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Abstract. Nowadays, adhesive joints in structures are being used in several applications in engineering. This type of 
joints presents a major advantage in structural designs (high stiffness and very low density), resulting in components 
with a lower weight. The processes of damage on these types of materials tend to be very complex. For this reason, it 
becomes necessary to develop reliable methods to perform analyses on these components, in order to avoid damage 
and structural failures. The goal of this work is to study, analyze and compare the different techniques used in 
computer modeling of adhesive interfaces, considering the effect of the damage initiation and its evolution. Numerical 
models are reproduced in a commercial software, which is based on a finite element method (ABAQUS 6.10). 
Formulations of damage mechanics and its constitutive equations are considered in order to represent the correct 
behavior of the interface, and the verification of its resistance. To consider this mechanism of damage, the models that 
describe the damage initiation and evolution are evaluated in three different modes: Mode I, Mode II and Mixed-Mode 
Loading. The numerical results of these analyses are compared with results found in laboratorial and numerical tests 
available in the literature. 
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1. INTRODUCTION 
 

Mechanical components united by the usage of adhesives are alternatives that are occurring with greater frequency 
in many structural applications. The characteristics of such unions makes them very attractive in industries such as 
aeronautics, automotive and civil/mechanical engineering. When comparing this method with conventional couplings 
by means of mechanical components (e.g. bolts, screws, etc.), it is noticed that the adhesive has the added benefit of 
generating less stress concentration, a more uniform load distribution and a better property for fatigue.  Another 
advantage presented is the designs of structures with a lower self-weight. The usage of adhesive joints also makes 
possible the union between metallic surfaces with non-metallic surfaces, something unable by welding methods. 

A type of component that uses adhesive joints is the composite material. A typical material of fiber reinforced 
composite consists of multiple layers of fibers adhered to each other. Composite materials are elements made of the 
same or different material type naturally designed (e.g. wood) or engineered (e.g. rolled plate). Generally, the failure 
process of these types of materials tends to be very complex, varying from intralaminar failures to interlaminar failures, 
the latter being known as delamination (Balzani and Wagner, 2008). Therefore, it is of paramount importance in this 
case the correct application of equations for the design of such materials because they are used in a vast range of 
engineering applications. 

Given the increasingly usage of adhesive connections with important structural responsibility, it is required careful 
verification of such connections. According to Rudawska (2010), analytical methods for the determination of stresses 
on joints connected by adhesives have several simplifying considerations that make its final results unreliable. To avoid 
these difficulties, the Finite Element Method (FEM) is characterized as an excellent tool for computational analysis.  

In the works of Camanho and D'Ávila (2002) and Xu et al. (2012), for the interface elements, a constitutive model 
called "traction-separation" is applied. In 1998, Geubelle and Baylor (1998) use this curve to simulate the initiation and 
propagation of cracks in composites formed by thin plates. Using such constitutive model, by increasing the separation 
of the interface, the stress along the adhesive reaches a maximum value (damage initiation) and, after this, this value 
decreases until a magnitude of zero, that being the point where the complete delamination (or complete damage) occurs. 
Thus, the focus of the work is to approach an analysis methodology for adhesive joints, taking into account the effects 
of damage to the interface elements.  
 
2. MECHANICS OF THE DAMAGE 
 

The strength of the bonded joints mainly depends on the behavior of the interface material. The literature shows that, 
with increased loadings, there is a tendency of damaging the adhesive material, which may compromise the strength and 
integrity of the connection. According to Lemaitre and Desmorat (2005), the damage is always related to the plasticity 
or irreversible deformations, and more generally also a dissipation of deformation. This process of evolution of the 
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initial damage ultimately affects the elastic properties of the material or, better saying, a reduction of resistance and 
rigidity. Starting up to a more advanced stage of loading, the damage leads to the growth of microcracks too, creating a 
permanent deformation (Proença, 2000). 

According to the definition of Lemaitre and Desmorat (2005), considering dA as the damaged area and A  as the 

undamaged area, the damage variable d  is defined by the following relationship shown in Eq. (1). 
 

δA

δA
d d               (1) 

 
Therefore, it can be seen that the range of possible values for the damage is from 0 to 1, where d = 0 corresponds to 

the material still intact and d = 1 refers to the moment where a state of complete damage is reached. The effective stress 

eff  in the case of an isotropic damage is defined by Eq. (2). 

