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Abstract. In this study we develop a geometrically non-linear plate FEM formulation to analyze laminated plates 
including straight or curved fibers inside the domain without increasing the number of degrees of freedom. Moreover 
the position of fibers are free from the plate discretization and the coupling is done in an automatic way, i.e., the fiber 
mesh generator is totally independent of the plate mesh generator. The formulation is based on the positional FEM 
technique in which finite rotations are considered without the use of Euler-Rodriguez or quaternion formulae. Results 
are compared with a homogenized laminated shell formulation proving the good behavior and future possibilities of 
the proposed formulation.  
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1. INTRODUCTION 
 

As well known, structures made of more one material to take the advantage of those material´s complementary 
characteristics, for example those ones made by fibre-reinforced composites. By other hand, the continuous 
improvement of materials strength and stiffness leads to the design of slender and flexible structures generally 
undergoing large displacements. To analyze structures with these characteristics laminated plates and shells finite 
elements have been shown to be an excellent tool.  

Usually, fibre reinforced solids are analyzed by homogeneous analog wich makes difficult to identify the contact 
stresses between fibres and matrix. There are many interesting techniques proposing the fibre-matrix coupling in 
literature, see for example  (Radtke et al., 2011; Radtke et al.,  2010a; Radtke et al., 2010b; Hettich et al., 2008; 
Chudoba et al., 2009; Oliver et al., 2008; Melenk and Babuska, 2006; Schlanger and van Mier, 1992; Bolander and 
Saito, 1997). 

In this paper we propose a way to represent short or long fibres immersed in laminated plates or shells by means of 
curved finite elements without increasing the number of degrees of freedom. We use the total Lagrangian description 
and the Saint-Venant-Kirchhoff constitutive law (Ciarlet, 1993; Ogden, 1984) is chosen to model the material behavior. 
To solve the resulting geometrical nonlinear problem we adopt the Principle of Stationary Total Potential Energy 
(Tauchert, 1974). From this principle we find the nonlinear equilibrium equations and the Newton-Raphson iterative 
procedure (Luenberg, 1989) used to solve the nonlinear system. External loads are conservative and incrementally 
applied.  

To present the proposed formulation we organize the paper as follows. Section 2 describes some concepts about 
strain energy function used in this paper to model orthotropic media; in Section 3 the  Reissner-Mindlin kinematic used 
to model laminate orthotropic plates or shells is provided; in Section 4 we present the kinematics used to describes the 
any order fibre finite elements as well its internal force vector and the matrix hessian; in Section 5 the spreading 
strategy that makes possible a complete analysis of any order fibres into laminated plate or shell finite elements without 
increasing the number of degrees of freedom is introduced; in Section 6 the general nonlinear solution process is 
described; Section 7 presents the numerical examples validating the proposed formulation and finally, conclusions are 
presented in Section 8. 
 
2. STRAIN ENERGY FUNCTION FOR ORTHOTROPIC MEDIA 
 

To derive the formulation proposed in this paper we adopt the Saint-Venant-Kirchhoff strain energy function, whose 
the Green strain and the second Piola-Kirchhhoff stress are the conjugate variables.  

The Green strain tensor is derived directly from the gradient of the deformation function, represented by letter A, 
given as follows 
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where if  is the deformation function. One writes the Green strain as 
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in which index notation is adopted. The second order tensors ijC  and ij  are the right Cauchy-Green stretch and the 

Kroenecker delta, respectively. The quadratic strain energy per unit of initial volume, Saint-Venant-Kirchhoff, is given 
by 
 

S ij ijkl kl

1
u E D E

2
   (3) 

 
resulting in a linear elastic constitutive relation between the second Piola-Kirchhoff stress and Green strain, i.e.: 
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  (4) 

 
The fourth order tensor ijklD  is the usual linear orthotropic constitutive tensor (Hyer, 1997). The hole strain energy 

stored in a body is written for the reference volume 0V  as 

 

0 0

S S 0 ij ijkl kl 0

V V
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The first and the second derivative of the strain energy in terms of a general set of nodal parameters jY  are given, 

respectively, by 
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3. REISSNER-MINDLIN KINEMATIC FOR LAMINATED PLATES OR SHELLS 
 

First, we present a kinematic description for homogeneous shell and then a generalization for a laminate orthotropic 
shell is provided. 

