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Abstract. In this work is presented and reviewed the finite growth theory for thermo-elastic materials by meaning of
stress induced growth using continuum mechanics theory. The material growth will be regulated by the activation of
homeostatic, growth and reabsorption surfaces. An application in biomechanics through biological tissue growth theory
is presented in an example modeling a ventricular hypertrophy.
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1. INTRODUCTION

In the last years, bioengineering has become in one of the most active research areas. A large amount of research
work related with bio-materials, tissue engineering regeneration and implants and prostheses and its adaptation inside the
human body, is done and is increasing and in continuos expansion.

Also, the development of finite element softwares and CAD computational tools to generate complicated geometrical
bio-forms with an optimal approximation to the physical real form of human organs and tissues, allows, for example; to
estimate the hip prostheses behavior inside the femoral bone medular canal or predict the stresses behavior at bone level
and its effect in the periodontal ligament (which serve as a connective tissue between a teeth and the bone matrix) when
teeth are submitted to loads when using orthodontic appliances, and much more examples of the use of the finite element
method (FEM) in applications for hard (as cortical and trabecular bone) or soft tissues (skin, muscle, arteries) on different
medical disciplines. It is possible to know the stress and strain scenario and also displacements for biological systems
or systems formed by an organ and an implant or prostese coupled to the organ, when submitted to loads with a very
good approximation (Prendergrast (1997), Huiskes (2000)) (assuming high level of accuracy of the geometrical models
and material properties and models, without entering in a detailed description), but, up to this point, it is not possible
to predict if bone or soft tissue grows or reabsorb when loaded. So, a powerful tool for medicine specialists will be a
computational tool which allow them to predict, with reliable approximation, if tissue growth or reabsorption will occur,
and its growth or reabsorption rates for different load levels, because the success of the implant or prostese depends on
growth.

As known, mathematical formulation of growth using continuum mechanics involves kinematic, balance laws and
constitutive relations. The objective of this work is a study and a revision of the growth theory for thermo-elastic materials
presented by other authors and its treatment using continuum mechanics, starting from the model for living bone in an early
work presented by Cowin and Hegedus (1975), passing through the kinematic treatment to describe surface growth based
on growth velocities described by Skalak et al. (1982), the extension of this work including the effect of incompatible
growth presented by Rodriguez et al. (1994) using the multiplicative decomposition of the deformation gradient, up to the
theory for the activation of growth and reabsorption process induced by stress levels proposed by Vignes and Papadopoulos
(2010) based on classical growth approach mentioned above, and other works related with thermo-mechanics of plasticity
developed by Casey (1998) or with thermo-mechanics of volumetric growth (Epstein and Maugin (2000), Klisch and
Hoger (2003)) which can be considered as procedures well established.

This revision includes: the presentation of balance laws; mass, linear and angular momentum and energy balances
for a thermo-elastic material with growth, the multiplicative decomposition of the deformation gradient, the constitutive
equations and the thermodynamic analysis and entropy balance. Also is presented an example of finite growth adaptive
heart growth due to abnormal loads (cardiac hypertrophy)
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2. BALANCE LAWS

2.1 Continuum growth configurations

Let X a material point of a body B occupying a region in Euclidean space, where X and x are the position vectors of
X relatives to the fixed origin 0 in reference and current configurations B and Bt. The mapping x = χ(X, t) is considered
one-to-one in X for fixed t, so invertible, then: X = χ−1(x, t) as shown in Fig. 1. Deformation gradient in the material
point of Bt relative to B is defined as F = ∇χ. The volumetric Jacobian of the mapping χt is J(X, t) = det∇χt(X) > 0.