 

d1eff 


              (2) 

 
Thus, the basics of the damage in a component are presented. In summary, it can be said that the damage is the loss 

of rigidity of a structure according to any actual loss of area for the distribution of any applied force. Thus, it is possible 
to perform a compilation of the formulations involved in representing various types of interfaces. The emphasis in this 
case is given to elements used in the characterization of MZC. 

 
3. FINITE ELEMENT – INTERFACE ELEMENTS 

 
In the analyses of structural components where there is mutual interaction between two different bodies, the 

consideration of the interface region is of paramount importance for a correct evaluation of the stresses and strains that 
occur in this region. Many of the interface elements come from engineering studies for civil construction, which 
evaluates the interaction between soil/beam, concrete/beam or concrete/soil and so on. Such elements are used in 
conditions where two-dimensional approximation can be addressed. However, many interface elements allows their 
formulation to be used for the analysis of materials having adhesion functionality (adhesives or glues). These types of 
adhesions are characterized as Cohesive Zone Models (CZM), and the main differences are the introduction of the 
parameters of damage in its constitution, as well as the possibility of working with three-dimensional models. On the 
following section, some interface elements found in the literature are presented, as well as the CZM element used in this 
present work. 

 
3.1 Interface Elements 

 
As quoted by Lázaro (2004), in the study conducted by Ngo and Scordelis (1967), a finite element is created for its 

use in analysis of reinforced concrete beams. In the analyses performed, a three-dimensional beam is considered, 
composed of concrete and steel. As mentioned in the work of Kaliakin and Li (1995), Goodman et al. (1968) proposes 
an interface element for the analyses of rock masses. Ghabousi et al. (1973) propose a non-zero thickness element to 
represent connections between rocks and, thirty years later, Coutinho et al. (2003) describes an extension of the 
interface element proposed by Hermann (1978). 

It should be emphasized that, on the elements briefly described above, all applications are only for two-dimensional 
cases. For the interface elements that are used to describe the cohesion between two surfaces, a state of tridimensional 
stresses occurs generally, making it necessary to characterize the existing damage in the element of adhesion. Cohesive 
Zone Models (CZM) are developed exclusively for application in regions which are joined by the means of an adhesive 
resin, being that for structural components joints or also for interlaminar fibers in a composite material. These CZM 
models are discussed in the following section. 
 
3.2 Cohesive Zone Models (CZM) 

 
Interface regions have been modeled in several different ways throughout recent history. The key to determine the 

best way of characterizing these interfaces is to use an approximation of the continuum mechanics, rather than the usage 
of simplifying forms of analysis, such as the use of springs in formulations of finite elements (Chandra et al., 2002). 
Recently, the usage of CZM has been widely used when it is desired to describe the initiation and propagation of 
damage in several different types of materials. The utilization of CZM in the modeling of interfaces presents distinct 
advantages compared with other methods, and this is based on micro-mechanical approaches. 

The first CZM was developed by Barenblatt (1959) as an alternative to the concept of mechanical damage to fragile 
materials. Dugdale (1960) extended the concept created by Barenblatt (1959) for materials which are perfectly plastic to 
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claim the existence of a processing zone at the base of existing cracks. According to Camanho and D’Àvila (2002), 
Needleman (1987) was the first researcher to use exponential functions and polynomial equations for interfaces 
analyses, in order to simulate the delamination in metallic materials. Tvergaard and Hutchinson (1992) analyze the 
growth of existing cracks and the corresponding strength of the cohesive element. Camacho and Ortiz (1996) describe 
in their work a Lagrangian finite element to analyze the fracture and fragmentation in brittle materials. Two years later, 
Geubelle and Baylor (1998) describe a bilinear model for the behavior of CZM. The emphasis of this present section is 
not to deepen and refine each CZM described, but to give a brief general history. However, in the following sections, 
the cohesion model described by Geubelle and Baylor (1998) is explained in detail. This is the CZM chosen to 
characterize the cohesive element in this present work. In section 3.2.1 it is presented the formulation of a solid 
cohesive element (with 8 nodes) and in section 3.2.2 the damage constitutive relation is described according to the 
Geubelle and Baylor (1998) CZM. 

