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Abstract. A solution procedure for skin buckling of fuselages, based on Lévy method, is presented by employing the

bvp4c routine of Matlab. The skin panel, considered as a portion between adjacent stringers and frames, is subjected to

axial compressive load with boundary conditions chosen properly. The influence of both stringer torsional and warping

rigidities is evaluated and the accuracy of the proposed procedure is verified by means of finite element results.
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1. INTRODUCTION

Stiffened shells are widely employed in aeronautical industry, when light weight aspects are essential, e.g., in an

aircraft fuselage. Such structures are thin-walled and, therefore, susceptible to loss of equilibrium stability, i.e., the well-

known buckling phenomenon. The fuselage load carry capacity depends on a large extent on the buckling strength of their

individual panel components. The structural components of a stiffened shell are: circumferential stiffeners (or frames),

longitudinal stiffeners (or stringers), and shell skin. Usually frames account for shear and pressure loading providing an

effective end support to skin and stringers lying in between. There are various problems to be adressed in analyzing such

a complex structure, where finding out the buckling loading have been far the most popular one.

There is one important point to be made at the outset, which is that there exist different distinct buckling modes for

a stiffened panel. Depending on the spacing and the size of the frames and stringers relative to the shell skin, buckling

deflections could be developed within each shell panel or encompass a number of stiffened panels. In the first case,

commonly referred to as skin buckling, the line of connection between skin and frames remains virtually straight, with

the stringers exhibiting only minor radial movement. The second case, known as overall buckling, involves a variable

radial displacement of the stringers. These modes are neither mutually exclusive nor independent. For a stiffened panel

subjected to compression, like the ones found on the lower fuselage belly of commercial transport aircraft, the overall

(global) buckling and the skin (local) buckling modes are usually distinct from each other. As sudden global buckling is

undesirable at design limit load levels, typical designs exhibit skin buckling first, followed by load re-distribution to the

stiffeners. Therefore, an investigation of the local mode can be carried out by examining the behaviour of a curved panel

between two successive frames and stringers. In such analysis the effect of stringers can only be implicitily accounted

for in the boundary conditions along the straight edges of the panel. The standard buckling analysis methodologies use

simplified assumptions and conservative boundary conditions, which can lead to over-designed structures. To remedy

this, nowadays, the standard design proceedings focus on the finite element method that enables to access the buckling

strenght of stiffened panels without having to place emphases on simplifying assumptions. However, the use of finite

element method is not recommended for early design phases, where a large amount of preliminary optimization iterations

are performed, due to computational and simulation time costs.

A comprehensive review on buckling of axially-compressed cylinders is that by Hoff (1966, 1967). The survey by

Kollár and Dulácska (1984) may be recommended for further reading. The large number of publications, that have ap-

peared over the last decades, dealing with the buckling behavior of axially-compressed stiffened cylindrical shells clearly

demonstrates the importance to this particular problem. In general, the buckling problem is settled on Donnell set of equa-

tions for “shalow” shells due to the simplicity of the assumed kinematic relations, and also for the fact that an equivalent

partially uncoupled set of equations can be derived. Engineering approach for computation of the local buckling strength

is realized mainly assuming that the skin panel is simply supported or clamped along the panel edges. Nevertheless,

the local buckling strength should increase acting upon the torsional rigidity of frames and stringers. Sthephens (1971)

studied the effects of longitudinal edge stiffeners on the buckling and initial postbuckling behavior of axially compressed

long cylindrical panels. The influence of edge restraint on the critical load of curved panels has also been examined by

Rehfield and Hallauer Jr. (1968) assuming different sets of boundary conditions. Concerned only with critical load es-

timates, Wang and Lin (1973) present a theoretical investigation of stability of axially compressed simply supported thin

cylindrical shells stiffened by longitudinal stringers, where the shell and stringers are treated as discrete components.

This earliest studies were carried out in the context of the Donnell stability equations in uncoupled form, and had

resulted in cumbersome numerical solutions. More recently, Buermann et al. (2006) have developed a fast semi-analytical
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model for the post-buckling analysis of stiffened cylindrical panels which includes both stringer and frames as structural

elements, and captures their instabilities. It is an excelent study that lead to a consistent post-buckling behavior within

an inherently complicated formulation. In a different manner, following a simpler engineering approach, Pevzner et al.

