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Abstract.The study of inverse problems applied to radiative transfer has been the subject of numerous studies aiming 

many applications ranging from medicine to industry

formulation for the parameter estimation inverse problems in radiative heat transfer is

minimization of an objective function associated with the problem being analyzed.

usually inspired by nature behaviors, have been shown effective in recovering

functions, given a sufficiently high number of iterations.

known as the Firefly Algorithm (FA), in the minimization procedure of the defined objective function. The inverse 

problem solution is also carried out for some new algorithms derived from the FA and proposed in this work. One of 

them, is the insertion of the technique known as the Opposition

is the insertion of a fuzzy concept together with the definition of the center of mass of the firefly swarm. Each algorithm 

was tested in 30 runs, and the results obtained 

technique with the definition of the center of mass of the firefly swarm improved the FA canonical algorithm.
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1. INTRODUCTION 
 

Inverse problems are generally implicity formulated

for example given by the sum of the squared residues between the experimental data and the predicted values fro

direct problem solution. In this context, 

Although gradient based methods are still largely employed, they are very sensitive to the choice of the initial guess, 

since many local minima may exist in those objective functions. Alternatively, it has been observed an increasing

interest in the use of stochastic methods, which are likely to find the global minimum despite the initial guess, or the 

initial population. Those stochastic optimization methods, usually inspired by nature behaviors, have been 

to be effective in recovering the global minimum

high number of iterations. Even though such high number of iterations can be considerably computer intensive, the 

continuous development of computers hardware allowed for the development of new engineering models and faster 

computing, and it can be observed an increasing interest an

Inverse problems in radiative transfer have many applications, ra

allowing, among other issues, for non-intrusive tests

of works on inverse radiative transfer problems aimed at

as proposing new hybrid and variations of

investigated the Particle Collision Algorithm and the Luus

al. (2006) demonstrated the feasibility of using the Particle Swarm Optimization technique in identifying radiative 

properties, and many other heuristics, su
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The study of inverse problems applied to radiative transfer has been the subject of numerous studies aiming 

many applications ranging from medicine to industry, allowing, among others, for non-intrusive tests

estimation inverse problems in radiative heat transfer is

minimization of an objective function associated with the problem being analyzed. Stochastic optim

usually inspired by nature behaviors, have been shown effective in recovering the global minimum, even for complex 

functions, given a sufficiently high number of iterations. This work is aimed at the investigation of a new heuristic, 

as the Firefly Algorithm (FA), in the minimization procedure of the defined objective function. The inverse 

problem solution is also carried out for some new algorithms derived from the FA and proposed in this work. One of 

chnique known as the Opposition-Based Learning (OBL). Another variation implemented 

is the insertion of a fuzzy concept together with the definition of the center of mass of the firefly swarm. Each algorithm 

was tested in 30 runs, and the results obtained are critically compared. For the test case implemented, the fuzzy 

technique with the definition of the center of mass of the firefly swarm improved the FA canonical algorithm.

timization, firefly algorithm, opposition-based learning, inverse problem, radiative transfer

Inverse problems are generally implicity formulated (Silva Neto, 2005), with the definition of an objective function, 

for example given by the sum of the squared residues between the experimental data and the predicted values fro

 the main task becomes the minimization of the objective function.

Although gradient based methods are still largely employed, they are very sensitive to the choice of the initial guess, 

since many local minima may exist in those objective functions. Alternatively, it has been observed an increasing

interest in the use of stochastic methods, which are likely to find the global minimum despite the initial guess, or the 

initial population. Those stochastic optimization methods, usually inspired by nature behaviors, have been 

e in recovering the global minimum (Silva Neto, 2009), even for complex functions, given a sufficiently 

Even though such high number of iterations can be considerably computer intensive, the 

continuous development of computers hardware allowed for the development of new engineering models and faster 

, and it can be observed an increasing interest and use of stochastic methods. 

