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Abstract. This work deals with the analysis of soil-structure interaction modeling of pipeline problems in static 
behavior using the coupling between Finite Element Method (FEM) and Boundary Element Method (BEM).The 
representation of the pipe is made by MEF using one finite element in the cylindrical panel formulated from the theory 
of equivalent discrete layers (Layerwise Theory), proposed by J. N. Reddy. The soil is represented by elastic continum 
infinite or semi-infinite and modeled using boundary elements with special curved surface, associated with cylindrical 
panel, used to represent the soil-structure interaction within the soil, especially at the contact surface with the pipe. 
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1. INTRODUCTION 

 
The industry in many sectors, has in recent years implement and improve its infrastructure, with use of buried and 
submerged pipelines. These structures to be interacting with other media (soil, liquid, etc.), have a high degree of 
complexity, which demands special attention from initial conception until the final operation. Thus, in recent decades 
designers have used some tools to help to produce projects of buried pipelines more efficient. One of the important lines 
is based on the accumulated experience that are usually described in norms already established. However, this is not 
enough, since each project has its own peculiarities. Then, in many cases a set of experimental tests is specified to 
extract some behavior parameters of the buried pipe. However, even with the great help of the experimental apparatus, 
there are importante unknowns in problem behavior that are generally not accessible appropriately, such as the state of 
deformation and stress in the pipes and its interfaces with the ground. Thus, the third family of tools that can potentially 
be used are the numerical simulation techniques enabling the structural analysis of the problem. The mathematical 
models commonly used are usually restricted to two-dimensional space. If the analysis region of the line along its length 
is extended without significant change, the two-dimensional analysis results generally no significant differences when 
compared to the three-dimensional model. However, it is not always possible to ensure that the proximity of pipe 
remains unchanged, as it usually has to go through urban areas, cross roads, railroads, etc. Thus, the development and 
implementation of three-dimensional models for the analysis of buried pipes is undoubtedly a real need for 
improvement projects. In recent decades, many researchers have been dedicated to studying of mathematical models of 
interaction, consisting of a set of sub-models associated respectively to the pipeline, soil and their interfaces. In general, 
the analytical solutions of the governing equations of buried pipes are available only for some special cases of 
interaction. This is the case in the one dimensional model, when it admits the buried pipes as infinite beam supported by 
elastic base, which solutions are found in the work of Biot (1937), Hetenyi (1946). Already Burns and Richard (1964) 
analyzed a pipe-soil system subjected to horizontal and vertical pressures, using the principles of continuum mechanics, 
where was developed closed solutions (analytical) for a two-dimensional elastic model (plane strain condition). There is 
also the work of Hoeg (1968), Moore (2000), Dhar (2004) that has presented two dimensional analytical solutions 
expressed more smoothly than techniques employed by Richard (1964).  
 
There are many semi-empirical methods which are obtained by the incorporation of some correction factors in the two-
dimensional analytical solutions, which are calibrated experimentally. Among the techniques most known semi-
empirical has: Iowa Method (Spangler 1941) and its modified versions in Watkins and Spangler (1958), Greenwook and 
Lang(1990). However, not all the analytical solutions of pipelines are available, so an alternative is the discretization of 
continuous medium and the systematization of  the discrete problem, to obtaining approximate solutions using 
numerical techniques, among which has been the Finite Element Method (FEM) and Boundary Element Method 
(BEM). In this context, for the one dimensional model there are some numerical solutions where the domain is usually 
discretized by 1D finite element (bars) and the effect of elastic foundation is introduced into the problem by potential 
energy. This produces an additional contribution to the stiffness matrix of the structure. For the two dimensional model 
there are several numerical solutions for pipeline and soil  represented by continuous media: Finite Elements Methods 
(FEM), Boundary Elements Method (BEM) (Freitas 2008) and FEM-BEM Combination (Vieira 2009). For numerical 
analysis of the three dimensional models, some work can be found in the literature for each of the sub-systems 
involving isolated pipe, isolated soil and soil-pipe interaction. Already numerical models for analysis insulated idealized 
as shells. Several researchers, Sydenstricker and Landau (1995), Chen (1979), Bathe and Ho (1981), Fafart et al. (1989), 
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formulated plane shells finite elements, for example the membrane finite element caled CST (Constant Stress Triangle), 
combined with plate elements, such as discussed in DKT Batoz et al.(1980) or DST described in Batoz and Lardeur 
(1989). A research group showed a alternative finite element family for cylindrical shells analysis called assumed 
strain-based model (Aswell and Sabir 1972), (Sabir 1983), (Bull 1984), (Sabir et al. 1994) were the first works with  
analysis of deep cylindrical shells. Already Djoudi and Bahai (2002,2004) presented an extension of the ideas of the 
model to cylindrical shells proposed by Sabir employing the theory of shells from Donnel (1933,1938). Against this 
background, this paper presents a mathematical model for the analysis of three-dimensional problems of buried 
homogeneous pipes. 
 
