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Abstract. Maintenance planning and costs are one of the greatest logistics concerns faced today by aircraft 
manufactures and operators. With the advancement of composite materials, other problems arrived as these materials’ 
behavior are still not completely understood. As such, structure health monitoring (SHM) and damage detection 
methods were eagerly studied in academic level in the last two decades. In particular, vibration based methods 
employing piezoelectric sensors and/or actuators offer a promising option, especially with the advance of piezoelectric 
materials such as macro-fiber composites (MFCTMs) and active fiber composites (AFC) which can be incorporated 
directly into the composite materials. Through these methods, damage can be estimated and located by comparing the 
dynamic responses between the damaged and undamaged structure. This occurs as, in general, damage locally 
introduces changes in the mass and stiffness properties of the structure, changing the dynamic properties of a given 
structure such as modal shapes, natural frequencies and damping values. In this paper, a preliminary investigation in 
order to develop a vibration-based damage identification method is presented, consisting on evaluating via Finite 
Element Method not only the mode shapes but also the Frequency Response Functions (FRFs) of undamaged and 
damaged composite plates. Therefore, rectangular plates made of composite material, resin epoxy and carbon fiber, 
were analyzed by Abaqus’ code, considering piezoelectric transducers attached in suitable positions in order to obtain 
the dynamic behavior of the structures. A FE mathematical formulation for laminate structures containing active 
piezoelectric layers was developed in order to obtain more accuracy results. Thus, a plate quadratic finite element with 
eight nodes and curved structures, which allows fully coupled electromechanical analyses was formulated and 
implemented into the Abaqus’ code, using Fortran subroutine defined as UEL (User Element). First, an undamaged 
composite plate was modeled using this user subroutine. Then natural frequencies and Frequency Response Functions 
were obtained by finite element analyses. After that, a central hole is created in the finite element model in order to 
simulate a specific damage. Then, the natural frequencies and Frequency Response Functions were obtained for the 
damaged plate. Finally, it was discussed the advantages and limitations to use vibration-based damage detection 
method into the context of SHM (Structural Health Monitoring) via Finite Element approach. 
Keywords: Structural health monitoring, damage metrics, vibration experimental data, piezoelectric sensor, 
nondestructive inspection, Vibration-based method. 

 
1. INTRODUCTION 

 
The aeronautical industry, due to the increasing project requirements that exist in order to guarantee airworthiness 

and high levels of safety lives in a paradoxical environment. From one side, it must follow rigorous safety requirements 
that lead to heavy structures and costly maintenance programs, and from the other side low maintenance costs and on 
low weigh is desirable. For that reason, several design and maintenance philosophies were created based on damage 
tolerance procedures and complex maintenance inspections schedules. One of the most common objectives in modern 
aeronautical design is to enable more operation hours of an aircraft with fewer inspections by calculating optimized 
inspection periods depending on the average mission and structural properties of the primary elements. However, 
several problems exist for these procedures, mainly logistic problems and the current understanding of damage 
progression in the different materials used in the industry, particularly in composite materials, being lacking. In this 
context, the detection of damage on composite structures has been one of the major challenges and concerns of airline 
operators, aircraft structural designers and researchers. 

Regarding the above scenario, Structural Health Monitoring (SHM) is an acceptable practice not only for 
minimizing the number of inspections, but also for maximizing the numbers of suitable inspection periods, 
indispensable inspections that are able to check several different elements and components. Therefore, SHM can replace 
the traditional maintenance plan, reducing the operational costs of the airplane and preventing needless checks. 
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However, both the creation and executing of a SHM system is still a challenge and an open problem. Vibration 
based SHM systems are one of the currently studied proposes to the use of such systems due to the relative ease of 
instrumentation and being computationally simple without any need for an updated numerical model. Most notable 
among these techniques are based on natural frequency, mode shape curvatures, modal flexibility and its derivatives, 
modal stiffness, modal strain energy, frequency response function and its curvature, and power spectral density (PSD). 
Important advances in this field have been described by Doebling et al. (1996); Salawu (1997); Doebling et al. (1998); 
Zou et al. (2000); Carden and Fanning (2004); Montalvão et al. (2006); Worden et al. (2008); Fan and Qiao (2011); Liu 
and Nayak (2012) which have been presented comprehensive reviews on SHM systems. 