Inverse problems in radiative transfer have many applications, ranging from medicine to industry

intrusive tests (Oliva et al, 2004). Our research group 

problems aimed at the study of different optimization stochastic 

new hybrid and variations of the canonical algorithms. Just to mention a few

rticle Collision Algorithm and the Luus-Jaakola method, proposing a hybrid approach

demonstrated the feasibility of using the Particle Swarm Optimization technique in identifying radiative 

, such as the Simulated Annealing, Genetic Algorithms, 
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intrusive tests. In general, the 

estimation inverse problems in radiative heat transfer is achieved through the 

Stochastic optimization methods, 

global minimum, even for complex 

This work is aimed at the investigation of a new heuristic, 

as the Firefly Algorithm (FA), in the minimization procedure of the defined objective function. The inverse 

problem solution is also carried out for some new algorithms derived from the FA and proposed in this work. One of 

Based Learning (OBL). Another variation implemented 

is the insertion of a fuzzy concept together with the definition of the center of mass of the firefly swarm. Each algorithm 

are critically compared. For the test case implemented, the fuzzy 

technique with the definition of the center of mass of the firefly swarm improved the FA canonical algorithm. 
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Generalized Extremal Optimization and Differential Evolution, have been investigated for the solution of inverse 

radiative transfer problems and are compiled in (Silva Neto and Becceneri, 2009). 

This work is aimed at the investigation of a recent heuristic, recently proposed by (Yang, 2008), known as the 

Firefly Algorithm (FA), for the solution of a radiative transfer problem, where the space-dependent single scattering 

albedo must be estimated (Stephany et al, 2010). It is also considered the simultaneous estimation of the optical 

thickness (Knupp, 2011). The inverse problem solution is also carried out for some new algorithms derived from the FA 

and proposed in this work. One of them, is the insertion of the technique known as the Opposition-Based Learning 

(OBL) (Tizhoosh, 2005). Another variation implemented is the insertion of a fuzzy concept together with the definition 

of the center of mass of the firefly swarm (Gandomi, 2012). 

 

2. MATHEMATICAL FORMULATION AND SOLUTION OF THE DIRECT PROBLEM 
 

For this work, it is considered a one-dimensional medium, gray, heterogeneous, isotropic scattering, with optical 

thickness τ0, and with transparent boundary surfaces. The boundaries at τ = 0 and τ = τ0  are subjected to the incidence 

of isotropic radiation with intensities given by A1 and A2, respectively, as illustrated schematically in Fig. 1, where 

�� = �� = 0. 
 

 
Figure 1: Schematic representation of a participating media exposed to external radiation sources. 

 

 

Consider a one-dimensional, gray, heterogeneous, isotropically scattering participating medium of optical thickness 

0
τ  and transparent boundary surfaces as shown in Fig. 1. These boundaries at 0τ =  and 

0
τ τ=  reflect diffusely the 

radiation that comes from the interior of the medium and are subjected to the incidence of radiation originated at 

external sources with intensities 
1

A  and 
2

A , respectively. The mathematical model for the interaction of the radiation 

with the participating medium is given by the linear version of the Boltzmann equation, which for the case of azymuthal 

symmetry and a space-dependent albedo is written in  the dimensionless form as: 

 

 

� ��	
,�

�

+ 	�	�, � = 	�

	


�
� �	�, �′��′		,			0 < � < �� ,			− 1 ≤ � ≤ 1�
��                                                                  (1a)  

 

�	0, � = 	��, � > 0,			�	��, � = 	��, � < 0                                                                                                          (1b) 
 

 

where τ   is the optical variable,   I  is the radiation intensity,  µ is the polar angle cosine and �	�   is the scattering 
albedo, which is represented as the following expansion: 

 

     �	� = 	∑ � � !
 "�                                         (2) 

 

When the geometry, the radiative properties and the boundary conditions are known, problem (1) may be solved and 

the radiative intensity I is  determined for all discrete points in the spatial   and angular  domains,  that is, 0 ≤ τ ≤ τ0  and 

-1 ≤ µ ≤ 1. In order to solve the direct problem we have used Chandrasekhar´s discrete ordinates method 
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(Chandrasekhar, 1960), in which the polar angle domain is discretized, and the integral term on the right hand side of 

Eq. (1a) is replaced by a Gaussian quadrature. We then used a finite-difference approximation for the terms on the left 

hand side of Eq. (1a), and by performing forward and backward sweeps, from � = 0 to � = 	 �� and from � = 	 �� to 
� = 0, respectively. �	�, � is determined for all spatial and angular nodes of the discretized computational domain. This 

is the direct problem. When the radiative properties or the boundary conditions are unknown, but experimental data may 

be obtained, the unknown parameters can be estimated through an inverse problem approach. 