In this study we call pure Reissner-Mindlin kinematic based on position and unconstrained vector the one presented 
by (Coda and Paccola, 2007) and depicted in Fig. 1. The shell, or plate, can change thickness and naturally present 
distortion along transverse direction. 

From Fig. 1, a generic point x  at the initial configuration is written as a function of a point mx  at the reference 

surface and a generic vector 0g . Using the same procedure, a generic point y  at the current configuration is written as 

a function of a point my  at the reference surface and a unconstrained generic vector 1g . These variables are written as 

function of non-dimensional coordinates, i , generating the initial 0f  and the current 1f  mappings, as well their 

corresponding gradients, 0A  and 1A , written as 
 

0 00
1 2 3 1 22i i i i

h
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in which   is a shape function (third order in this study) related to node   and iX  , 0

iN  , iY  and iG   are nodal 

parameters. The value 0h  is the initial thickness of the shell, see (Coda and Paccola, 2007) for more details. 
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Figure 1. Position vectors for kinematic description 
 

The deformation function f  is not explicitly written; however its gradient is achieved from 0A  and 1A , as 

 
1 0 1( )A A A     (13) 

 
To avoid volumetric and shear locking from usual homogeneous or laminate shell formulations (Coda and Paccola, 

2008; Coda et al., 2013), a linear rate of thickness variation given by 
 

1 2 1 2T( , ) ( , )T         (14) 

 
is introduced in Eq. (9) as follows 
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The inexistence of finite rotation description allows the understanding of laminate kinematic by a simple two 

dimensional representation depicted in Fig. 2. 
From the new variables introduced in Fig. 2, the new formulae for the initial and current mappings are achieved 

substituting 0
32

h
  by 0

32
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 into Eqs. (8), (9) and (15), respectively, as 
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in which the superscript lam indicates the considered lamina, lamd  is the distance from the reference surface to the 

center of the considered lamina following direction 0
ig  at initial configuration and 0

lamh  is its initial thickness. The rate 

of thickness variation of each lamina lamT  can be recovered from its average representation T  by lam lam
0T ( h 2 )T  .  

 

dlam

Reference surface

hlam
0

2
. 3

 
 

Figure 2. Kinematic description for laminate shells 
 

The derivatives of mapping 1lam
if  regarding the non-dimensional variables, constitute the gradient 1lam

ijA  while the 

same procedure imposed on 0lam
if  results 0lam

ijA , see Eq. (12). 

 
4. ELASTIC FIBRE REINFORCEMENT: KINEMATICS AND ENERGY CONSIDERATIONS 
 

In this section we present the kinematics description and some energy strain considerations used to obtain the 
internal force and the matrix hessian of a general curved fibre of any order. In next section we will describe the strategy 
used to introduce the fibre energy in the composite solution without increasing the number of degrees of freedom. To 
guaranty total adherent fiber-matrix coupling it is necessary to adopt high order fibre elements (Sampaio et al., 2013). 

Figure 2 shows the non-deformed initial configuration 0B , the current configuration B  and a non-dimensional 

auxiliary configuration 1B  for the curved fibre finite element of any order. 

 

 
 

Figure 3.: Mapping of the fibre finite element in initial and current configurations 

ISSN 2176-5480

9195



22nd International Congress of Mechanical Engineering (COBEM 2013) 
November 3-7, 2013, Ribeirão Preto, SP, Brazil 

The initial configuration 0B  whose points have coordinates ix  is mapped from the dimensionless space 1B  with 

coordinates   using shape functions of any order,  P  , and by the coordinates of nodes P  in the initial 

configuration, P
iX , such as: 

 

 0 P
i i P ix f X     (19) 

 
The current configuration B  is mapped from the dimensionless space 1B  by: 

 

 1 P
i i P iy f Y     (20) 

 
where iy  are the coordinates of points in the current configuration B  and P

iY  are the current coordinates of fiber nodes 

in the current configuration. In Eqs. (19) and (20) index P 1,...,N  and i 1,...,3  represent, respectively, the fiber 
finite element nodes and coordinate directions. 
 

The tangent vector of the fiber and its modulus are calculated at the initial configuration as 
 

0 0
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i i 1 2 3
d ( ) d ( ) d ( ) d ( )
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It is important to mention that 
0BT


 is the differential Jacobian of 0

if . For the current configuration one finds 
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
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From the tangent vector modulus, Eqs. (21) and (22), the one-dimensional Green strain is written as 

 

0

0

22 BB

2B

T T1
E

2 T

  
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 
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 
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Using the Saint-Venant-Kirchhoff constitutive law, one writes the specific strain energy at a point of the fiber as 

 

 2f
1

u ( ) E( )
2

  E   (24) 

 
where E  is the elastic modulus and E( )  is the Green strain measure defined in Eq. (23). 