Figure 1. Reference and current configurations for continuum growth

2.2 Mass Balance

Mass in the current and reference configurations are defined as

M(P ) =

∫
Pt

ρdv, M(P ) =

∫
P

ρKdV (1)

where, ρ = ρ(x, t) and ρK = ρK(X, t) are the mass densities in the current and in the reference configurations. Using the
volume relation dv = JdV and the localization theorem yields, ρ = ρKJ

The rate change of mass, which can be non-zero due to volumetric mass sources and mass fluxes can be defined as

d

dt
M(P ) =

d

dt

∫
Pt

ρ(x, t)dv =

∫
Pt

ρΓdv +

∫
∂Pt

mda (2)

where; Γ is the rate change of mass per unit mass andm is the mass flux into Pt per unit surface area through the boundary
∂Pt. Using Reynolds transport theorem∫

Pt

(ρ̇+ ρdivv− ρΓ)dv =

∫
∂Pt

mda (3)

where v is the velocity of the body, and m is the mass flux in (x, t) which depends only on the outward normal n to ∂Pt:
m = m(x, t; n) = −m(x, t) · n. Using the Cauchy tetrahedron argument and the divergence theorem:∫

∂Pt

mda = −
∫
Pt

divmdv

Substituting and using the Localization theorem, the local form of the spatial mass balance is obtained

ρ̇+ ρdivv = ρΓ− divm (4)

and the equivalent local form in the reference configuration

˙ρK = ρKΓ−DivM (5)

2.3 Linear momentum balance

The linear momentum balance law for growth can be written as

d

dt

∫
Pt

ρvdv =

∫
Pt

ρbdv +

∫
∂Pt

tda+

∫
Pt

(ρΓ)ṽdv −
∫
∂Pt

(m · n)ṽda (6)
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where; b is the body force per unit mass, t is the traction force per unit of area acting on the boundary ∂Pt, ṽ is the
velocity of the new mass entering the body. The first and the second terms represents linear momentum changes due
to body forces and traction and the third and fourth terms represents changes in linear momentum accompanying the
additional mass through volumetric sources and mass fluxes.

An equivalent form of the linear momentum balance is obtained using ṽ = (ṽ− v) + v, and substituting in Eq. (6) as
proposed by Epstein and Maugin (2000)

d

dt

∫
Pt

ρvdv =

∫
Pt

ρbdv +

∫
∂Pt

tda+

∫
Pt

(ρΓ)vdv −
∫
∂Pt

(m · n)vda+

∫
Pt

ρb̃dv +

∫
∂Pt

t̃da (7)

where:
b̃ = Γ(ṽ− v), t̃ = (m · n)(ṽ− v)

being b̃ body force per mass unit associated to the irreversible momentum changes due to volumetric sources, and t̃ is the
traction per unit surface area corresponding to the irreversible momentum changes from surface fluxes. Where the third
and fourth terms represents the momentum changes due to the new mass entering the body with the same velocity of the
body and the last two terms are associated to irreversible momentum changes due to volumetric and surface sources.

With Eq. (7), Reynolds transport theorem and mass balance, and using the divergence and localization theorems, the
local form of the spatial linear momentum balance equation is obtained

ρv̇ = ρb + divT (8)

where:
b = b + b̃ +

1

ρ
(divm)v, T = T− v⊗m + T̃

b,T: Effective body forces and Cauchy stress. T is the Cauchy tensor that is related to the traction vector t = Tn
The referencial form is obtained using JdivT = DivP, where P = TF is the first Piola-Kirchhoff stress tensor, hence

ρK v̇ = ρKb +DivP (9)

where:

P = P− v⊗M + TF (10)

however, computationally it is convenient to use the second Piola-Kirchhoff stress tensor: S = F−1P

2.4 Angular momentum balance

Angular momentum balance law for growth can be written as

d

dt

∫
Pt

x× ρvdv =

∫
Pt

x× ρbdv +

∫
∂Pt

x× tda+

∫
Pt

x× (ρΓ)vdv −
∫
∂Pt

x× (m · n)vda+

∫
Pt

x× ρb̃dv (11)

+

∫
∂Pt

x× t̃da

Using the Reynolds transport theorem and considering the mass balance and the linear momentum balance equations
in local forms, the angular momentum balance equation is obtained

T = TT
(12)

and its equivalent in the reference configuration

PFT = FPT
(13)