(2008) present some analytical formulae for calculating the collapse load of an axially compressed laminated curved panel

where torsional buckling and combined bending and torsion buckling of the stringers are included, but the panel edges is

assumed to be simply supported. Thus, their prediction of the buckling load could be somewhat mistaken. A simple and

accurate formulation for the buckling analysis of stiffened cylindrical panels have recently been proposed by Monteiro

et al. (2011), that extent the work of Bisagni and Vescovini (2009) to shell panels, where the stringer torsional rigidity is

properly taken into account with unrestrained warping.

An extension of our previous formulation is herein presented, where now the stringer torsional rigidity is fully ex-

ploited by inclusion of the warping contribution. The structure is analyzed considering the portion of a panel between two

adjacent frames and stringers, such that along the unloaded edges the panel bending moment is set equal to the stiffener

torsional moment, and along the loaded edges the frames are sought to give only simply support conditions to the shell

skin. A boundary value problem for local skin buckling of stiffened circular cylindrical shells is derived by means of a

simplified linearization of von Kármán-Donnell theory. Under these hypothesis the stringer Saint-Venant torsional rigidity

and the stringer warping rigidity are easily introduced into the model. The calculation of the bifucation-point load are

settled on the coupled form of Donnell stability equations. A numerical solution procedure for the skin buckling of fusel-

ages under compression, based on Lévy method, is presented by employing the bvp4c routine of Matlab
R©

. The influence

of both stringer torsional and warping rigidities are evaluated and the accuracy of the proposed procedure is verified by

means of finite element results. Towards this aims, the following section reviews the classical formulation setting it into

perspective of the present study. This is followed by development of approximate solutions for determination of local

skin buckling of circular cylindrical stiffened shells. Simulation methodology are presented before the validation results.

Some conclusions about computational findings and recommendations for future works are presented at the end.

2. PROBLEM FORMULATION

Consider the circular cylindrical stiffened shell shown in Fig. 1, that represents a section of a traditional fuselage of an

aircraft. It is assumed that: (i) stringers are equally spaced; (ii) axial compressive loading N̄ is applied uniformly over the

skin; (iii) skin buckling occurs first. The fuselage load carry capacity depends on the buckling strength of their stiffened

panels, which by the way depend on the skin critical buckling load. Hence, to access the fuselage buckling strenght it

suffices to determine the critical buckling load of an individual panel, like the one highlighted in the figure.

The analyzed panel has length a, width b, thickness h, radius of curvature R, and its middle surface is referred to a set

of orthogonal curvilinear coordinates xyz. It is considered that frames give simply support condition to the panel, while

stringers provide some rotational restraint along edges, offering a torsional moment along the panel edges immediately

after the skin buckling takes place.

2.1 Kinematic relations

Consistent with the Kirchhoff-Love assumptions of a thin-shell theory, the following displacement field is assumed

ux (x, y, z) = u (x, y)− zw,x uy (x, y, z) = v (x, y)− zw,y uz (x, y, z) = w (x, y) (1)

in which u, v, w are the displacements of a point on the shell midsurface. The derivatives with respect to x and y
coordinates are, respectively, denoted by ( ),x and ( ),y.

Substituting the displacement field into the von Kármán-Donnell strain-displacement relations, we obtain the associ-

ated nonzero strains

εx = ε
m
x + zκx εy = ε

m
y + zκy γxy = γ

m
xy + zκxy (2)

where

εmx = u,x +
1

2
w2,x εmy = v,y +

w

R
+
1

2
w2,y γmxy = v,x + u,y +w,xw,y

κx = −w,xx κy = −w,yy κxy = −2w,xy. (3)

2.2 Equilibrium equations

Use of the kinematic relations along with the principle of virtual work yields the following equilibrium equations

Nx,x +Nxy,y = 0

Nxy,x +Ny,y = 0

Mx,xx + 2Mxy,xy +My,yy +Nxw,xx + 2Nxyw,xy +Ny

(
w,yy −

1

R

)
= 0, (4)
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Figure 1. Circular cylindrical fuselage

and the panel boundary conditions

Nx = N̄ v = 0 w = 0 Mx = 0 : x = 0, a

u = 0 Ny = 0 w = 0 My = M̄ : y = 0, b. (5)

Since the stringers are equally spaced and have all the same geometry,

M̄ (x, 0) =
GrJr
K

w,xxy (x, 0)−
ErΓr
K

w,xxxxy (x, 0) M̄ (x, b) = −
GrJr
K

w,xxy (x, b) +
ErΓr
K

w,xxxxy (x, b)

(6)

where GrJr represents the stringer torsional rigidity, ErΓr represents the stringer warping rigidity and the distribution

factorK is set to equal to two. A schematic view of the assumed boundary conditions are depicted in Fig. 2.