2. LAYERWISE CYLINDRICAL SHELL FINITE ELEMENT 
 
In this section we describe the formulation of the laminated cylindrical shell based on Layerwise theory by Reddy 
(1984) and systematized by some researchers Barbero et al. (1990), and Savoia and Reddy (1992), Kassegne (1992) 
Gerhard et al. (1994). The laminated cylindrical shell has layers with same or different thickness,  composed by 
materials with different orientation angles to the fibers. The representation of a Cylindrical Shell with length L, 
thickness h and deformable surface with radius R (where h << R),  is shown in Figure 1. 
 

 
 

Figure 1  – Finite Element of Laminated Cylindrical Shell 
 
The displacement field (u, v, w) at a generic point (x, y, z) of a layer in one Laminated cylindrical shell is approximated 
by the following Lagrangian interpolation functions (Kassegne 1992). 
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3 – NODAL LOAD EQUIVALENT VECTOR 
 
The nodal load equivalent vector is deducted for uniformly and linearly distributed self-weight for the finite element 
RLS. The consistent nodal vector is obtained through the work done by external loads that can be expressed by: 
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The external loads due the linear distribution has the matrix representation as follows: 
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( 3 ) 

 

Where the [ ]R  matrix depends of kind of distribution of the pressure in the element with nodal forces vector. 
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Substituting the nodal force vector in ( 4 )  in the external work equation in ( 2 ), the equivalent nodal force vector { }F
is: 
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matrix calculation in ( 5 ) results in the explicit form. 
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For the case of uniform pressure in each direction, then the vector in ( 4 ) takes the following form: 
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( 8 ) 

 
Considering the effect of the self weight of the shell divided into two stages, where in the first, it is assumed that the 
longitudinal axis of the shell is orthogonal to the gravity vector, then the[ ]R matrix in ( 3 ) takes the following form: 
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Where g hγ= ⋅ , γ = Specific weigth. 
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If the longitudinal axis of the shell is parallel to vector gravity then. 
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Where: 
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4 – USUAL BOUNDARY ELEMENTS 

 
Triangular plans elements for discretization of contact interfaces of machine foundation and soil, see Figure 2. 
 
 

 
Figure 2 – Triangular Boundary Element 

 
The interpolation variable geometry is made linearly from three nodes functional positioned at the vertices of the 
triangle. 
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Where the functions are : ηξηξ ==−−= 321 ;;1 NNN
 

 

5 – SPECIAL BOUNDARY ELEMENTS 

In the literature (Beskos 1987), (Brebia and Dominguez 1977), most of the boundary elements are flat or approximated 
by polynomials, usually up to second degree. Given the specificity of the subject discussed in this work, these would 
not be very appropriate. Therefore, broke for the proposed new boundary element in which cylindrical surfaces, flat 
surfaces with polygonal boundaries could not be accurately represented. The elements proposed: Elements associated 
with a cylindrical panel to discretization the cylindrical shaft: this element there are four nodal points with interpolation 
of variables, see Figure 3. 

 

 
Figure 3 - Cylindrical Boundary Element 

 
 
If  considered a linear distribution of the field components within a cylindrical boundary element panel, their shape 
functions are interpolated: 
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Where the interpolation functions are given by: 
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Sectoral plans boundary elements formed by two straight sides and two curved, destined for discretization of axial 
extremity shaft. The fields are linearly interpolated over the nodes of the functional element, see Figure 4. 
 
 

 
Figure 4 - Plane Sector Boundary Element  

 
 
Discoid plans boundary elements, used for discretization of regions in proximity of centers of the circles in axial 
extremity of the shaft, see Figure 5. 
 
 

 
Figure 5 - Discoid Boundary Element 

Note that a single nodal point is placed at the centers. 

 

6 – FORMULATION OF INTERACTION ANALYSIS FOR SOIL-PIPE 

 
Figure 6 presents a brief description of the problem to be fully analyzed and their interaction forces. 
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A = Coupling; B = Pipe; C = Soil; D = Radie  

Figure 6 – Interaction Forces for Buried Pipe Problem. 
 