Great part of the problem with vibration based methods are the types for sensors used due to common 
accelerometers and piezoelectric ceramics introducing discontinuities in the geometry, causing stress concentration. 
Also, for composite materials, the inability to sense data from the inner layers is a problem. The development of 
piezoelectric materials in the form of thin fibers in the last years improved their usability for such applications, creating 
smart composite structures. 

However, both numerical and experimental problems still exist with such approach: experimentally, the small 
experience and works in the literature existing with such type of sensors and the lack of metrics for the identification 
and localization of damage; numerically, models used for the dynamic analyses and for the types of sensors used. 

Regarding numerical approaches, in general, the studies made fall into the different models of finite elements that 
can be used to correctly model damage and the electro-magnetic coupling of piezoelectric sensors. About the finite 
elements approaches, numerous works have been published in the last years about how to correct simulate the 
mechanical behavior of such structures and, therefore, several models already exist for the correct modeling of 
piezoelectric materials integrated with both isotropic and laminated materials. Some researchers like Wang and Qiao 
(2007) and Paik et al. (2007) defend that simpler models cannot completely simulate a smart composite, and simulations 
must be made using a micro-scale modeling of each fiber. These approaches come with a great computational cost and 
are impractical for analysis large structures as several methods and SHM metrics requires frequency based analysis, 
which need fast and efficient models. This inefficiency is caused by the use of solid elements, which are naturally costly 
computationally. As such, several researchers implement plate finite element models that simulate smart composites; in 
particular, some researchers like Marinkovic et al. (2007) presented linear plate finite element models for active 
composites with increasing complexity theories, yet few offer comparisons of the bi-dimensional models to already 
implemented ones. 

This work presents a formulation of a quadratic bi-dimensional finite element capable of simulating composite 
structures manufactured using smart laminated materials, with piezoelectric layers, or composite materials with thin 
piezoelectric actuators attached to its surface. This formulation was implemented within Abaqus commercial finite 
element package using Fortran subroutines through its UEL (User Element) tool. An experiment consisting of a simple 
curved composite plate was made by doing modal analysis. The plate was then holed in the center for the simulation of 
damage. Then, the same studies were made using piezoelectric sensors over four points of the plate and simulated 
numerically using the proposed model. Frequency response functions were obtained and the results between the 
experiment, and the numerical simulations for both accelerance and the piezoelectric response were compared. Finally, 
conclusions were made for the use of numerical simulations with a SHM environment, the advantages in the use of 
piezoelectric sensors for SHM and ways to characterize damage identification. 

 
2. FINITE ELEMENT MODEL 

 
In this section, a summary of the theoretical model of the implemented finite element is presented. The geometric 

description of the shell is based on the degenerated shell element theory. The constitutive equations for a piezoelectric 
active layer and for a smart composite laminate were based upon the works of Damjanovic (2006), Marinkovic et al. 
(2007) and Deraemaeker et al. (2009). For a more detailed development of the implemented finite element, see the 
reference Sartorato (2012). It should be noted that for the whole formulation the indexes are in the following range: 
i=1..3, j=1..3, k=1..2, n=1..8. 

 
2.1 Geometric description of the shell: coordinates, displacements and strains 

 
Degenerated shell elements are simple or double curved bi-dimensional finite elements. These elements are 

geometrically described from the degeneration of a cuboid solid in a bi-dimensional surface using some surface as 
reference, either middle, bottom or top surfaces. For the following formulation, the middle surface is used as reference. 
This description can be done by the use of the shell thickness h and three distinct coordinate systems, shown in Fig. 1: 
the isoparametric system (ξ1, ξ2, ξ3), the global system (X1, X2, X3) and the local system (S1, S2, S3) (Zienkiewicz e 
Taylor, 2000). Also in Fig. 1 are shown the coordinate transformation matrixes between each coordinate system. Using 
these three coordinate systems, the displacement of a given point in a shell can be written using five degrees of 
freedom: the three translation components of the displacement of the middle surface (u1, u2, u3) and the two rotations of 
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the shell in that point (θ1, θ2). The mathematical expression for the displacement can be found in Eq. 1, while the 
transformation matrixes H and T are shown in Eq. 2. 