 

3.2.1 Cohesive Finite Element Formulation – Balzani and Wagner (2008) 

 
In this section, the formulation of an interface element is described. The main focus is to use a continuum 

mechanics approach to the modeling of composite interlaminar damage. The formulation is based on an isoparametric 
element (solid element 8 nodes). It is considered a thin continuous element inserted between two plates, with a starting 
value of h0 presenting a ratio of 1/100, with respect to the plate thickness (Balzani and Wagner, 2008). The remaining 
stresses on this element are the normal stresses n  (in the thickness direction), and the shear stresses sn  and tn  (in the 

directions transverse to the thickness), forming an interlaminar stress vector (Fig. 1). 
 
 

 
 

Figure 1. Tridimensional stress state of a solid interface element (Balzani and Wagner, 2008). 
 

The interface element is referenced by a global rectangular coordinate system. In this system, the coordinates s, t 
and n are referent to the three vectors direction ( Sx , tx , nx ). The n vector is the direction of the adhesive thickness, and 

it corresponds to the mode I of failure (crack opening). The vectors s and t are the directions of the adhesive width and 
length, respectively, and corresponds to the mode II and III of failure (shearing on the transverse and parallel to the 
fiber). 

Considering V as the element volume, according to the works of Balzani and Wagner (2008) and Kattan and 
Voyiadjis (2002), the principle of virtual work for solid interfaces can be described by the Eq. (3). 

 


V

T dV]][[)u(              (3) 

 
  is the virtual strain vector and   is the stress vector. The displacement vector u  and the strain vector   are 

defined by Balzani and Wagner (2008) by the Eq. 4. sn  and tn  represent the shear strain on the cross-sectional and 

longitudinal direction, respectively, and n  is the strain on the normal direction (adhesive thickness). 
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The symbol u  represents the incremental displacement vector. Working on the Eq. (3), the Eq. (5) is obtained. 
On this Eq. (5), the parameter C is the constitutive behaviour of the material.  

 

n  

n  

sn  
sn  

tn  

tn  
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  



V

T

V

0
T dV]}[]{[dV])[]([}C]{[)u( 


        (5) 

  
When approaching the formulation from the point of view of the finite element concepts, a discretization is 

performed on the interface element. In this case, it is considered a shape function iN  with natural coordinates for an 

isoparametric 8 node element. The quantities  ,   and   represents the directions on the natural coordinates. In the 

global coordinate, these directions are represented by nx , sx  e tx . 

 Adopting x  as the nodal position vector, any node position can be obtained from Eq. (6). Therefore, the 
relationship between natural and global coordinates is defined as follows: 
   

 



8

1i
ii x}N{),,(x               (6) 

  
Thus, the strains can be defined by Eq. (7), and the tensor B is described by Eq. (8). 
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Considering e
TikK  as the element stiffness tangential matrix, the principle of virtual work can be described in the 

Eq. (9). 
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       (9) 

  
Therefore, Eq. (9) represents the principle of virtual work on the 8 node solid element. According to Balzani and 

Wagner (2008) and Camanho and D’Ávila (2002), the Newton-Cotes integration results in a better performance of the 
element. Inside Eq. (9) it is necessary the implementation of a constitutive relation which represents the damage on the 
interface element. On the following section, a constitutive equation (based on the Geubelle and Baylor (1998) CZM) 
proposed by Camanho and D’Ávila (2002) is presented. 
  

3.2.2 Cohesive Finite Element Formulation – Camanho and D’Ávila (2002) 

 
The need for an appropriate constitutive equation, in the formulation of the cohesive element, is due to the fact that 

this is critical for a proper evaluation of the entire process of damage on the interface. This section describes the 
proposed cohesive laws in a model described by Camanho and D’Ávila (2002). This model allows a prediction of the 
damage initiation and propagation under a loading application called "mixed-mode". Figure 2 shows the behavior of the 
material in this model. 0

n  and  0
S  are, respectively, the normal an shear maximum stresses capacities of the interface. 