 

3. MATHEMATICAL FORMULATION AND SOLUTION OF THE INVERSE PROBLEM 
 

For the problem under consideration, given by Eqs. (1) and schematically represented in Fig. 1, the optical 

thickness, τ0 ,  and the space-dependent single scattering albedo, �	�,  are considered unknown, and the inverse 
problem approach is employed to estimates for τ0  and the �	�. In order to estimate the latter, the space-dependent 

function is considered to be well described by the polynomial expansion given by Eq. (2), and the coefficients, � ,        
k = 0,1,2,..., K, are estimated in order to recover the original function. Therefore, we have the following parameters to 

be estimated: 

 

$% = 	��, ��, ��, … , �!                                                                           (3) 
 

Consider that experimental data are available at both boundaries of the spatial domain, acquired by external 

detectors, at different polar angles. Therefore, there are Nd available experimental data, Yi, i = 1, 2, 3,..., Nd. This inverse 

problem can be formulated as an optimization problem, where the main task becomes the minimization of an objective 

function given by the sum of the squared residues between the experimental data and the predicted values from the 

direct problem solution. 

 

'($%) = ∑ *�+($%) − ,+-
�
= ./%0./%12

 "�                                                                           (4) 

In the present work, real experimental data are not available and the experimental intensities, ,+ , are simulated with 

the direct problem solution using the exact values for the parameters, which are obviously not known in a real 

application. In order to simulate the experimental fluctuations, random numbers from a normal distribution with zero 

mean and unitary standard deviation,  s, are added to those values: 

 

,+ = �+($%34567) +	83 ∙ :       (5) 

where	83   simulates the standard deviation of the experimental error. 

 

To minimize the objective function given by Eq. (4), it is employed the Firefly algorithm, which is described below in 

details. In order to verify its performance for this inverse problem solution, other variations are developed from the 

canonical algorithm, using the technique known as the Opposition-Based Learning (OBL). The other variations 

implemented regard the insertion of a fuzzy concept together with the definition of the center of mass of the firefly 

swarm. 

 

4. FIREFLY ALGORITHM - FA 
 

There are two characteristics that must be pointed out in order to a better understanding of the Firefly algorithm 

(FA) (Yang, 2008; Luz et al, 2009): 

a) how the variation of light intensity is perceived by the firefly; 

b) how the attractiveness between the fireflies is modeled. 

The firefly light intensity emission is proportional to the encoded objective function, but the light intensity perceived 

by the firefly decreases as the distance between the fireflies increases. Therefore, the perceived intensity of a firefly is 

given by  ;	< = ;�=�>?
@
, where  ;�  is the original light intensity, r   is the Euclidean distance between the fireflies i 

and j,  where  the j firefly is brighter than the i firefly. A  is a fixed light absorption coefficient. Therefore, the 
attractiveness Bof a firefly can be formulated as:  

 

B = B�=�>?
@
       (6) 
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where B� is the attractiveness  for the distance 
direction of a brighter firefly j is determined by:  

C+
7 = C+

7�� + B(C
 

where the second term is due to the attraction while the third term is randomization  with

parameter <DE� a random number simulated from

the Firefly algorithm is given in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

Figure 2: Pseudo code of the Firefly algorithm (FA)

 

5. OPPOSITION-BASED LEARNING 
 

This technique was first proposed by Tizhoosh (2005). In 

particle which is positioned at the opposite location of the 

better to choose a new particle from an existing one than choosing it from a random process.

x in the domain FD�, G�H, the new particle choice process, must follow the expression

always calculated from the generated x. 

reduced recursively until the estimate or its opposite be very close to the solution

Figure 3: OBL application for solving a one

(Tizhoosh, 2005) 

 

 

 

Begin 

 Objective function I
Generate initial population of fireflies 

Light intensity �+   at  C
Define light absorption coefficient  

while (t < MaxGeneration)

for I = 1 : n       all n fireflies

  for j =1 : d     loop over all d dimensions

    if (�J � �+   ),  Move firefly 

   Attractiveness varies with distance 

   Evaluate new solutions and update light intensity

 End for j 

End for i 

Rank the fireflies and find the current best

End while 

Postprocess results and visualization

End 

 

Rubens L. Cirino, Diego C. Knupp, Antônio J. Silva Neto and Luiz Biondi Neto  

the attractiveness  for the distance r = 0, and can be fixed as B� = 1. So, the movement 

is determined by:   

(CJ7�� � C+7��) � K L<DE� �
�
�M                                                                   

where the second term is due to the attraction while the third term is randomization  with K
simulated from the uniform distribution in the interval [0, 1].