 

 
 

Figure 1. Coordinates systems and transformations used in the finite element formulation. 
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With the mathematical description of the displacements, the engineering strains in a given point can be calculated 

through their definitions from the symmetric gradient of the displacements. The expression for the strains can be found 
in Eq. 3. Equation 3 shows that using this theory, the resulting strains naturally recovers the First-Order Shear Theory 
assumptions for the strains of a plate: the strains can be separated in an independent term, equal to the strain in the 
middle surface and a term linearly proportional to the thickness of the shell and its curvature (bending or torsional). 
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2.2 Smart composite constitutive equations 

 
The constitutive equation for a lamina of a smart composite material is given by Eq. 4. This relation uses the 

convention that the 1 direction is given by the direction of the fiber; the 2 direction is within the plane defined by the 
lamina; and the 3 direction is transversal to the plane of the lamina. Also, this constitutive equation is formulated based 
upon the e-form of the general piezoelectric constitutive equation combined with the following hypothesis: orthotropic 
material, quasi-3D stress (σ3=0) and uniaxial electrical polarization in the direction transversal to the piezoelectric fibers 
(E1=E2=0). 
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where, σij, τij, εij, γij, D3 and E3 are respectively: the membrane stresses, transversal stresses, membrane strains, 

transversal distortions, electrical displacement and electrical field; Qij, e’31 and d’33 are effective properties of a lamina 
under the aforesaid hypothesis, given by Eqs. 4 and 5 in term of the short-circuit elastic properties CE

ij, the dieletrical 
properties dii and the piezoelectric coupling properties eij. It should be noted that, for the piezoelectric layers of a given 

ISSN 2176-5480

954



M.Sartorato, R. Medeiros, F.D. Marques, D. Vandepitte and V. Tita 
Vibration-Based Damage Identification Applied for Composite Plate: Numerical Analyses 
 

smart composite, the transversal isotropic hypothesis is commonly used, as such Q44=Q55. Also, for the pure structural 
(non-piezoelectric) layers, the dieletrical and piezoelectric coupling properties can be approximated by zero. 

The laminate constitutive equation can be obtained by the integration of mechanical stresses and electrical fields 
over the laminate thickness. As the result of this integration the working efforts over the laminate are obtained. 
Different from the Classical Laminated Theory, in addition to the normal (N) and bending (M) efforts, the degenerated 
shell theory, in conjunction to the aforementioned constitutive equation generates shearing (Q) and torcional moments 
efforts (T). Also, the introduction of the piezoelectric coupling produces the working electrical displacement over the 
laminate (De). These working efforts are given by Eqs. 5 to 9, where m is the number of layers in a given laminate. 
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Using the assumption that the membrane strains and the electrical field have a uniform distribution over the 

thickness of the laminate and the transversal distortions have a parabolic distribution over the thickness, the laminate 
constitutive equation can be written as an extended ABBD matrix obtained from the Classical Laminate Theory by 
incorporating the aforementioned extra working efforts and the piezoelectric coupling and dielectric effects. The full 
development of the mechanical part of the constitutive matrix ABBD-GH matrix can be seen in the Qatu et al. (2010) 
reference. The electrical part is described in Sartorato (2012). The final constitutive matrix for a smart composite is then 
given by Eq. 10. 
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Moreover, by the assumption that the electrical field is uniform over the thickness of the laminate, it can be written 

as a function of the difference of potential between the two surfaces of a given lamina (φ), as shown by Eq. 11. Also, it 
should be noted that, as the hypothesis that the piezoelectric layers are polarized only in the 3 direction, the lamina 
orientation does not influence the piezoelectric coupling and dielectric matrixes, as such, there is no need to apply the 
coordinate transformation matrix from the local lamina system to the laminate global system to the piezoelectric and 
dielectric terms. 
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2.3 Finite element formulation 