The strain energy of a curved fiber is given by integrating Eq. (24) over its initial volume 0V  as: 

 

0
f f 0

V
U u dV    (25) 

 
In order to proceed with the equilibrium analysis it is necessary to know the first derivative of strain energy 

regarding positions. Based on the energy conjugate concept the natural internal fiber force vector, j f int
iF , related to 

node j  and direction i  is calculated regarding fiber parameters as 

 

0

f fj f int
k 0j j

V
k k

U u
F dV

Y Y

 
 
    (26) 

 
The Hessian matrix components for the fibre element are obtained by the second derivative of the strain energy, i.e.: 
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f ff f f f
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k k

U u
H dV h dV

Y Y Y Y  
 

 
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5. KINEMATICAL FIBRE-LAMINATED PLATE COUPLING 
 

In this section we present the strategy used to introduce the fibres in the laminated plate or shell. We know that the 
strain energy stored in a laminate reinforced body is the sum of the strain energy stored in the matrix and fiber, that is 
 

s fU U U    (28) 

 
where sU  is the strain energy stored in the laminated plate or shell finite elements used to discretize the matrix and fU  

is the strain energy stored in the fiber finite elements. From this expression we will derive the general internal force and 
the Hessian matrix considering the fibre and matrix contributions. 
 
5.1 General internal force 
 

The internal force at a node   following direction  , considering both fiber and matrix contributions is found by 

the conjugate energy concept, such as 
 

P P
S f f f S P f intS S i i

P

i

(U U ) U UU U Y Y
F F F

Y Y Y Y Y Y Y
 
       

     

      
      

      
 (29) 

 
where Eq. (26) have been used and there is no summation over P .  
 
5.2 Hessian Matrix 
 

Proceeding in the same way as described for the calculation of internal forces, we develop the second derivative of 
strain energy of the reinforced finite element regarding the plate or shell nodal parameters, as follows 
 

 
f

0 0 0

2 2 222
S f S f f fS
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V V V

U U ( u u ) uuU
dV dV dV
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    
   
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The first integral at the last term of Eq. (30) is known, Eq. (7). However, it is necessary to observe that the kernel of 

the last integral is the specific strain energy of a fiber derived twice regarding the plate or shell nodal parameters. As 
Eq. (27) gives its value when derived regarding fiber parameters one has to apply the chain rule twice over Eq. (30), 
that is 
 

2 f f f f f f f f
f f f f f

u Y Y Y Y Y Y Y Y
h h h h

Y Y Y Y Y Y Y Y Y Y
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         
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   

         
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where fh  is the fiber Hessian matrix kernel, Eq. (27). In Eq. (29) summation is not implyied. 

Integrating Eq. (31) over fiber volume gives 
 

2 f f f f f f f f
f f f f f

U Y Y Y Y Y Y Y Y
H H H H
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   

         
 (32) 

 
Using Eq. (32) into Eq. (30) results is the consistent spreading of fibers contribution over the matrix 

properties, that is 
 

s fH H H    (33) 

 

The different values that 
fY

Y









 assumes in Eqs. (32) depending on the adopted discretization, that is, the fibers, 

short or long in each lamina, may have the following settings related to the mid-surface of the plate or shell (see Fig. 4): 
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both nodes of the fiber can be inserted in the same plate or shell finite element (fiber class 1), the nodes of the fiber may 
be in adjacent elements with ( GP 1)  nodes in common (fiber class 2); the nodes of fiber may be in adjacent elements 

with just a node in common (fiber class 3) or, each node may be in finite elements not adjacent, i.e. without any node in 
common (fiber class 4). 
 

 
 

Figure 4. Mid-surface fibre-matrix discretization 
 

To simplify the numerical procedure, the Hessian matrix of the fiber f f

f

3( GP 1 )x3( GP 1 )
[ H ]

 
 given in Eq. (27) is 

expanded into a matrix of order f f7( GP 1)N  x 7( GP 1)N   by means of a sparse matrix f f3( GP 1 )x7( GP 1 )N
[ ]

 
, 

as 
 

f f

f f f f f f

f f f 7( GP 1 )Nx7( GP 1 )N

T f

7( GP 1 )Nx3( GP 1 ) 3( GP 1 )x3( GP 1 ) 3( GP 1 )x7( GP 1 )N

ˆ ˆH H [ H ]

             [ ] [ H ] [ ] 
 

     

 

  
 (34) 

 
where N  is the number of nodes of the plate element and fGP  is the fiber approximation order. 