2.5 Energy Balance

The equation of energy balance can be deduced from the conventional power balance postulate (Gurtin et al. (2010))
in which the external expended power in Pt is balanced by the summation of the internal power expended into Pt and the
kinetics energy of Pt, taking the form

d

dt

∫
Pt

1

2
ρv · vdv +

∫
Pt

T · Ldv =

∫
Pt

ρb · vdv +

∫
∂Pt

t · vda+

∫
Pt

1

2
(ρΓ− divm)v · vdv (14)
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The last term of the Eq. (14) is the supply of kinetic energy in Pt due to the added mass.
The total energy balance is determined from the thermodynamic first law (Cowin and Hegedus (1975)) which repre-

sents the balance that describes the interaction between the internal energy and the kinetic energy of Pt, the rate of the
expended power in Pt and the heat transferred to Pt

d

dt

∫
Pt

1

2
ρv · vdv +

∫
Pt

ρu̇dv =

∫
Pt

ρb · vdv +

∫
∂Pt

t · vda+

∫
Pt

ρ(r + ri)dv −
∫
∂Pt

(q + qi) · nda (15)

+

∫
Pt

1

2
(ρΓ− divm)v · vdv +

∫
Pt

(ρΓ− divm)ũdv

where; u, ũ: are; the internal energy per unit of mass of the existent mass and the internal energy per unit of mass of the
added mass; r: heat supply per mass unit; q: heat flux into Pt per surface area unit; and ri,qi: are the irreversible heat
terms; ri per unit mass and, qi per unit surface area. ri,qi are take into account for the expended energy in the growth
process. The last term of Eq. (15) is the rate at which the internal energy is added in the region Pt with the new mass.

The equivalent form of the energy balance using ũ = (ũ− u) + u, as proposed by Epstein and Maugin (2000), is

d

dt

∫
Pt

1

2
ρv · vdv +

∫
Pt

ρu̇dv =

∫
Pt

ρb · vdv +

∫
∂Pt

t · vda+

∫
Pt

ρ(r + r̃)dv −
∫
∂Pt

(q + q̃) · nda (16)

+

∫
Pt

1

2
(ρΓ− divm)v · vdv +

∫
Pt

(ρΓ− divm)udv

where: r̃ = (ρΓ− divm)(ũ− u) + ri, q̃ = qi
being r̃ the irreversible total heat supply (in the special case that the added mass has identical internal energy of that

of the existence mass, then not other dissipative effects are associated to the growth process, so r̃ 7→ 0 and q̃ 7→ 0) Using
again the conventional power balance postulate and substituting the external power terms by the sum of internal power
and the kinetic energy rate in Eq. (16), and applying the Reynolds transport and the localization theorems, the local form
of the spacial energy balance is then given by

ρu̇ = T · L + ρ(r + r̃)− div(q + q̃) (17)

the equivalent referencial form is

ρKu̇ = P · Ḟ + ρK(r + r̃)−Div(qK + q̃K) (18)

where qK e q̃K are reference heat flux vectors given by: qK = JF−1q, q̃K = JF−1q̃

3. CONSTITUTIVE EQUATIONS

The mass, linear and angular momentum, and energy balances provides the eight equations and the twenty-six un-
knowns {χ, ρ,T, u,q, θ,Γ,m, r̃, q̃} where the first eighteen unknowns {χ, ρ,T, u,q, θ} correspond to the set of variables
for a conventional thermo-elastic material. Of the remaining eight unknowns; four describe mass sources and mass flow
{Γ,m} and four describe the irreversible process {r̃, q̃}, and extend the model to thermo-elastic materials with growth.
The components of the body force b, heat supply r and absolute temperature θ are assumed known. Constitutive laws
which describes the behavior of the idealized material and relates the kinematic, mechanic, thermal and growth fields
provides the remaining relations needed to mathematically close the system of equations of the problem.

3.1 Multiplicative decomposition of the deformation gradient

In the modeling of thermo-elastic materials with growth for finite deformations, the multiplicative decomposition of
the deformation gradient proposed by Rodriguez et al. (1994), can be expressed as

F = FeFg (19)

where; Fg: is the local mapping of the material in the reference configuration B to a local maximally unloaded interme-
diate configuration (generally incompatible); Bg: intermediate configuration, is the collection of the local intermediate
configurations and captures growth deformation; Fe: is the elastic mapping from intermediate configuration into de the
global compatible current configuration Bt of the body (as shown in Fig. (2))
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Figure 2. Multiplicative decomposition of the deformation gradient

Mass is preserved from Bg to Bt (from Eq. (19)), so M(Bg) = M(Bt), then using ρ = ρKJ and localization theorem