Figure 2. Panel boundary conditions
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2.3 Linearized buckling equations

In the solution of equilibrium equations of a perfect shell panel subject to a compressive stress state, it is observed the

existence of an equilibrium path bifurcation in the vicinity of the undeformed configuration. To investigate the possible

existence of adjacent-equilibrium configurations, it is common to give an arbitrarily small increments u1, v1, w1 to the

displacement variables and, then, examine equilibrium configuration represented by the displacements after the increment

(Brush and Almorth, 1975):

u→ u0 + u1 v → v0 + v1 w→ w0 +w1. (7)

Fields (u0, v0, w0) and (u, v, w) describe adjacent-equilibrium configurations associated with the primary (before in-

crement) and secondary (after increment) equilibrium paths, respectively. In stability applications the displacement

(u0, v0, w0) is called the prebuckling deformation and (u1, v1, w1) is called the buckling mode.

Accordingly, let

Nx → N0
x +N

1
x Ny → N0

y +N
1
y Nxy → N0

xy +N
1
xy

Mx → M0
x +M

1
x My →M0

y +M
1
y Mxy →M0

xy +M
1
xy (8)

where the terms with 0 superscripts are associated to u0, v0, w0 displacements, and the terms with 1 superscripts represent

a portion of the incremental generalized stress that are linear in u1, v1, w1.

Substitution of Eq. (8) into Eq. (4) yields two sets of equilibrium expressions. One of them is the nonlinear prebuckling

problem:

N0
x,x +N

0
xy,y = 0

N0
xy,x +N

0
y,y = 0

M0
x,xx + 2M

0
xy,xy +M

0
y,yy +N

0
xw0,xx + 2N

0
xyw0,xy +N

0
y

(
w0,yy −

1

R

)
= 0 (9)

and

N0
x = N̄ v0 = 0 w0 = 0 M0

x = 0 : x = 0, a

u0 = 0 N0
y = 0 w0 = 0 M0

y = 0 : y = 0, b. (10)

The other defines the so-called linearized buckling problem:

N1
x,x +N

1
xy,y = 0

N1
xy,x +N

1
y,y = 0

M1
x,xx + 2M

1
xy,xy +M

1
y,yy −

N1
y

R
+ F0 (w1) + F1 (w0) = 0 (11)

and

N1
x = 0 v1 = 0 w1 = 0 M1

x = 0 : x = 0, a

u1 = 0 N1
y = 0 w1 = 0 M1

y = M̄ : y = 0, b (12)

where F0 and F1 are given by

F0 (w1) = N0
xw1,xx + 2N

0
xyw1,xy +N

0
yw1,yy

F1 (w0) = N1
xw0,xx + 2N

1
xyw0,xy +N

1
yw0,yy. (13)

According to the boundary conditions of the linearized problem, Eq. (12), the stringers apply a torsional moment M̄ to

panel edges immediately after the onset of skin buckling.

2.4 Constitutive relations

Let the skin be defined by an isotropic material with Young’s modulus E and Poisson’s ratio ν. The generalized

stress-strain equations of the skin panel is defined by

Nx = A11ε
m
x +A12ε

m
y Ny = A12ε

m
x +A22ε

m
y Nxy = A66γ

m
xy

Mx = D11κx +D12κy My = D12κx +D22κy Mxy = D66κxy (14)

where

A11 =
Eh

1− ν2
A22 = A11 A12 = νA11 A66 =

1− ν

2
A11

D11 =
Eh3

12 (1− ν2)
D22 = D11 D12 = νD11 D66 =

1− ν

2
D11.
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2.5 Simplified linearized buckling equations

The extraction of the portion of the incremental generalized stress that are linear in u1, v1, w1 could be obtained from

the associated generalized stress increment as follows. Substituting Eq. (7) into Eq. (3) and considering the constitutive

relations (14) results in

Nx = A11

(
u0,x +

1

2
w20,x

)
+A12

(
v0,y +

w0
R
+
1

2
w20,y

)