 

Pseudo code of the Firefly algorithm (FA) (Yang, 2008) 

BASED LEARNING - OBL 

This technique was first proposed by Tizhoosh (2005). In that work, it is presented an idea of 

particle which is positioned at the opposite location of the original one. In their work, the authors believe

better to choose a new particle from an existing one than choosing it from a random process. Therefore, from an p

, the new particle choice process, must follow the expression: xo= a1

. Based on the proximity of the particle and its opposite, the search range can be 

reduced recursively until the estimate or its opposite be very close to the solution (Fig. 3). 

 

Figure 3: OBL application for solving a one-dimensional equation and optimality estimating C

I	C,   C = 	 	C�, … , CN0  
Generate initial population of fireflies C+ 				O = 1, 2, … E 

C+ is determined by  I	C+ 
Define light absorption coefficient  A 
while (t < MaxGeneration) 

for I = 1 : n       all n fireflies 

for j =1 : d     loop over all d dimensions 

),  Move firefly i towards j; end if 

Attractiveness varies with distance r via  =�>? 
Evaluate new solutions and update light intensity 

Rank the fireflies and find the current best 

Postprocess results and visualization 

. So, the movement of a firefly i in the 

 

                                                                           (7) 

 being the randomization 

[0, 1]. The pseudo code of 

an idea of the creation of a new 

work, the authors believe that it may be 

Therefore, from an particle 

1+ b1-x. The opposite xo is 

and its opposite, the search range can be 

C and opposite-estimate CQ   
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6. FIREFLY FUZZY (FAz) 
 

The main idea behind this approach was introduced by Becceneri et al. (2008). Working with the Ant Colony 

Optimization algorithm the authors implemented a process where the best ant in a run receives more pheromones than 

the others. The pheromone delivery decreases as the ant distance from the best path increases. Following the same 

principle, we established circular zones where the brightest firefly of a run is in the center. Then, the movement of the 

fireflies are calculated as usual. We established three circular zones where the light intensity of a firefly is compared 

with the light intensity of the brightest one in the run. Depending of that zone, the firefly will receive a different light 

absorption coefficient, A and a randomization parameter K. The chosen zone values are: 0.2, 0.5, 0.8 and 1.0. We also 

vary the randomization parameter K as follows: 0.02, 0.05, 0,1 and 0.2. This will result in different attractiveness B as in 
Eq. (6). These ranges were chosen based on Yang (2008). 

 

7. FIREFLY FUZZY WITH CENTER OF MASS (FAcom) 
 

This approach was initially developed by Gandomi (2012), and is based on the idea that some animal species have 

the ability to form large swarms. This ability seems to be linked with enhanced reproduction, protection from predators, 

and environmental conditions. The authors demonstrated that a density-dependent attraction of the individuals and 

location of food are used as objectives which finally lead the population to achieve the global minimum. Following the 

above strategy, it has been implemented the concept of center of mass, and the firefly swarm moves are based on the 

position of that center. The center of mass is calculated based on the objective function evaluation, and is calculated as 

follows: 

 

 

CN =
∑ R

S	TU////%
VW
UXR 42,U

∑ R
S	TU////%

VW
UXR

               (8) 

 

where d is the dimension of the function, YZ is the population and ' the objective function. 
In this variation, for the fuzzy intensification, instead of using the best firefly of each run as the center for 

pheromones distribution, a dummy firefly located at the center of mass is used. The light absorption coefficient A and 
the randomization parameter K change as the distance of a firefly from the center of mass increases, as shown above in 

the fuzzy variant. 

 

8. RESULTS AND DISCUSSION 
 

In the results presented for the selected test case below, it has been used 83 =0.002 in order to simulate the 

measuring error in the simulation of the experimental data, resulting in errors up to 3.5%. The chosen problem for the 

test case has an unitary optical thickness, that is, ��= 1, and a quadratic polynomial has been used to describe the spatial 

variation of the single scattering albedo. The external sources are considered to be
1

1A = and
2

0A = . 