ρK = ρgJg (20)

where ρg is the growth density (density in the intermediate configuration) and Jg = det(Fg) is the Jacobian of the growth
deformation gradient. Taking the material time derivative of Eq. (20)

ρ̇K = ρ̇gJg + ρg J̇g = ρ̇g + ρ̇g(Jg − 1) + (ρg − ρ0)J̇g + ρ0J̇g (21)

Where exist two cases to consider; the so called "density preserving" growth and "volume preserving" growth or
densification. In the density preserving case, the mass growth is assumed that occurs through volume changes at constant
density (ρg = ρ0) in this case, Eq. (21) reduces to

˙ρK = ρ0J̇g (22)

In preserving volume growth case, mass growth occurs through density changes at constant volume Jg = 1 then

˙ρK = ρ̇g (23)

4. Constitutive equations for thermo-elastic materials with growth. Finite growth theory

It is well known, from medical disciplines such as orthopaedics, orthodontics that growth and reabsorption occurs
as a results of different tension stimulus, or more specifically with the increase or decrease of tension levels (Cowin
and Hegedus (1975), Huiskes (2000)). Assuming this fact as an starting point, and given an arbitrary material point X
in a tensional homeostatic state S0 at absolute temperature θ0 of a body B of a thermo-elastic material with growth in
the tension-temperature space S = {S0, θ0}, the theory of finite growth proposed by Vignes and Papadopoulos (2010)
that is based on an standard procedure established in plasticity by Casey (1998) is based on the following hypothesis
(schematically shown in Fig. (3))

1) The existence of an open set S0 ∈ R7 in stress-temperature space containing {S0, θ0} such that the material behaves
as a conventional thermo-elastic material within this region. S0 is assumed simply connected and bounded by a smooth
and oriented hyper-surface δS0 called Homeostatic surface.

2) The existence of an open set Sr ∈ R7 in stress-temperature space containing S0 : S0 ⊆ Sr, as in 1, Sr is assumed
simply connected and bounded by a smooth and oriented hyper-surface δSr called reabsorption activation surface.

3) The existence of an open set Sg ∈ R7 in the stress-temperature space containing Sr : Sr ⊆ Sg , also Sg is assumed
simply connected and bounded by a smooth and oriented hyper-surface δSg called growth activation surface.

Where the homeostatic state is considered as a particular stable state in which a body is capable to return naturally to
this state when submitted to small perturbations by intrinsic biological regulation.

Figure 3. Sets and hyper-surfaces (homeostatic, reabsorption and growth) in the stress-temperature space *Adapted from
[Vignes C and Papadopoulos P 2010]

The region S0 models a range of normal stress-temperature loading or activity about the homeostatic state in which
produce no growth response and no growth or reabsorption occurs. In this region, material behaves as a conventional
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thermo-elastic material. In view of this, it is expected that internal energy u, the stress S and the heat flux q will depend
only on the Green deformation tensor E and the temperature θ as describe by the constitutive equations:

u = û(E, θ), S = Ŝ(E, θ), qK = q̂K(E, θ,∇θ) (24)

where the response function of heat flux is subjected to the condition: q̂K(E, θ, 0) = 0
Green deformation tensor is: E = 1

2 (FTF − I). For a thermo-elastic material with growth, changes in strain and
temperature may initiate growth process (or reabsorption) at the activation surface δSg (or δSr), this process modified the
stress state and the body internal energy, so constitutive equations must take into account this coupling.

To characterize growth, constitutive equations depends on; growth deformation gradient, a scalar measure of isotropic
growth-induced hardening κ, the symmetric second order tensor α which measure kinematic growth-induced hardening
and growth density and also the total deformation gradient and temperature. The growth variables are defined in the
intermediate configuration, so for thermo-elastic materials with growth, the constitutive responses are

u = û(F, θ,Fg, κ, α, ρg), S = Ŝ(F, θ,Fg, κ, α, ρg), qK = q̂K(F, θ,∇θ,Fg, κ, α, ρg) (25)

After manipulate the equations (using the invariance observer principle Gurtin et al. (2010)) the response function of
S is given by

S = Ŝ(E, θ,G) (26)

where: G = (Eg, κ, α, ρg) is the set of growth variables and Eg = 1
2 (FTg Fg − I) is the growth deformation tensor

For the rest of response functions using the same arguments used for Eq.(26)

u = û(E, θ,G), qK = q̂K(E, θ,∇θ,G) (27)

Same dependencies are assumed for heat supply and heat flux irreversible terms

ri = r̂i(E, θ,G), qKi = q̂Ki(E, θ,∇θ,G) (28)

with the restrictions

r̂i(E, θ,G) | ˙G=0
= 0, qKi = q̂Ki(E, θ,∇θ,G) | ˙G=0

= 0 (29)

The established restrictions means that not occur growth or reabsorption (Ġ = 0), so, no energy is expended in growth
or reabsorption process and there no mass entering or leaving the body.

