameter.
The periodic terms, except the fuselage and blade lag frequencies, are scaled to appear as parametric excitations at the

first order of ε. For this purpose, the following substitutions rmk = εαk and rb k = εβk are done.
Two sets of equations are obtained by grouping them as coefficients associated to increasing of ε (Sanches et al., 2012).

These sets of equations are described below.

5.1 Order ε0 equations

The set of order ε0 equations is represented by

D2
0 un0

+ ω2
n un0

= 0, n = 1..5 (6)

where D0 indicates the partial derivative with respect to T0. Note that the periodic terms do not appear in the equations
since they were scaled up to the order ε1. The natural frequency ω2

n is a time dependent function, as follows:

ω1(t) =
√
ω̃2
x + ω̂2

x(t), ωk+1(t) =
√
ω̃b + ω̂2

b (t) + r2aΩ2 , k = 1..Nb

The linear set of order ε0 equations represents the uncoupled fuselage/rotor system. Each generalised coordinate
(fuselage translational movement and blade rotations) behaves as an independent oscillator.

The homogeneous response of the differential equation Eq.(6) is obtained in the frequency domain. From Eq.(2),
Eq.(6) might be expressed as:

[
s2 + ω̃2

x +
rm
bmb

Kv∗f X(ω)

]
Un0

(ω) = 0, n = 1 (7)

[
s2 + ω̃2

b +
rb
bmb

Kv∗b (ω) + r2a Ω2

]
Un0(ω) = 0, n = 2..5 (8)

where, s = iω and i indicates the imaginary unit.
The frequency domain equations of fuselage and blades, accordingly to Eqs.(7) and (8), are similar to that of a tuned

mass damper with undamped natural frequency ω and damping factor ζ. Thus,

• Fuselage Equation

ω̃2
x +

rm
bmb

Kv∗f X(ω) = ω2(1 + i ζ)2 (9a)

• Blade Equation

ω̃2
b +

rb
bmb

Kv∗b = ω2(1 + i ζ)2 (9b)

From Eq.(9a), the equivalent natural frequency ω1 and damping factor ζ1 of the fuselage are obtained. Similarly for
the blades, from Eq.(9b), their natural frequencies ω2..5 and damping factors ζ2..5 are computed.

The homogeneous responses for the set of order ε0 equations, Eq.(6), are trivial and take the form of

un0 =
1

2
Cn (T1) e(−ζn ωnT0)e(iωnT0) + [c.c.] , n = 1..5 (10)

The term Cn (T1) is complex and [c.c.] represents the complex conjugate of the previous terms.
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Figure 4: Evolution Dynamical Properties of the Fuselage and Blades with Viscoelastic Dampers: (a) Damped Natural
Frequency and (b) Damping Factor

Figure 4 shows the evolution of the damped natural frequencies ωn and damping ratios ζn of the fuselage and blade at
the set of order ε0 equations - see Eq.(6). The viscoelastic material properties used in the simulation are given in section
3 while the helicopter data are in Tab. 1. For instances, A = 0.314 and B = 0.1 (see Eq.(2)).

A common characteristic is observed for the damped natural frequency and damping factor of the fuselage in Fig. 4.
ω1 and ζ1 are constant while Ω is varying. This is verified since the viscoelastic damper of the fuselage is not under the
influence of the centrifugal force. However, such force strongly influences the viscoelastic dampers in the blades. One
may note that the damped natural frequency of blades has increased while the damping factor decreases.

5.2 Order ε1 equations

The set equations of order ε1 are represented below.

D2
0u11 + ω2

1 u11 = −2D1D0u10+

6∑
n=3

{
− 1

2 i(n−2)αn−2D2
0 un0e(iΩT0 ) + i(n−3)αn−2ΩD0 un0e(iΩT0 )

+ 1
2 i(n−2)αn−2Ω2 un0

e(iΩT0 ) + [c.c.]

}
(11a)

D2
0un1

+ ω2
n un1

= −2D1D0un0
− 1

2
i(n−2)βn−2D2

0 u10e(iΩT0 ) (11b)

− 1

2
i(n−3)βn−2D2

0 u20e(iΩT0 ) + [c.c.] , n = 3..6

The right-hand side of the above equations highlights the existence of external excitations that are totally dependent
on the steady-state responses un0 .

It is not difficult to observe that depending on the rotor speed value, the external excitations of Eq.(11) might lead to a
resonance condition. In this case, the resonance is called parametric resonance of first order.

Parametric resonances of first order in the dynamical system are detected when any combination of frequencies from
the periodic excitation terms becomes equal to the natural frequency of the linear dynamical system.

Sanches et al. (2012) have employed the present technique to the analysis of the stability of helicopters on ground.
Four parametric resonances of first order were found. Only two of them were unstable.

In the present work, based on the previous study mentioned above, the critical rotor speed Ωcrit, in which the para-
metric resonance can be unstable, is obtained when

ω1 = Ωcrit − ωn ⇒ Ωcrit = ω1 + ωn, n = 2..5 (12)

The boundaries of ground resonance are determined by studying the stability of the parametric resonant case, through
the solvability conditions (Sanches et al., 2012). The solvability conditions, composed by the secular terms which must
vanish, consist in a set of first order differential equations.
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Figure 5: Stability of the Helicopter at Parametric Resonance of First Order - Ω = ω1 + ωn, n = 2..5

The stability of the dynamical system is obtained by observing the eigenvalues λ of the solvability conditions. For a
stable system, the real part of λ must be negative.