For the inverse problem solution, it is considered three terms in the expansion shown in Eq. (2), that is, K = 3. 

Therefore, for the case under investigation, we have the following exact values of the parameters to be estimated: 

τ0=1; D0=1; D1=-1.4; and D2=0.6. On the optimization problem solution, it´s considered the following parameters for 

all tests: population number (population of fireflies) = 40, number of generations (MaxGeneration) = 200. The light 

absorption coefficient A may, originally, vary from 0.1 to 10.The randomization parameter K may vary from 0.1 to 1.0 

as well. 

For each optimization method 30 runs were performed with random initial populations, always employing the same 

experimental data set. Since the methods are stochastic, it is expected that different solutions are obtained at each run. 

Therefore the main objective of performing several runs is to calculate the mean estimate and their dispersion within the 

different runs. For the random numbers generation, it was used a set with 30 different seeds which was the same for all 

methods investigated. The algorithms were executed on a PC with an Intel Core2 Duo CPU T6670 @2.20GHz, 2.96GB 

RAM, with Window 7.0, 32 bits. Each run, for each method took about 50 minutes. 

In Tabs. 1(“a” and “b”) and 2 below it is presented the solution summary for the studied methods. In the tables, 

$%[3\7  and $%]^?\7  refer to the best and the worst estimates obtained after 30 rounds. Here, the best estimates are 

considered as those leading to the lowest value in the evaluation of the objective function. 

It is noteworthy that the coefficients D0,	D1 and D2 are used to recover the �	� function using the expansion given 
by Eq. (2). Therefore, Fig. 4 shows the curves drawn from the best estimates for each method and compared with the 

exact curve. It´s clear that all methods were able to identify curves that are very exact one. Nevertheless, it is clear from 

Fig. 4 that the curve estimated by FAcom is the best result in our tests. 

ISSN 2176-5480

8670



Rubens L. Cirino, Diego C. Knupp, Antônio J. Silva Neto and Luiz Biondi Neto  
FIREFLY ALGORITHM VARIATIONS 

 

The implementation of the fuzzy concept involves variations in both the light absorption coefficient A  and the 
randomization parameter  K , which resulted in different attractiveness Bfor fireflies with different light intensities 
compared with the brighter firefly. At the beginning, we tried just to change de absorption coefficient. However, the 

results were not encouraging. So, we decided to change the randomization parameter as well. That changed the 

influence of the random factor in the calculus of a firefly new position during a run. 

The FAcom was implemented with the fuzzy concept together as well. That is, the firefly swarm moves around the 

center of mass and depending of the distance of a firefly to the center of mass, the absorption coefficient A  and the 
randomization parameter K change. In this implementation, we varied the parameters as we did in the plain fuzzy 

version. 

The FA-OBL population was halved on the generation process in order to keep the same number of accesses to the 

objective function in comparison with the other methods. As the heuristic creates an opposite, the final number of 

fireflies evaluated were the same as in the Firefly algorithm. 

In Tab. 2 it is shown that the FAcom has the best objective function value among all methods. The original FA 

implementation stood as the second best. The FA-OBL had the poorest result in our tests. The FAz had a good result but 

its combination with the center of mass concept outperformed the original algorithm. Although presenting the best 

individual result, FAcom did not presented the best mean and standard deviation. The FA mean of all rounds showed to 

be better when compared with the FAcom. The analysis of several other cases must be carried out in order to yield a 

clearer observation on the performance of the methods. 

Finally, Fig. 5 shows the objective function evolution of the best runs based on the number of accesses to the 

function. The results confirm that the best FAcom run showed the best results when compared to the FA, FAz and FA- 

OBL. The FA result showed that it went very rapidly to its best value but got stuck. The FA-OBL showed the poorest 

result. After 8000 accesses it did not came even close to the other methods tested. The FAz was quite near to the FA 

performance. 

 

Table 1a: Results of all parameters of all methods tested after 30 runs (FA and FAz).  