Assuming S = Ŝ(E, θ,G) is invertible for fix values of θ e G, the deformation tensor can be expressed as

E = Ê(S, θ,G) (30)

This expression allows for any constitutive expression described in the strain-temperature space be transformed into
the stress-temperature space and viceversa.

5. Thermodynamics analysis and entropy balance

Thermodynamics assumptions add restrictions to the constitutive equations. For elastic-thermo-plastic materials with
finite deformations, an entropy function can be constructed and use the second law of thermodynamics to obtain those re-
strictions (Casey (1998), Vignes and Papadopoulos (2010)). Considering a thermo-elastic material with growth submitted
to an arbitrary homothermal process for fix G. The energy balance equation Eq. (18) reduces to

ρKu̇ = P · Ḟ + ρKr = S · Ė + ρKr (31)

Clausius-Duhem integral as a consequence of the second law is

t∫
t0

r
θ
dt =

t∫
t0

1

θ
(u̇− S · Ė

ρK
)dt (32)

Defining a potencial η = η̂(E, θ,G) , from path independence Clausius-Duhem integral, the entropy function is

η̇ =
r
θ

=
1

θ
(u̇− S · Ė

ρK
) (33)

Helmholtz free energy is introduced for all homothermal process with fixed G

ψ = ψ̂(E, θ,G) = u− ηθ (34)
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Gibbs equation for an homothermal process for fixed G is obtained from Eq. (31)

ρKψ̇ = S · Ė− ρKηθ̇ (35)

expanding the material derivatives

ρK(
∂ψ̂

∂θ
+ η)θ̇ + (ρK

∂ψ̂

∂E
− S) · Ė = 0 (36)

valid for all values of Ė and θ̇, which are rate-independent, so the Gibbs relations are

η = η̂(E, θ,G) = −∂ψ̂
∂θ
, S = Ŝ(E, θ,G) = ρK

∂ψ̂

∂E
(37)

The energy balance equation written in terms of Helmholtz free energy and entropy using the Gibbs relations is

ρKη̇θ = ρK(r + r̃)−Div(qK + q̃K)− ρK(
∂ψ̂

∂Eg
· Ėg +

∂ψ̂

∂κ
κ̇+

∂ψ̂

∂α
· α̇+

∂ψ̂

∂ρg
ρ̇g) (38)

Integrating and using the Reynolds transport theorem, the global balance of entropy is obtained

d

dt

∫
P

ρKηdV =

∫
P

ρK
r + r̃
θ

dV −
∫
∂P

q + q̃
θ

dA−
∫
P

(q + q̃) · ∇θ
θ2

dA+

∫
P

(ρΓ−DivM)ηdV (39)

−
∫
P

ρK(
∂ψ̂

∂Eg
· Ėg +

∂ψ̂

∂κ
κ̇+

∂ψ̂

∂α
· α̇+

∂ψ̂

∂ρg
ρ̇g)dV

assuming that Clausius-Duhem inequality is a valid form of the second law for thermo-elastic materials with growth,
which includes an additional entropy entering the body with the new mass

d

dt

∫
P

ρKηdV ≥
∫
P

ρK
r
θ
dV −

∫
∂P

q
θ
dA+

∫
P

(ρΓ−DivM)ηdV (40)

using again the Localization theorem yields

ρKη̇θ ≥ ρKr−DivqK +
qK · ∇θ

θ
(41)

and substituting

ρKr̃−Divq̃K − ρK(
∂ψ̂

∂Eg
· Ėg +

∂ψ̂

∂κ
κ̇+

∂ψ̂

∂α
· α̇+

∂ψ̂

∂ρg
ρ̇g)−

qK · ∇θ
θ

≥ 0 (42)

Considering an arbitrary homothermal process without irreversible heat terms

∂ψ̂

∂Eg
· Ėg +

∂ψ̂

∂κ
κ̇+

∂ψ̂

∂α
· α̇+

∂ψ̂

∂ρg
ρ̇g ≤ 0 (43)

The fact that all terms were independent of temperature gradient leads to conclusion that the inequality is valid for
all process without irreversible heat, so, a process for a thermo-elastic material with heat not irreversible, leads to the
standard heat conduction Fourier equation.