+A11

(
u1,x +w0,xw1,x +

1

2
w21,x

)
+A12

(
v1,y +

w1
R
+w0,yw1,y +

1

2
w21,y

)
(15)

from which

N1
x = A11 (u1,x +w0,xw1,x) +A12

(
v1,y +

w1
R
+w0,yw1,y

)
. (16)

In a similar manner, it could be derived

N1
y = A12 (u1,x +w0,xw1,x) +A22

(
v1,y +

w1
R
+w0,yw1,y

)

N1
xy = A66 (v1,x + u1,y +w0,yw1,x +w0,xw1,y)

M1
x = −D11w1,xx −D12w1,yy

M1
y = −D12w1,xx −D22w1,yy

M1
xy = −2D66w1,xy. (17)

Substituting Eqs. (16) and (17) into Eq. (11) and considering small increment displacements,

A11u1,xx +A12
(
v1,xy +

w1,x
R

)
+A66 (v1,xy + u1,yy) + θu (w0, w1) = 0

A66 (v1,xx + u1,xy) +A12u1,xy +A22

(
v1,yy +

w1,y
R

)
+ θv (w0, w1) = 0

D0 (w1) +
A12
R
u1,x +

A22
R

(
v1,y +

w1
R

)
− F0 (w1) + θw (w0, w1) = 0 (18)

whereD0, θu, θv and θw are given by

D0 (w1) = D11w1,xxxx + 2 (D12 + 2D66)w1,xxyy +D22w1,yyyy

θu (w0, w1) = A11 (w0,xw1,x),x +A12 (w0,yw1,y),x +A66 (w0,yw1,x +w0,xw1,y),y

θv (w0, w1) = A66 (w0,yw1,x +w0,xw1,y),x +A12 (w0,xw1,x),y +A22 (w0,yw1,y),y

θw (w0, w1) =
1

R
(A12w0,xw1,x +A22w0,yw1,y)− F1 (w0) . (19)

The quantities θu, θv , θw are prebuckling rotation terms.

In order to solve the linearized buckling problem Eq. (18), we make the following simplifications. Firstly, the preb-

uckling problem defined by Eqs. (9) and (10) is solved disregarding all flexural effects (linear membrane solution):

N0
x = N̄ N0

xy = 0 N0
y = 0. (20)

Thus,

F0 (w1) = N̄w1,xx. (21)

Secondly, the influence of rotation terms are thought negligible:

θu → 0 θv → 0 θw → 0. (22)

After having applied these assumptions the simplified linearized buckling equations, also known as Donnell stability

equations in coupled form, is finally obtained

A11u1,xx +A12

(
v1,xy +

w1,x
R

)
+A66 (v1,xy + u1,yy) = 0

A66 (v1,xx + u1,xy) +A12u1,xy +A22
(
v1,yy +

w1,y
R

)
= 0

D0 (w1) +
A12
R
u1,x +

A22
R

(
v1,y +

w1
R

)
− N̄w1,xx = 0 (23)
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or

(
[E]− N̄ [E0]

)
{u} = {0} (24)

where

[E] =




E11 (·) E12 (·) E13 (·)
E12 (·) E22 (·) E23 (·)
E13 (·) E23 (·) E33 (·)



 [E0] =




0 0 0
0 0 0
0 0 E00 (·)



 {u} =






u1
v1
w1





(25)

with

E11 (·) = A11 (·),xx +A66 (·),yy E12 (·) = (A12 +A66) (·),xy E13 (·) =
A12
R
(·),x

E22 (·) = A22 (·),yy +A66 (·),xx E23 (·) =
A22
R
(·),y E33 (·) = D0 (·) +

A22
R2

E00 (·) = (·),xx . (26)

3. BUCKLING SOLUTION

In view of the boundary conditions Eq. (12) and Donnell stability equations Eq. (23), we apply the Lévy method by

substituting

{u} = � u1 v1 w1 �
T = � U (y) cosλmx V (y) sinλmx W (y) sinλmx �

T λm =
mπ

a
(27)

into Eq. (23) to obtain






E11 (XuU) +E12 (XvV ) +E13 (XwW )