 
Discretizing the six degrees of freedom given by the geometry and electric description of a smart composite shell, 

using the quadratic Lagrange serendipity shape functions ϕn, such as each element as 8 nodes, both the strains and 
electrical field can be written as function of the nodal degrees of freedom using several matrixes, following Eq. 12 and 
Eq. 13, where 𝑢̃=un

i and 𝜑̃=φn
i. The explicit mathematical description of the B matrixes can be found in the work of 

Sartorato (2012). 

ISSN 2176-5480

955



22nd International Congress of Mechanical Engineering (COBEM 2013) 
November 3-7, 2013, Ribeirão Preto, SP, Brazil 

 

n
n
ii XX  , n

n
ii uu  , n

n
kk θθ  , n

nφφ    (12) 
 

u~
BξBB
BξBB

γ
γ
ε
ε
ε

θ
t3

θ
t

u
t

θ
m3

θ
m

u
m

13

23

22

12

11

100

100
















































,  φ~BE φ3    (13) 

 
The variational equilibrium equation of a single element is found in Eq. 14, where U is the volume integration over 

the element of the specific electric-mechanical enthalpy (or Gibbs’ piezoelectric energy), K is the kinematic energy, and 
P is the work from the external loads. This relation can be expanded in the element equilibrium equation, found in Eq. 
15. 

 
0PδKδUδδ    (14) 

 

QδφqδφMδθFuδd.tuδd.buδ

d.E'dEδε'e:EδE'e:δεεC:δε)θδθξθu~δξu~δθξu~u~δ(ρ 333
TE2

333











  (15) 

 
where ρ is the density of the plate; b, t, q, F, and Q are, respectively, the body forces, surface forces, electrical 

charges distribution over the surface of an electrode, concentrated forces and electrical charges. Using the simplification 
matrixes in Eq. 16, the final system of equations for the piezoelectric problem can be given by Eq. 17, and its terms are 
calculated using Eqs. 18 to 24, where wi and wj are Gauss’ Quadrature weights. 
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3. EXPERIMENTAL AND FINITE ELEMENT ANALAYSIS 
 
Both the experimental and numerical analysis were based upon the modal investigation of a curved composite plate 

with a [0°]8 lay-up configuration, uniform plies with equal thickness. The composite plate properties were given by 
Ribeiro et al. (2012), similar to Tita et al. (2008). The plate geometry consists of a length 305 mm, width of 244 mm 
and total thickness of 2.16 mm and a small curvature. For the simulation of damage, an hole with an approximate 
diameter of 8 mm was drilled in the center of the plate. 

 
3.1 Experimental setup 

 
The experimental analyses were carried out with vibrations tests in the composite plate using the coupon shown in 

Fig. 2. Accelerometers (PCB Piezotronix) were attached to one of its faces in the two points indicated in Fig. 2a. The 
input used was a pulse signal to produce the excitation on the structure originated form an impact hammer (PCB 
Piezotronix). Sixty three points of impact were carried out in the white circles shown in Fig. 2. The plate was then holed 
in its center to simulate damage. 

 

         
a                                                                 b 

 
Figure 2. Experimental model: a) Intact; b) damaged by drilling a center hole. 

 

 
 

Figure 3. General layout of the experiment and the equipment used 
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The experimental analyses consist of verifying dynamically the response of the plate. The data acquisition set-up 
used in the experimentation was controlled by a Test.Lab (signal acquisition LMS Test.Lab), which is a plug and play, 
multifunction analog, digital and timing I/O board for USB bus computers. The experimental setup for the vibration test 
consists of specimens to be tested, schematically show both damaged and intact in Fig. 3, accelerometers, impact 
position, an impulse hammer, wire connections, a personal computer equipped with data acquisition software and a PC 
analyzer interface. Both damaged and undamaged structures were assessed by acquiring the FRF signatures for every 
the accelerometers for all impacted positions. Each time signal gathered consisted of 2048 points and were sampled at 
1024 Hz. The FRFs were calculated from both the measured force and response signals (accelerometers). The number 
of averaging individual time records was selected to be eight in order to reduce the random fluctuation in the estimation 
of the FRFs. The free-free conditions were simulated suspending the beam with springs introducing an extra natural 
frequency, reasonably lower than the first resonance in bending vibration. 