−qK · ∇θ ≥ 0 (44)

6. Stress induced finite growth in human tissues. Example of growth in cardiovascular system

In this section is developed an example that is associated with adaptive heart growth due to abnormal loads, know
as cardiac hypertrophy, where there is a ventricular enlargement as a result of volume overload or high filling pressure
(Guccione et al. (1991), Rodriguez et al. (1994), Taber (1995)).

In general terms, blood deoxygenated comes from the body through cava veins and fills the right atrium, which
contracts sending blood to the right ventricle which contracts and sends the blood to the lungs through pulmonary artery.
Blood oxygenated back to the heart through pulmonary veins filling the left atrium which contracts and sends blood to the
left ventricle that when contracts, sends blood to the circulatory system through the aorta as schematically represented in
Fig. (4.1), more details can be founded in an excellent review paper presented by Taber (1995).
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Figure 4. Schematic of mature heart; components, blood circulation and ventricular section cut. 1) Frontal section cut
of mature heart. 2) Isometric cut, ventricular enlargement as a result of volume overload or high filling pressure. 3)
Cross section cut, left ventricle cross section [dotted line] and circumferential stretch ratio [Kθ] describing growth and
reabsorption) * The heart scheme (1) is adapted from [Taber L A 1995], being; ISC, SVC: inferior and superior cava veins; RA, LA: Right and Left

Atriums; RV, LV: Right and Left Ventricles; T, P, Ao and M are tricuspid, pulmonary, aortic and mitral valves

The model presented, is used to know how growth leads to residual stress and how stress may determine a growth
pattern in a tissue. A growth displacement field is specified in an unloaded cylindrical tube and residual stress fields
resulting from different growth fields are studied. This model consists of a cylindrical tube (of the left ventricle [LV] see
Fig. 4) considered incompressible, elastic and isotropic used to illustrate how the circumferential growth give rise to a
transmural distribution of residual stresses that would cause the cylinder to change shape when cut (Choung and Fung
(1986), Rodriguez et al. (1994)).

The residual stress present in the cylinder after growth can be calculated assuming that growth strains generates stresses
similar to those of loading, then a constitutive equations for isotropic material can be used. For growth deformation
gradient Fg the following displacement field is prescribed:

ρ = R, ϕ = Kθ(R)Θ, ξ = Z (45)

The point P in the reference configuration B (stress-free) has coordinates (R,Θ,Z), the growth deformation gradient
Fg maps the original state B in a new locally stress-free state in an intermediate configuration Bg where P has coordinates
(ρ, ϕ, ξ) as shown in Fig. (5.a)

The term Kθ(R) is the circumferential growth stretch ratio which depends on the radius and is assumed constant, so,
when Kθ > 1 growth occurs and when Kθ < 1 reabsorption occurs. Displacements field is incompatible as shown in Fig.
(5. b, c) for values of Kθ < 1 and Kθ > 1, in reabsorption case; a discontinuity appears which is not permissible if the
total growth deformation must be compatible. In growth case, a material superposition appears which cannot be occur in
a compatible deformation.

Figure 5. a) Multiplicative decomposition of the growth deformation gradient and b), c) Cylindrical models of the left
ventricle after uniform circumferential growth. *b), c) Adapted from [Rodriguez et. al 1994]
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Using the displacements field established in Eq. (45) the growth deformation gradient is defined as:

Fg =



∂ρ

∂R
1

R
∂ρ

∂Θ

∂ρ

∂Z

ρ
∂ϕ

∂R
ρ

R
∂ϕ

∂Θ
ρ
∂ϕ

∂Z
∂ξ

∂R
1

R
∂ξ

∂Θ

∂ξ

∂Z

 =


1 0 0

0
ρ

R
Kθ 0

0 0 1

 (46)