 

For the fundamental solution of kelvin, the 
 
is not null in the soil region in contact with radie, which requires 

defining points outside the region of contact, including the boundary region for the soil that envelops a cylindrical shaft. 
Thus, are placed sources in the shaft (E), at the end of the shaft (B), the contact interface with the radie (C) and the 
boundary contour (D). The algebraic system that represent this condition is: 
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% % %% % % % %

% % %% % % % %
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( 14 ) 

 

The pipe-soil interaction can be represented mathematically from the following assumptions: 

 

• Contact between the pipe and the surface soil is ideal (there are no relative displacement at any point on the surface of 

interaction); 

• Compatible only the degrees of freedom of displacements and forces in the axial, radial and circumferential contact 

surface. 
 
 
The algebraic system of structure obtained from finite element discretization of cylindrical shells RLS, is estabilished 
with numeration of the first interface coupled with the soil, folow by the others interfaces not coupled. Thus, the system 
can be particioned in the matrix form: 
 
 

0
LLL LN L L

NL NN N N

PK K U F

K K U F

       
= −      

      
 

( 15 ) 

 
 
The configuration of degree of freedom for the finite element RLS to be coupled with boundary element of soil is 
shown in Figure 7 (a) and (b). For the sake of conciseness only nodes 1 and 4 are represented with the degrees of 
freedom associated with it.  

ijp

ISSN 2176-5480

1111



22nd International Congress of Mechanical Engineering (COBEM 2013) 
November 3-7, 2013, Ribeirão Preto, SP, Brazil 

 
(a)                                                                                  (b) 

Figure 7 – (a) Soil Boundary Element,  (b) RLS Finite Element 
 

Making the force equilibrium { } { }L FP P= and the compatibility of desplacements { } { }L FU U= , and substituting 

the soil system in ( 14 ) in the RLS finite element system in ( 15 ), the soil-pipe interaction is: 
 

**

0
LL ff LN L L F

N NNL NN

K K K U F P

U FK K

  +       = +       
        

 
( 16 ) 

7 – RESULTS 

7.1 – ANALYSIS OF A SHALLOW LAMINATED PIPE 

Whether a cavity how the radius is 2.3 m in a rock mass whose mechanical properties are indicated in Table 1: 
 

Table 1 – Physical Properties of Soil-Pipe Coupling 
E  Thickness Structure 

12,50 GPa 0,20 - Soil 
25,70 GPa 0,15 0,3 m Pipe 

 
We considered the pipe initially homogeneous and subjected to a confining pressure due to the weight of the rock mass 

 as shown in Figure 8. 

 

 
Figure 8 – Low Pressure Pipe Depth 

 

v
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In Table 3 are listed the results for the radial displacement at the point of cavity 2 which are compared with analytical 
solution of Timoshenko (1959) and the numerical solution of BEM in Freitas (2008) (using 40 elements), see Table 2. 
In order to recover the two dimensional analysis applying the 3D model, it was considered a shaft / cylinder with length 
greater than 10 times the diameter of the shaft, resulting in . Furthermore displacements at the axial 
extremities of the shaft were prescribed. The graph of Figure 9 describes the behavior Convergence of the results for the 
analyzes. 
 

Table 2 – Results of Other Authors 
Timoshenko (1959) MEC 2D – Freitas (2008) 
1.53333e-007 (m) 1.53000e-007 (m) 

 

D
is

pl
ac

em
en

t (w
) 

 
 Discretization Density 

Figure 9 – Laminated Low Pressure Pipe Depth  – Graphic 
 

The results (Table 3), where: RLS 2C [2 Layer] RLS 3C [3 Layer] 4C RLS [4 layers]), show that the RLS finite 
element, when coupled to ground, present convergence to values in the literature. Should be emphasized that the RLS 
element appears more effective with more layers present in thickness of the model, however, the computational analysis 
becomes more costly. 
 

Table 3 – Laminated Low Pressure Pipe Depth 
 

 

8 – CONCLUSIONS 

In this paper we studied the problem analysis of insulated and buried and their neighborhood. From the standpoint 
of mathematical and computational some original contributions were given, and listed below : 

a) Contour elements with special geometries (cylindrical, flat and discoid sector); 

b) Analysis of soil-pipeline interaction with the accurate representation of the laminated pipe surface; 
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