For a fibre with fGP 1  nodes the sparse matrix [ ]  is written as 
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

















 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  (35) 

 
Each term of the matrix [ ]  given in Eq. (35) is given by another matrix as shown below 

 

 
11 14 15

P

22 24 26

33 34 37 3x7

0 0 0 0

0 0 0 0

0 0 0 0


  
   

  

 
   
  

  (36) 

 
where  is the plate node and P  is the fibre node that belong to the plate element. 

To obtain the terms in Eq. (35) it is necessary differentiate Eq. (18) regarding a generic nodal plate coordinate. 

Remembering that k k
4Y T , k k

5 1Y G , k k
6 2Y G  , k k

7 3Y G
 
the necessary derivatives are as follows 
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
  (39) 

 
with i 1,2,3 . 

As we can see from Eqs. (37)-(39) the developed sparse matrix [ ]  given by Eq. (35) depends on the value of 

1 2 3
P P P

lam( , , ,d )     and on which plate elements the fibre nodes P  belong and the expanded fibre matrix fĤ  given by 

Eq. (34) is distributed over the total Hessian given in Eq. (30) following the plate nodal connectivity associated to 
belonging fiber nodes. 

The procedure to find on which plate elements the fibre nodes belong is a simple and fast Newton-Raphson 
nonlinear solver and a detailed description about the fiber internal force and Hessian matrix spreading operation it was 
presented by (Sampaio et al., 2013). 
 
6. THE EQUILIBRIUM PROBLEM SOLUTION PROCEDURE 
 

In this section, the strategy adopted to solve the equilibrium problem of a laminate reinforced plate geometrically 
nonlinear is described. The non-linear analysis starts writing the total potential energy, for a conservative elastostatic 
problem, as 
 

U     (40) 

 
where   is the total potential energy of the system, U  is the strain energy including matrix and fiber contributions 
written regarding plate nodal positions and   is the potential energy of external conservative applied forces given by 
 

j jY F    (41) 

 
in which jF  is the vector of external forces and jY  is the current position vector. 

The Principle of Minimum Total Potential Energy (Tauchert, 1974) is applied writing the equilibrium equation as 
the derivative of total energy regarding nodal positions, plate for instance, as 
 

int
j j j j

j j

U
g F F F 0

Y Y

 
     
 

  (42) 

 
In Eq. (42) vector jg  assumes null value for the exact position and is the unbalanced mechanical residuum if a trial 

position solution is tested. From these considerations one writes the Newton-Raphson procedure as described by (Coda 
and Paccola, 2007; Coda and Paccola, 2008) for example. 
 
7. NUMERICAL EXAMPLES 
 

Two simple examples are shown in order to demonstrate the good behavior of the proposed formulation. The first 
one is used to confirm that the mechanical coupling between fibers and the laminated shell element is working properly 
during large displacement analyses. The second one deals with a simple supported reinforced square plate. 
 
7.1 Clamped beam - large displacement 
 

In this example we analyze a simply clamped beam requested by a uniformly distributed load q . The beam is 

enhanced by four stiffeners disposed as shown in Fig. 5. We compare the displacement  achieved with the proposed 
formulation (composite formulation) with three different formulations: a) the Timoshenko-Reissner 3D beam 
formulation presented in (Coda and Greco, 2004; Coda, 2009; Coda and Paccola, 2010; Coda and Paccola, 2011), b) a 
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fibre-matrix 2D solid formulation presented in (Sampaio et al., 2013),  and c) a laminated shell formulation presented in  
(Coda et al., 2013). The geometrical properties adopted for the beam are as follows: L 300cm , b 20cm , h 60cm , 
d 3cm  and q 5.0MN / m . The Young modulus and the Poisson ration of the matrix are mE 21GPa  and 0  , 

respectively, while Young´s modulus and cross-sectional area of each fibre are fE 210GPa  and 2
fA 2cm , 

respectively. When using the proposed formulation (composite), the laminated formulation and the 2D solid 
formulation, the matrix is discretized into 60 cubic solid elements with a total of 364 nodes. Each reinforcement is 
discretized into 30 cubics fibre elements. The 3D frame element analysis employs 10 fifth order elements. 
 