In order to establish the overall growth deformation field compatibility, an adicional elastic component is required that
will be used in the constitutive equations of the material to determine the residual stress that must satisfy equilibrium and
zero stress boundary condition

The field which maps the state Bg in the final state Bt where P has coordinate (r, θ, z) is:

r = r(ρ), θ = ηθ(ρ)ϕ, z = εz (47)

then the elastic component of the growth deformation gradient is given by:

Fe =



∂r
∂ρ

1

ρ

∂r
∂ϕ

∂r
∂ξ

r
∂θ

∂ρ

r
ρ

∂θ

∂ϕ
r
∂θ

∂ξ
∂z
∂ρ

1

ρ

∂z
∂ϕ

∂z
∂ξ

 =


dr(ρ)

dρ
0 0

0
r
ρ
ηθ 0

0 0 ε

 (48)

A suitable choice of the term ηθ(ρ) allows the deformation gradient total growth is compatible restoring the compati-
bility of displacements Θ. In the case where Kθ is a constant, the simplest choice is ηθ(ρ) = 1/Kθ.

The incompressibility constraint is only applied to the elastic component of the growth deformation gradient, so the
third invariant of the right Cauchy-Green stress tensor C is the unit:

C = FTF =


(
dr(ρ)

dρ

)2

0 0

0

(
r
ρ
ηθ

)2

0

0 0 (ε)
2

 (49)

then;

I3 =

[
dr(ρ)

dρ

r
ρ
ηθε

]2
= 1 (50)

which can be integrated to obtain an expression for the growth radius r∫
rdr =

∫
Kθ
ε
ρdρ (51)

being ρ = R and ηθ =
1

Kθ
; hence

r2

2
+ C1 =

Kθ
ε

R2

2
⇔ r =

√
R2Kθ
ε

+ C2 (52)

The components of the Green-St. Venant strain tensor referred to the coordinates of the growth configuration Bg are
calculated from the expression:

E =
1

2

[
FeTFe − I

]
=


(
dr(ρ)

dρ

)2

− 1 0 0

0

(
r
ρ
ηθ

)2

− 1 0

0 0 (ε)
2 − 1

 (53)
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then;

Eρρ =
1

2

[(
RKθ

rε

)2

− 1

]
; Eϕϕ =

1

2

[(
r

RKθ

)2

− 1

]
; Eξξ =

1

2

[
(ε)

2 − 1
]

(54)

For this example it is assumed the stress-strain relationship developed by Rodriguez et al. (1994) and Guccione et al.
(1991) where it is used the strain energy function proposed by Choung and Fung (1986):

W =
C
2

(
eQ − 1

)
(55)

where C is a material constant and Q is a function of the principal deformation components which define the material
symmetry of the tissue considered, for the isotropic case de function Q is given by:

Q = 2b1 (Eρρ + Eϕϕ + Eξξ) (56)

where b1 is a constant which depends on material (material constant values from Guccione et al. (1991); being b1=4.24
and C=0.765 kPa). Stress is obtained from:

Tij =
1

2
FiSFjT

(
∂W
∂EST

+
∂W
∂ETS

)
− pδij (57)

where p is the hydrostatic pressure which enters in the constitutive equations as a Lagrange multiplier. The components
of Tij are determined from expressions 48, 54, 55, 56:

Trr =
1

2

(
RKθ

r

)2
Cb1e

b1

[(
RKθr

)2

+

(
r

RKθ

)2

−2

]− p(r) (58)

Tθθ =
1

2

(
r

RKθ

)2
Cb1e

b1

[(
RKθr

)2

+

(
r

RKθ

)2

−2

]− p(r) (59)

using Eq. 52 and substituting;

Trr =

(
r2 − C2

)
Kθ

2r2

Cb1e
b1

[
(r2−C2)Kθ

r2 + r2
(r2−C2)Kθ

−2

]− p(r) (60)

Tθθ =
r2

2 (r2 − C2) Kθ

Cb1e
b1

[
(r2−C2)Kθ

r2 + r2
(r2−C2)Kθ

−2

]− p(r) (61)

considering: f = Kθ
(

1− C2

r2
)

gives

Trr =
f
2

Cb1e
b1

[
(f−1)