A stability diagram of the helicopter at the parametric resonance of first order mentioned above is illustrated in Fig. 5,
considering the same numerical data used in Fig. 4.

The ground resonance phenomenon occurs for Ω between 33.46 and 36.54 Hz. The maximum exponential growth
factor obtained is 0.324.

6. PARAMETRIC ANALYSIS

The present work aims to verify the influence of the viscoelastic dampers on the boundaries of the helicopter instability.
In this section, a parametric study on the ground resonance phenomenon is carried out by considering different levels of
viscoelastic damping introduced in blades and fuselage.

For the accomplishment of such parametric study, different combinations of the geometrical parameters of the elas-
tomeric dampers are assumed. That is, the constantsA andB are considered in the ranges [0.01, 0.1, 1, 5] and [0.01, 0.1, 1, 5],
respectively. For the simulation, the viscoelastic material properties are given in section 3 while the helicopter data are in
Tab. 1.

Looking at the evolution of the fuselage damped natural frequency and the damping factor with respect to Ω, Fig. 6
illustrates that both are constants with respect to the rotor speed and they increase once B grows.
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Figure 6: Parametric Analysis on the Evolution of the Dynamical Properties of the Fuselage for Different Elastomeric
Dampers: (a) Damped Natural Frequency and (b) Damping Factor

Concerning the blade natural frequency and damping factor, Fig. 7 shows a dependence of their values with respect
to Ω . As it was evidenced in Fig. 4, by increasing the rotor speed, the blade natural frequency increases (due to the
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centrifugal force) and the damping factor decreases.
However, analyzing the blade damping factor, this trend seems to occur only for low values of A. When higher level

of the damping is considered, the damping factor takes its maximum value for the whole values of Ω.
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Figure 7: Parametric Analysis on the Evolution of the Dynamical Properties of the Blades for Different Viscoelastic
Dampers: (a) Damped Natural Frequency and (b) Damping Factor

The ground resonance stability is then analyzed for all combinations of viscoelastic damping in the fuselage and
blades. The stability of the solvability conditions at the parametric resonance of first order, given by Eq.(12), is analyzed
for each combination. The instability region is defined when Re(λ) > 0.

Figure 8 illustrates the boundaries of instability for different combinations of A and B. Table 2 summarizes the main
results, namely the rotor speed (Ωmax) at which the exponential growth reaches its maximum value and the critical rotor
speed width (∆Ω) within which the instability occurs.
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Figure 8: Parametric Stability Diagram for Different Combinations of Viscoelastic Dampers

Accordingly to Eq.(12), any increment in the natural frequencies of the blades or fuselage leads to increase of the
Ωcrit. Thus, as verified previously in Figs. 6 and 7, the increment on the Ωcrit can be obtained depending on the selected
level of the damping.
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Table 2: Main Results from the Parametric Stability Analysis of Fig. 8
A 0.01 0.1 1 5

B = 0.01 Ωmax[Hz] 3.75 4.39 7.8 15.43
∆Ω [Hz] 0.4 0.72 1.42 1.54

B = 0.1 Ωmax[Hz] 3.85 4.49 7.90 14.61
∆Ω [Hz] 0.32 0.38 0.59 0.72

B = 1 Ωmax[Hz] 4.65 5.29 8.66 16.27
∆Ω [Hz] 0.89 0.46 0.35 0.38

B = 5 Ωmax[Hz] 7.13 7.71 11.05 18.6
∆Ω [Hz] 3.82 1.24 0.66 0.41

This fact is also reflected on the stability diagram. As shown in Tab.2, the Ωmax reaches high values when A or B
increase.

Moreover, considering A constant and B varying, once high rotor speed is needed, higher kinetic energy is involved
and higher exponential growth is reached, as observed from Fig. 8.

From Tab. 2, one observes that larger width of the instability regions are obtained when high discrepancy between
A and B is reached. Nevertheless, the lowest exponential growth (Re(λ)) is obtained with the high discrepancies, when
A >> B.

7. CONCLUSIONS

Over the last decades, elastomeric dampers have been preferred to be employed in rotor design for the prevention
of the ground resonance instabilities in helicopters. The viscoelastic dampers have several advantages over conventional
hydraulic ones.

The present work analyzes the helicopter dynamics considering viscoelastic dampers in the fuselage and in the blades.
The periodic equations of motions of the helicopter, including the time dependent behavior of viscoelastic materials, have
been treated with the Method of Multiple Scales.

A parametric study was developed on the stability of helicopters with different types (with respect to the dissipative
power) of elastomeric dampers in the fuselage and blades.

The results have showed the dependency of instability region characteristics with respect to the set of elastomeric
dampers selected. That is, the maximum exponential growth, the critical rotor speed and the width of the unstable zone
(in terms of Ω) vary depending on the dissipative power of the dampers.

Further analysis will be devoted towards the influence of self-heating effect of viscoelastic dampers on the boundaries
of the ground resonance instability.
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