E12 (XuU) +E22 (XvV ) +E23 (XwW )

E13 (XuU) +E23 (XvV ) +E33 (XwW )− N̄E00 (XwW )





= {0} . (28)

Introducing the change of variables

{Z} = � Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 �
T = � U U ′ V V ′ W W ′ W ′′ W ′′′ �T , (29)

where a prime ( )′ indicates the derivative with respect to y, the buckling equations can be reduced to the following

differential first order system

{Z}′ = [T ] {Z} (30)

with

[T ] =






0 1 0 0 0 0 0 0
C1 0 0 C2 C3 0 0 0
0 0 0 1 0 0 0 0
0 C4 C5 0 0 C6 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
C7 0 0 C8 C9 0 C10 0






(31)

and

C1 =
A11
A66

λ2m C2 = −
A12 +A66
A66

λm C3 = −
A12
A66R

λm

C4 =
A12 +A66
A22

λm C5 =
A66
A22

λ2m C6 = −
1

R

C7 =
A12
D22R

λm C8 = −
A22
D22R

C9 = −
1

D22

(
D11λ

4
m +

A22
R2

+ N̄λ2m

)

C10 =
2 (D12 + 2D66)

D22
λ2m. (32)
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After the change of variables defined by Eq. (29), the boundary conditions along the edges y = 0, b are

Z1 (0) = Z5 (0) = Z4 (0) = −D22Z7 (0) +

(
GrJr
K

λ2m +
ErΓr
K

λ4m

)
Z6 (0) = 0

Z1 (b) = Z5 (b) = Z4 (b) = −D22Z7 (b)−

(
GrJr
K

λ2m +
ErΓr
K

λ4m

)
Z6 (b) = 0. (33)

Since [T ] is not a function of y, the formal solution of Eq. (30) is

{Z} = [e[T ]y] {C} (34)

where {C} is a constant vector to be determined from boundary conditions, Eq. (33), for details see (Franklin, 2000;Ogata,

2009). Now, we have to evaluate the matrix exponential
[
e[T ]y

]
to assess the problem solution. Numerous methods are

available for determining this matrix exponential. However regardless of any method used:

• consideration of computational stability and efficiency does not indicate a method which is completely satisfactory

(Moler and Loan, 2003);

• it is found that incorrect solutions could be generated for very thin shells or long shells, where computer overflow

and underflow may occur when the elements of the coefficient matrix [T ] are evaluated (Reddy, 2004).

Due to the aforementioned numerical troublesomeness, we have chosen an alternative solution way: the use of the

bvp4c routine of Matlab
R©

, which solution framework is a residual control based, adaptative mesh solver. The routine

procedure is a finite difference code that employs an appropriated collocation formula to provide aC1 continuous solution

that is fourth order accurate uniformly in the solution interval, and seems to be an efficient tool in solving boundary

value problems for ordinary differential equations (Shampine et al., 2003). In what concern the solution of eigenvalue

problems using the bvp4c routine, the presence of the unknown buckling load parameter N̄ compels the specification

of an additional boundary condition, and the following troublesome question arises: how to identify this extra boundary

condition conveniently? It is a question that doesn’t seem to have an answer or at least it doesn’t have a single answer.

For instance, we suppose that N1
xy is practically constant along the x axis, i.e.,

N1
xy,x ≈ 0⇒ N1

xy,x = ε sinλmx ε < 1 (35)

where ε is an adjustable parameter (the magnitude of ε is not critical, but it should be “small”). The specification of

Eq. (35) at y = 0 results

A66λm (λmV (0) + U
′ (0)) + ε = A66λm (λmZ3 (0) + Z2 (0)) + ε = 0 (36)

that gives us an assumed-extra boundary condition to be used within bvp4c routine. It is worth to note that stability and

convergence of the numerical solution are highly dependent from the choice of the additional equation for the boundary

conditions. The routine also requires a guess for the unknown parameter N̄ ; however, the solution is usually sensitive to

this value. If it is too far from the desired region, one may get an answer not viable. In addition, it is necessary to provide

a guess that reasonably approximates the expected spatial shapes of the solutions.