    

FA 

 

     

FA 

FUZZY 

(FAz)       

RUN τ0 D0 D1 D2 τ0 D0 D1 D2 

                  

1 0.99915 1.0026E+00 -1.4589E+00 6.9494E-01 0.99990 1.0001E+00 -1.3348E+00 5.1505E-01 

2 1.00873 9.7787E-01 -1.2227E+00 4.5551E-01 0.99958 9.6184E-01 -1.0824E+00 2.4720E-01 

3 1.00148 9.5025E-01 -9.1157E-01 4.3470E-02 0.99554 9.7621E-01 -1.1684E+00 3.3046E-01 

4 1.00325 9.4708E-01 -8.8985E-01 4.3470E-02 0.99388 9.5409E-01 -9.5680E-01 8.2551E-02 

5 0.99468 9.6123E-01 -1.0350E+00 1.6631E-01 1.00201 9.4537E-01 -9.6171E-01 1.4464E-01 

6 0.99602 1.0123E+00 -1.5064E+00 7.3513E-01 0.99454 1.0124E+00 -1.4839E+00 6.9201E-01 

7 0.99944 9.5766E-01 -1.0293E+00 1.8465E-01 1.00825 9.6684E-01 -1.1166E+00 3.0471E-01 

8 0.99139 9.6930E-01 -1.1020E+00 2.3742E-01 1.00353 9.6535E-01 -1.1111E+00 2.9960E-01 

9 0.99885 9.7592E-01 -1.2057E+00 3.9105E-01 0.99865 9.8582E-01 -1.2890E+00 4.7618E-01 

10 0.98882 9.5334E-01 -9.4372E-01 3.7807E-02 1.00514 9.7749E-01 -1.1595E+00 3.4020E-01 

11 0.99862 1.0021E+00 -1.4219E+00 6.4246E-01 1.01008 9.2728E-01 -7.0062E-01  -2.3137E-01 

12 0.99868 9.9896E-01 -1.3729E+00 5.5968E-01 1.00058 1.0230E+00 -1.6104E+00 8.5713E-01 

13 1.00380 1.0091E+00 -1.4934E+00 7.3457E-01 0.99932 9.2249E-01 -6.8476E-01 -2.5433E-01 

14 0.99677 1.0286E+00 -1.6345E+00 8.5943E-01 1.00044 9.7874E-01 -1.2045E+00 3.7789E-01 

15 0.99776 9.5987E-01 -1.0218E+00 1.6297E-01 0.99910 1.0100E+00 -1.4766E+00 6.9415E-01 

16 1.00627 9.6361E-01 -1.0948E+00 2.7541E-01 0.98956 9.4093E-01 -7.7485E-01 -2.2415E-01 

17 0.99948 9.5077E-01 -9.3671E-01 6.8313E-02 0.99948 9.5077E-01 -9.3671E-01 6.8313E-02 

18 1.00263 9.3554E-01 -8.2894E-01 -4.2057E-02 1.00142 9.5996E-01 -1.0283E+00 1.9325E-01 

19 0.99848 9.3978E-01 -7.8490E-01 -1.3920E-01 0.99152 9.2821E-01 -7.3603E-01 -1.9668E-01 

20 0.99891 9.6234E-01 -1.0596E+00 2.2445E-01 0.99697 1.0009E+00 -1.3657E+00 5.4604E-01 

21 1.00139 1.0333E+00 -1.6423E+00 8.5953E-01 0.99186 9.8561E-01 -1.2335E+00 3.8945E-01 

22 1.00741 9.4841E-01 -9.3933E-01 1.1426E-01 0.99910 9.8669E-01 -1.2093E+00 3.6572E-01 

23 0.99405 9.6613E-01 -1.0452E+00 1.6714E-01 0.99529 9.2944E-01 -7.8481E-01 -1.3258E-01 

24 0.99759 9.8093E-01 -1.2464E+00 4.4485E-01 0.99854 9.6888E-01 -1.1035E+00 2.2728E-01 
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25 0.99275 9.7796E-01 -1.1176E+00 2.2496E-01 1.00111 9.2888E-01 -7.9594E-01 -8.5772E-02 

26 1.00363 9.2971E-01 -7.0510E-01 -2.3719E-01 0.99882 9.1360E-01 -6.2055E-01 -3.0194E-01 

27 1.00164 1.0139E+00 -1.5202E+00 7.4907E-01 0.99403 9.3588E-01 -7.8179E-01 -1.1301E-01 

28 0.99985 9.5687E-01 -9.7783E-01 9.1097E-02 1.00523 9.5674E-01 -1.0620E+00 2.5463E-01 

29 0.99838 9.9144E-01 -1.2914E+00 4.5430E-01 0.99940 9.9710E-01 -1.3939E+00 6.1617E-01 

30 1.00240 9.7935E-01 -1.2406E+00 4.4397E-01 0.99163 9.5010E-01 -9.3536E-01 3.6430E-02 

 

Table 1b: Results of all parameters of all methods tested after 30 runs (FAcom and FA-OBL). 