The quantities 0
nu  and  0

Su  are, respectively, the displacements necessary to achieve the normal and shear maximum 

stresses (this is the damage initiation point). And, finally,  f
nu  and  f

Su  are, respectively, the final displacements 

necessary to achieve failure (total damage).  
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Figure 2. Damage bilinear model: (a) Mode I of loading; (b) Modes II and III of loading. 
 
The property K (penalty stiffness) is one of the properties needed to define the actual behavior of the interface, 

being responsible for the elastic property of the element. Other properties are required for the same purpose, as the 
fracture energy ( N , S , t ). With the objective of obtaining a more complete formulation in the constitutive 

equations, Camanho and D’Ávila (2002) defines a behavior where there is also an unloading involved. In this case, the 

loading condition can be formulated as a function of a variable, called maximum relative displacement ( maxu ). 
Equation (10) demonstrates this internal variable that governs the maximum displacement computed. 
 

 n,t,si},u,umax{u i
max

i
max

i             (10) 

 
Adopting in this case an F function to distinguish loading and unloading, described by Eq. (11). The term ‹ › refers 

to the “Macaulay Bracket”. 
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The elasticity matrix D, which contains the cohesive properties inside the interface, is defined by the Eq. (12). The 

term I  is the identity matrix. 
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The d scalar parameter, used for the calculation of the damage extension, is introduced on the Eq. (12) and, 

according to Camanho and D’Ávila (2002), this parameter is described by the Eq. (13). 
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Therefore, Balzani and Wagner (2008) obtain the stress linearization matrix, described by Eq. (14). 
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3.2.3 Damage Initiation and Propagation 

 
In the works of Ghosh et al. (2000) and Chandra et al. (2002), the fracture energy  on the interface represents the 

area under the stress x relative displacement curve shown on Fig. 2, and its values are obtained by Eq. (15). According 
to Camanho and D’Ávila (2002), the displacement initial and final values are defined by the Eq. (16). 
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According to Camanho and D’Ávila (2002), the initial damage can be predicted by a quadratic failure criterion, 

defined by Eq. (17).  
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In the case of positive crack openings nu , it is introduced a mixed-mode ratio  , defined by Eq. (18). 
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Thus, the effective relative displacement on the mixed-mode loading on damage onset is defined by Eq. (19). 
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When mixed-load is observed, Camanho and D’Ávila (2002) recommends the B-K criteria, proposed at first by 

Benzehhagh and Kenane (1996).  This criterion is defined by Eq. (20). 
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In Eq. (20), I  and II are the modes I and II energy loss ratio, respectively, and C  is the critical energy loss 

ratio on the mixed-mode loading. The total energy loss is defined by T . The  parameter is used to adapt the curve 

obtained experimentally (the “Least Square Fitting Method” is used in order to fit the points obtained experimentally 
into a curve). In this case, the value obtained by Camanho and D’Ávila (2002) for the   parameter is 2.284. 

When submitted to mixed-mode loading, the energy loss ratios that correspond to the total failure displacements are 
defined by Eq. (21) and Eq. (22). 
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In Eq. (21) and Eq. (22), 
0n

mu and 
0cisalh

mu represent the initial relative displacements in the normal and shear 

direction, respectively. Similarly, the values of fn
mu and fcisalh

mu  represent the final relative displacements in the 

normal and shear direction (point when the complete damage occurs), respectively, when the component in question is 
subjected to a mixed mode. These displacement values are obtained according to Eq. (23) and Eq. (24). 
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Thus, an expression in function of the fracture energies in mode I and II is obtained, in order to verify the effective 

displacement on the total damage in the mixed-mode. This formulation is presented in Eq. (25). 
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4. APLICATIONS 
 
In this section, some analyses of a composite model are presented. In these analyses, all the theory and formulations 

mentioned in the previous sections are applied. The analyses are performed in commercial finite element based software 
(ABAQUS 6.10), using exactly the same values for the mechanical properties and geometry also adopted by Camanho 
and D’Ávila (2002) for the DCB (Double Cantilever Beam) test. The details of the numerical modeling are also 
presented, plus all the values used for a correct approach to the initiation and propagation of the damage. Finally, these 
numerical results are compared with the values obtained by Camanho and D’Àvila (2002), experimentally and 
numerically. 