 
Figure 5. Fibre reinforced cantilever beam 

 
Figure 6 shows the final deformed shapes and Fig. 7 compares the displacements achieved for the different 

formulations. 
 

 

 

 
 

(a) 

 
(b) 

 

 
 

 
 

(c) 

 

 
 

 
 

(d) 
Figure 6. Transverse displacements of the beam: (a) 3D frame solution in (m); (b) 2D solid solution in (cm); (c) 

laminated equivalent solution in (cm); (d) composite solution in (cm). 
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Figure 7. Transverse displacement of the beam (cm) 

 
The maximum deflection in the free end of the reinforced beam as well the relative difference between the different 

formulations related to reference solution (3D Frame) are shown in Table 1. The composite formulation is more flexible 
than the laminated formulation as expected. The great relative difference presented by 2D solid formulation is because 
the Timoshenko-Reissner solution presents more kinematics restrictions. This results indicates the appropriateness of 
the proposed formulation for large displacement analysis. 
 

Table 1. Numerical values of the maximum transverse displacement (cm). 
 

3D FRAME  
(REFERENCE SOLUTION) 

2D SOLID 
PLATE 

LAMINATED COMPOSITE 

-57,894 
 

-62,823 
 

 
-57,985 

 

 
-58,937 

 
Relative difference ~7,84% ~0,15% ~1,76% 

 
7.2 Simple supported reinforced square plate 
 

In this example a simple supported square plate with L 400cm  and h 16cm  under a uniform distributed load 

( 2q 1.0kN / m  ) is analyzed, Fig. 8. We compare the results achieved with the proposed formulation with the 

laminated shell formulation. Two cases are considered: isotropic plate and orthotropic plate. For the isotropic material 
the Young modulus and the Poisson ration of the plate are pE 21GPa  and 0.25  . In the laminated formulation 

(orthotropic case) we assume 11E 210GPa , 22 33E E 21GPa   and 0  . When using the proposed formulation the 

Young modulus and cross-sectional area of each fibre are fE 210GPa  and 2
fA 2cm , respectively. 

 
 

Figure 8. Simple supported reinforced square plate 
 

For all analysis only a quarter of the problem has been discretized by 10 x 10 regular mesh with 200 cubic triangular 
elements and 961 nodes, see Fig. 9a. For the isotropic plate, each direction have 20 long fibres disposed each 10 cm. 
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Each reinforcement is discretized into 10 cubics fibre elements, Fig. 9b. For the orthotropic plate we have 20 long fibres 
each 10cm discretized into 10 cubics fibre elements, Fig. 9c. 
 

 

(a) (b) (c) 
 

Figure 9. Mesh of a quarter of the problem: (a) matrix; (b) fibres for isotropic plate; (c) fibres for orthotropic plate 
 

Figure 10 shows the transverse displacement of the plate and Table 2 shows the central displacement for the 
different analysis. 
 
 

   
(a) (b) 

  
(c) (d) 

Figure 10. Transverse displacement of a quarter of the problem: (a) isotropic laminated; (b) isotropic composite; (c) 
orthotropic laminated; (d) orthotropic composite. 

 
Table 2. Numerical values of the maximum transverse displacement in (m). 

 
HOMOGENEOUS 

PLATE 
ISOTROPIC ORTHOTROPIC 

LAMINATED COMPOSITE LAMINATED COMPOSITE 

-1.5680x10-4 -1.4233x10-4 -1.4064x10-4 -1.4568x10-4 -1.4138x10-4 

 
As we can see from Table 2 the results are as expected, that is, the maximum transverse displacement obtained for 

the isotropic plate are less flexible than the homogeneous plate and the orthotropic plate solutions are more flexible than 
the isotropic solution indicating the good behavior of the proposed formulation.  
 
8. CONCLUSION 
 

In this paper we introduced a strategy to insert fibres, shorts or longs, in laminated plates or shells finite elements for 
the geometrically non-linear analyses. This strategy does not increase the number of degrees of freedom and its main 
advantage is because the fibre reinforced laminates are usually analyzed by homogeneous analog which makes difficult 
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to identify the contact stresses between fibres and matrix.  As we can see from presented applications, the values are 
coherent and as expected demonstrating the good behavior of our strategy. We future words we intend present a way to 
calculate the contact stresses. 
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