4. RESULTS AND DISCUSSIONS

The proposed numerical procedure for the skin buckling of fuselages under compression was implemented in Matlab
R©

computing program, and the obtained results are in this section compared with those provided by a more rigorous finite

element model (FEM). The finite element analysis is based on modelling:

• an entire fuselage barrel section between two adjacent frames, where it is supposed that boundary frames provide a

simply support condition to skin panel;

• stringers as beam elements, and skin barrel as an assemblage of shell elements.

For practical purpose it is assumed that buckling occurs at a bifurcation point in the vicinity of the undeformed configur-

ation, that enable evaluating the panel critical load by a linear buckling analysis of the perfect structure.

A series of one-bay stiffened cylindrical shells with different number of stringers are analyzed using the solution SOL

105 (eigenvalue buckling analysis) of the finite element commercial code NASTRAN (MSC, 2008). The computations

are carried out for 12 stiffened cylindrical shells reported in Tab. 1, where it was considered different geometries in order

to evaluate the effect of different number of stringers nr and different aspect ratios a/b, b = 2πR/nr.
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Table 1. Panel geometry.

Panel ID a (mm) R (mm) h (mm) nr
1 400 2000 1 24
2 400 2000 1 12
3 400 1000 1 24
4 400 1000 1 12
5 600 2000 1 24
6 600 2000 1 12
7 600 1000 1 24
8 600 1000 1 12
9 800 2000 1 24
10 800 2000 1 12
11 800 1000 1 24
12 800 1000 1 12

Figure 3. Stiffener section

It was considered stiffeners with Z cross-section type as depicted in Fig. 3, with the cross-section dimensions defined

in Tab. 2. The stringer torsional constant is Jr = 57.412 mm4 and its warping constant is Γr = 16.857 × 103 mm6.

Aluminum alloys commonly used in aeronautical applications are employed, whose mechanical properties are described

in Tab. 3 according to DOD U.S. (1998). Finally, the stiffened panels are discretized into sufficient number of elements

to catch buckling modes correctly.

Table 4 compares the results obtained from Lévy procedure with those obtained from FEM. The initial guess chosen

for the parameter N̄ is the classical buckling load of axially compressed unstiffened circular cylindrical shells

N̄0 = Eh2/R
√
3 (1− ν2), (37)

where the superscript 0 denotes an initial guess value. We have also adopted the following displacement functions

(
U0, V 0,W0

)
= (sinπy/b, cosπy/b, sinπy/b) . (38)

From them, the guess for the spatial distribution of the solutions Zi (i = 1, . . . , 8) are determined by straightforward

differentiation. Finally, the critical buckling load N̄cr is obtained by selecting the minimum value of N̄ = N̄ (m) in the

form

N̄cr = min
m
N̄ . (39)

Despite some unlike numerical features of bvp4c (for instance, the need to provide a initial guess to the solution and

also an additional equation to the boundary conditions), it can be observed that the mean difference from finite element

results are lower than 4.0%, and in most cases the prediction of the number of half waves is correct.

Table 2. Stiffener cross-section dimensions.

Width (mm) Thickness (mm)

wa 19.05 ta 1.27
wb 19.05 tb 1.27
wc 5.50 tc 3.00
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Table 3. Material properties.

Material Type E (N/mm2) ν
Skin AL 2024-T3 72400 0.33
Stiffener AL 7050-T3511 71020 0.33

Table 4. Comparison between Lévy formulation and FEM.

Panel ID m N̄cr |Diff.|%

Lévy FEM Lévy FEM

1 5 5 23.3 23.0 1.3
2 5 5 23.3 22.1 5.4
3 7 7 46.9 50.1 6.4
4 7 7 46.7 45.3 3.1
5† 8 8 23.4 23.7 1.3
6 8 7 23.3 22.1 5.4
7† 10 10 47.0 50.3 6.6
8† 11 10 46.7 46.3 0.9
9† 10 10 23.3 23.7 1.7

10† 10 10 23.3 22.0 5.9
11† 14 14 46.9 50.4 6.9
12† 14 14 46.7 46.6 0.2

† Panels for which the first buckling mode is of global type: tabled

results are concerned to the first local mode.
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