 
4.1 Numerical Analysis – Double Cantilever Beam Test (DCB) 

 
In their work, Camanho and D’Ávila (2002) performed laboratorial tests on different types of specimens with 

different methods of loading application, in order to verify the delamination of a composite material (AS4/PEEK). 
Different types of loading are applied according to Benzeggagh and Kenane (1996), with the objective of studying the 
delamination under the action of loads in Mode I, Mode II and Mixed Mode loading. After obtaining experimental 
results, Camanho and D’Ávila (2002) performed numerical analysis using an interface cohesive element (8 nodes) able 
to deal with damage in the mixed mode loading condition. This element is inserted between the solid elements 
(representing the laminates) in order to model the initiation and propagation of damage in composites. Figure 3 shows 
the DCB specimen, at first designed by Reeder and Crews (1990), to verify the delamination in Mode I (crack opening). 
In this case, the force P is applied perpendicular to the face of adhesion between the two solids, generating a normal 
load surface. 

 

 
 

Figure 3. DCB testing apparatus (Reeder and Crews, 1990). 
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This model has the same geometry of the specimen analyzed by Camanho and D’Ávila (2002), as well as the same 
mechanical properties. Figure 4 illustrates the modeling of the DCB specimen. Region 1 represents the region where 
damage can’t propagate. Region 2 represents the location where the cohesive element is inserted between the two layers 
of the composite, this being the region responsible for identifying the beginning and propagation of the damage. Region 
3 is where the pre-delamination (crack) is introduced into the specimen. According to Balzani and Wagner (2008), the 
initial value for the interface element height is sufficiently represented by the relation 100/h2h0  (h =1.56 mm). 

Thus, in this case the initial height of the cohesive element is 0.032 mm. The image presented in Fig. 5 shows the 
boundary conditions applied on the model.  

 

 
 

 Figure 4 –DCB numerical model. 
 

 
 

Figure 5. Boundary condition applied on the model. 
 

Figure 6 shows the points where the displacements are imposed. These points, both at the top and the bottom of the 
model, are the regions where the reaction force P is observed throughout the history of the analysis. Initially, for a first 
analysis, the Z distance illustrated in Figure 8 has a value of 0.75 mm. Afterwards, this distance is changed at first to 
1.50 mm and, in a third analysis, to 2.25 mm in order to verify the influence of this parameter on the results obtained. 

 

 
 

Figure 6. Displacement imposed on the points located at the “Distance Z”. 
 

Symmetry on the Z 
direction (XY plane) 

Encastre 
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The generated mesh in the solid body representing the laminate itself is formed by elements with 8 nodes with a 
linear formulation. As for the cohesive element, located in Region 2 between the laminates, the mesh is formed by 8 
nodes cohesive elements, also with a linear formulation. On Fig. 7, it is possible to verify the mesh generated on the 
cohesive element. 

 

 
 

Figure 7. Mesh generated on the cohesive element. 
 

In Tab. 1 it is shown the inter and intralaminar mechanical properties of the material used for the AS4/PEEK 
(APC2), a composite reinforced by carbon fibers (Reeder and Crews, 1990). The parameter K, in this case, has a value 
of 10E6 N/mm3. 

 
Table 1. Mechanical Properties of the composite AS4/PEEK (APC2). 

 

E11 (GPa) E22=E33(GPa) G12=G13(GPa) G23 (GPa) μ12=µ13 

122.7 10.1 5.5 3.7 0.25 

µ23 N  (N/mm) S  (N/mm) 0
Nσ  (Mpa) 0

S  (Mpa) 

0.45 0.969 1.719 80 100 

 
 
In the next step, the results obtained are shown. The values are compared to the ones obtained experimentally and 

numerically by Camanho and D’Ávila (2002). Figure 8 shows the curves (Force [N] x Displacement [mm]) generated 
on the first analysis, considering the distance Z (Fig. 6) with 0.75 mm. Figures 9 and 10 shows the curves generated 
considering the same distance Z with 1.50 mm and 2.25 mm, respectively. 

 

 
 

Figure 8. Curve: Force x Displacement – distance Z = 0.75 mm. 
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Figure 9. Curve: Force x Displacement – distance Z = 1.50 mm. 
 

 
Figure 10. Curve: Force x Displacement – distance Z = 2.25 mm. 