2

f

]− p(r); Tθθ =
1

2f

Cb1e
b1

[
(f−1)

2

f

]− p(r) (62)

from equilibrium equations are obtained:

dTrr
dr

+
Trr − Tθθ

r
= 0;

dTrθ
dr

+ 2
Trθ

r
= 0;

dTrz
dr

+
Trz

r
= 0 (63)

Since zero-stress boundary conditions are assumed on the inner and outer walls, just the first of the above equations
has to be solved. Integrating this equation and using the expressions of (62):

Trr =

∫ r

r2

Tθθ − Trr
r

dr + Trr|r=r2 =

∫ r

r2

1

2

(
1

f
− f
)Cb1e

b1

[
(f−1)

2

f

] dr (64)

ISSN 2176-5480

10451



22nd International Congress of Mechanical Engineering (COBEM 2013)
November 3-7, 2013, Ribeirão Preto, SP, Brazil

where; Trr in r = r2 is the radial stress at the outer grown wall and is specified as zero, the internal pressure is
−Trr in r = r1. The model was solved numerically using MathCAD version 15.0 because not has analytical solution,
by specifying the growth outer radius r2 and solving for final inner radius value that gives a zero transmural pressure.
The processing scheme is the following: an initial value of external radius r2 is specified. With Eq. (52), C2 and r1 are
obtained. Then; the roots of Trr are calculated to obtain new values of r2 and r1, which enter again in the scheme to
calculate a new value of C2 and new values of r2 and r1, the scheme loops until the difference (r2i+1 − r2i) approaching
to zero (tolerance value assumed was 10−12)

The results are shown in the graphics of Fig. (6) for different values of Kθ. Model results shown how circunferencial
growth can give rise to a transmural distribution of residual stress that cause the cylinder change shape when cut; stretch
(growth) or shorten (reabsorption).

Figure 6. Radial and circunferencial stresses for different Kθ values; a) Kθ < 1 Reabsorption b) Kθ > 1 Growth

Considering ε = 1 and initial values of internal and external radius of 2 cm and 3 cm respectively; three values of
Kθ for the case of reabsorption were analyzed: 0.9, 0.85 and 0.8 where the grown radius values, internals and externals,
satisfying the equilibrium were: 1.755 and 2.753 cm, 1.633 and 2.63 cm and 1.512 and 2.507 cm as shown in Fig. (6.a)

Residual stress shown zero values of radial stress Trr at inner (endocardium) and outer (epicardium) walls since the
cylinder was unloaded. Circunferencial stress Tθθ shows nonlinear behavior from compression at the endocardium to
tension at the epicardium.

Also, three values of Kθ for the case of growth were analyzed: 1.1, 1.15 and 1.2 where the grown radius values,
internals and externals, satisfying the equilibrium were: 2.247 and 3.248 cm, 2.37 and 3.372 cm and 2.49 and 3.496 cm
as shown in Fig. (6.b)

As in reabsorption, residual stress shown zero values of radial stress Trr at inner and outer walls since the cylinder
was unloaded but stress gradient for growth case were reversed from those of reabsorption and circunferencial stress Tθθ
were compressive at the epicardium and tensile at the endocardium.

Finally, with this study and revision of growth theory using continuum mechanics and motivated by previous works of
the authors in hip prostheses biomechanics and in dental biomechanics O’Connor et al. (2008), O’Connor et al. (2010),
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this work can be considered as a first step for future works in the implementation of material models using FEM with the
capability to grow or reabsorb as a response of different stress levels, the results could help medicine specialists in order
to predict zones of bone formation associated to growth and bone mass loose zones associated to reabsorption in the case
of orthopaedics, or growth or reabsorption in other hard or soft tissues under different load levels.

7. Conclusions

It was presented an study and a revision of the theory for thermo-elastic materials with growth and its treatment using
continuum mechanics involving balance laws; mass, linear and angular momentum and energy balances, multiplicative
decomposition of the deformation gradient, the constitutive equations and thermodynamics and entropy balance.

An example of finite adaptive heart growth due to abnormal loads using the multiplicative decomposition of the de-
formation gradient for a thermo-elastic material was analyzed, and results obtained were discussed. Also results obtained
matched with previous results presented by other authors showing agreement.
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