  

FA Center of 

Mass 

(FAcom)       

FA- OBL 

 

       

RUN τ0 D0 D1 D2 τ0 D0 D1 D2 

                  

1 1.00240 9.7935E-01 -1.2406E+00 4.4397E-01 0.94826 1.0303E+00 -1.6582E+00 6.3992E-01 

2 1.00045 9.9077E-01 -1.3071E+00 5.0201E-01 0.99261 1.0053E+00 -1.2908E+00 4.5421E-01 

3 1.00178 9.7243E-01 -1.1377E+00 2.9839E-01 1.10078 8.9416E-01 -8.9606E-01 3.0449E-01 

4 0.99982 9.8348E-01 -1.2313E+00 4.0311E-01 0.99807 9.1334E-01 -6.6520E-01 -2.3883E-01 

5 1.00044 9.9577E-01 -1.3497E+00 5.5086E-01 0.99872 8.9837E-01 -5.1385E-01 -4.0080E-01 

6 0.99966 1.0093E+00 -1.4793E+00 7.0168E-01 0.93279 1.1175E+00 -1.6759E+00 6.4975E-01 

7 1.00228 9.7294E-01 -1.1519E+00 3.2773E-01 1.00681 9.1616E-01 -6.8225E-01 -1.8166E-01 

8 0.99868 9.7126E-01 -1.1173E+00 2.7134E-01 1.01736 9.3598E-01 -1.0505E+00 1.7700E-01 

9 0.99929 9.8068E-01 -1.2201E+00 3.9867E-01 0.96916 1.0508E+00 -1.3935E+00 1.4038E-01 

10 0.99958 9.3736E-01 -8.3263E-01 -5.3068E-02 0.91052 1.0930E+00 -1.6754E+00 3.9066E-01 

11 0.99850 9.1878E-01 -6.7397E-01 -2.4074E-01 0.97615 9.9849E-01 -1.1630E+00 5.4477E-02 

12 0.99985 9.7997E-01 -1.2014E+00 3.6789E-01 1.10574 9.7148E-01 -1.1731E+00 3.4903E-01 

13 1.00050 9.2204E-01 -6.7553E-01 -2.4298E-01 0.99911 9.1407E-01 -6.4862E-01 -2.4626E-01 

14 0.99836 9.6714E-01 -1.0791E+00 2.2006E-01 0.99911 9.1407E-01 -6.4862E-01 -2.4626E-01 

15 0.99631 9.0963E-01 -5.7515E-01 -3.7393E-01 0.98609 9.5343E-01 -8.8124E-01 -6.5679E-02 

16 1.00279 9.3349E-01 -7.7968E-01 -1.2268E-01 0.97046 8.9183E-01 -8.8351E-01 1.5048E-01 

17 1.00015 9.6336E-01 -1.0676E+00 2.2871E-01 1.00287 8.8997E-01 -3.9998E-01 -5.6336E-01 

18 0.99590 8.8243E-01 -3.1660E-01 -6.8599E-01 0.95991 9.3418E-01 -8.6936E-01 6.6052E-03 

19 0.99731 9.1843E-01 -6.4510E-01 -2.9300E-01 1.00499 9.0869E-01 -6.6559E-01 -1.8602E-01 

20 0.99933 9.4691E-01 -8.9568E-01 7.2548E-03 0.97713 9.3242E-01 -6.8257E-01 -4.0152E-01 

21 0.99758 1.0109E+00 -1.4795E+00 6.9485E-01 1.00142 9.1367E-01 -5.9910E-01 -3.7229E-01 

22 1.00021 9.4469E-01 -8.7344E-01 -1.1913E-02 1.00064 9.4015E-01 -8.2888E-01 -1.0749E-01 

23 0.99363 8.7545E-01 -2.3970E-01 -7.8220E-01 0.98798 9.2107E-01 -6.2302E-01 -3.4100E-01 

24 0.99886 9.4277E-01 -8.8526E-01 5.7979E-03 0.99730 9.3050E-01 -7.8656E-01 -1.3851E-01 

25 0.99731 8.6565E-01 -1.2208E-01 -9.3975E-01 0.99819 9.2800E-01 -7.7452E-01 -1.4357E-01 

26 1.00149 9.5046E-01 -9.7187E-01 1.2749E-01 0.99545 9.2743E-01 -8.0611E-01 -9.3229E-02 

27 0.99936 9.9227E-01 -1.3193E+00 5.1029E-01 0.99009 9.2968E-01 -7.5237E-01 -1.5085E-01 

28 1.00120 9.8014E-01 -1.2127E+00 3.8710E-01 0.98534 9.9516E-01 -1.2527E+00 3.1710E-01 

29 0.99953 1.0043 E+00 -1.4275 E+00 6.3970 E-01 0.93242 9.6759E-01 -1.0535E+00 2.0052E-01 