 
The values obtained for each configuration of the distance Z are shown on Tab. 2, 3 and 4. The maximum P force is 

presented with the correspondent relative error as well, comparing these values with the ones obtained by Camanho and 
D’Ávila (2002). 

 
Table 2- Relative errors obtained for the distance Z=0.75mm. 

 

Pmáx experimental 
(Camanho and 
D’Ávila, 2002) 

Pmáx numérical 
(Camanho and 
D’Ávila, 2002) 

Pmáx numerical 
(present analisis) 

Relative error 
(Pmáx 

experimental) 

Relative Error 
(Pmáx numérical) 

147.11 N 153.27 N 152.50 N 3.66 % 0.5 % 
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Table 3- Relative errors obtained for the distance Z=1.50mm. 
 

Pmáx experimental 
(Camanho and 
D’Ávila, 2002) 

Pmáx numérical 
(Camanho and 
D’Ávila, 2002) 

Pmáx numérical 
(present analisis) 

Relative error 
(Pmáx 

experimental) 

Relative Error 
(Pmáx numérical) 

147.11 N 153.27 N 162.66 N 10.57 % 6.12 % 

 
Table 4- Relative errors obtained for the distance Z=2.25mm. 

 

Pmáx experimental 
(Camanho and 
D’Ávila, 2002) 

Pmáx numérical 
(Camanho and 
D’Ávila, 2002) 

Pmáx numérical 
(present analisis) 

Relative error 
(Pmáx 

experimental) 

Relative Error 
(Pmáx numérical) 

147.11 N 153.27 N 168.34 N 14.43 % 9.83 % 

 
 
The results obtained shows that the change on the distance Z does have a significant impact on the behavior of the 

DCB test apparatus, when submitted to a mode I loading condition. Although the results for the configuration of Z=0.75 
mm shows a low relative error (Tab. 2),  the curve for the same configuration (Fig. 8) shows that the elastic behavior 
does not comply with the curve obtained by the refence. As the distance Z increases, it is observed that the curve 
generated (Fig. 9 and 10) tends to get more and more similar to the one obtained by this reference.  

In general, it can be stated that the results presented above shows that the numerical analysis of the DCB apparatus 
performed in this work generates results very close to those obtained by Camanho and D’Ávila (2002). 

 
5. CONCLUSIONS 

 
In engineering designs, where adhesive resins are used as the method of joining components, it is necessary to take 

into account numerical methods and computational models which best correspond with the reality, both from the 
standpoint of the quality of the final product as by their safety as well. Accordingly, it is justifiable to search for 
efficient and reliable methods that make possible the evaluation of components that has bonded faces. For this reason, 
this paper seeks a better way to implement the FEM using the "traction-separation" law to represent the behaviour of 
damage in cohesive elements. 

In computational analyses performed (ABAQUS 6.10) for composite materials, where the laminated layers are 
bonded together by the means of an adhesive resin, it is clear that the behaviour of these adhesives are very similar to 
the results found in the literature (Camanho and D’Ávila, 2002). However, in the case of the DCB testing apparatus, the 
exact location where the application of the displacement proved to be critical to obtain a more accurate result. 
Unfortunately, this information is not present on the reference adopted. The lack of accuracy in applying this parameter 
makes it very difficult to the convergence and leads to results that do not correspond 100% to the results obtained 
experimentally and numerically by Camanho and D’Ávila (2002), although the errors found are considered to be low. 

The penalty stiffness K of the cohesion elements used appears to be a value very difficult to obtain, both in 
laboratorial tests or by analytical methods. It is unanimous among the references used that the values assigned to that 
property must have extremely high magnitude and the value of 10E6 N/mm3 is generally used in the analyses. The 
value adopted led to good results in computational analyses performed in this study and, therefore, it can be said that it 
is a consistent way to represent the elastic property of the adhesive with K=10E6 N/mm3 in other analyses of cohesive 
interfaces. 

Therefore, the results presented in this study proves that the usage of the Finite Element Method using commercial 
software, in this case ABAQUS 6.10, produces very similar results to those obtained in experimental and numerical 
tests available in the literature. The use of this tool in the analysis of adhesive materials leads to knowledge of what are 
the most important parameters to be considered for engineering projects. 
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