30 0.99446 8.7217E-01 -1.7949E-01 -8.7184E-01 0.97881 9.4179E-01 -1.0211E+00 3.6087E-01 
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Table 2: Summary of the best and the worst experimental data results after all runs with all.  

 

  τ0 D0 D1 D2 	'	_% 
$%34567   1.00 1.00 -1.40 0.60  

       

FA $%]^?\7 1.0036 0.9297 -0.7051 -0.2372 9.1974E-04 

 $%[3\7 0.9986 1.0021 -1.4219 0.6425 9.6559E-06 

 �` 0.9994 0.9745 -1.1560 0.3216 0,000235 

 8` 0.0045 0.0277 0.2569 0.3020 0,000215 

       

FAz $%]^?\7 0.9988 0.9136 -0.6205 -0.3019 1.0342E-03 

 $%[3\7 0.9994 0.9971 -1.3939 0.6162 1.6528E-05 

 �` 0.9988 0.9647 -1.0701 0.2173 0,000354 

 8` 0.0048 0.0295 0.2635 0.3145 0,000344 

       

FAcom $%]^?\7 0.9973 0.8657 -0.1221 -0.9398 2.9486E-03 

 $%[3\7 0.9995 1.0043 -1.4276 0.6397 2.8180E-06 

 �` 0.9992 0.9525 -0.9563 0.0823 0,000608 

 8` 0.0022 0.0417 0.3869 0.4651 0,000841 

       

FA-OBL $%]^?\7 0.9328 1.1175 -1.6759 0.6498 1.2012E-02 

 $%[3\7 0.9324 0.9676 -1.0535 0.2005 2.6818E-04 

 �` 0.2549 0.0096 -0.4616 0.0106 0,002776 

 8` 0.8279 0.8200 0.5791 0.3204 0,003116 

 

 

Figure 4: Estimates of  ( )ω τ compared with the exact curve for a noise up to 3.5%. 
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Figure 5: Evolution of  the objective function value for a noise up to 3.5%. 

 

9. CONCLUSIONS 
 

In this work, motivated by the inverse problem in radiative transfer, it has been employed a recent developed 

heuristic algorithm known as the Firefly algorithm (FA) to the minimization of the objective function for the solution of 

the inverse problem of simultaneous estimation of optical thickness and space-dependent scattering albedo, formulated 

as a problem of parameter estimation. The results are critically compared to some hybridizations of the Firefly 

algorithm developed in this work: Firefly fuzzy, Firefly center of mass and Firefly opposed based learning. The final 

results showed that the hybridization with the center of mass achieved the best  individual performance in the tests, 

indicating good perspective on the use of this heuristic in this class of problems. In the average of the 30 runs 

performed, the canonical FA algorithm still showed the best performance. The research proceeds in the further 

investigation of the mechanisms of artificial intelligence of the Firefly Algorithm in order to develop variations and 

specific hybridizations to ensure its robustness and performance characteristics desirable in solving computationally 

intensive problems. Several other test cases are going to be tested in order to yield a better observation on the 

performance of the mechanisms. 
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