For more information regarding the experimental tests, please see the companion paper Vibration-Based Damage 
Identification Applied for Composite Plate: Experimental Analyses 

 
3.2 Numerical simulations and models 

 
The finite element model, previously presented, was implemented in Abaqus with its UEL (User Element) 

subroutine and was used to make modal and frequency simulations of the same composite plate studied in the 
experimental tests. For that, a finite element model of the beam, both undamaged and with the drilled hole was created 
in Abaqus using the material properties found in the works of Ribeiro et al. (2012). The material properties and 
geometric dimensions used for the piezoelectric sensors were obtained from the work of Medeiros (2012), which used a 
micro-structure analysis using FEM and the material and geometrical of fibers and matrix of the piezoelectric sensor to 
obtain homogenized properties. More details about this methodology for the homogenization of the properties can be 
found in Medeiros (2012). 

The mesh used for the undamaged model as well as the grid used to identify the impact points; accelerances 
measurements points A1 and A2; and piezoelectric sensors nomenclatures are shown in Fig. 4a. The mesh used for the 
damaged structure is shown in Fig. 4b. The same impact points and accelerance measurement points were used. It 
should be noted that these points coincide with some of the actual impact points and points containing accelerometers in 
the experiment, and are the points chosen for the best results. For the simulation of the experimental boundary 
conditions two spring elements with a spring coefficient of 1 kN/m were used. Also, an equipotential condition for the 
electric difference of potential over the piezoelectric sensors was used, as shown by Fig. 5. 

 

      
a                                                                          b 

 
Figure 4. Meshes used in the numerical analysis and points of interest: a) Undamaged structure; b) Damaged structure. 
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Figure 5. Boundary conditions of the numerical model. 
 

Using the aforementioned material properties and models, undamped frequency domains analyses were made with a 
concentrated pulse load applied to the same point as in the experimental results. The analysis were chosen as undamped 
as the structure damping needs to be obtained experimentally. This was make sure the results of each of the methods 
used, numerical and experimental, were independent from each other. 

 
4. RESULTS AND DISCUSSION 

 
At first, the numerical and experimental results were compared with objective of model validation, identification of 

its limitations and for a better understanding of the different effects occurring with the experiment. In this step, as for a 
better comparison between numerical and experimental data, natural frequencies and accelerance frequency response 
functions from the points with accelerometers in the experiment were compared. After, the damaged and undamaged 
results for the numerical simulations for the piezoelectric sensors response were compared and its results are discussed. 

 
4.1 Numerical x Experimental Results 

 
At first, the numerical and experimental data were compared. Table 1 shows the first five natural frequencies found 

experimentally and numerically. It can be noted that the frequencies show a little variations between the FEM model 
and the experiment, except for the first mode. This probably occurs due to the difficult of first-order shear theory based 
element in predicting out of the plane torsion modes summed to the boundary conditions used and the inclusion of the 
piezoelectric sensors, which added an increased mass and stiffness in the model. Also, it should be noted that, as the 
analysis were undamped, discrepancies between the frequencies should occur, and due to the curvature of the plate, the 
first torsion mode has one of the greatest damping values of the structure. 

 
Table 1. Natural frequencies found experimentally and numerically. 

 
Frequency ω1 [Hz] ω2 [Hz] ω3 [Hz] ω4 [Hz] ω5 [Hz] 
Mode Type 1st torsion 1st flexural 2nd torsion 2nd flexural 3rd torsion 

Intact Experimental 61.313 148.847 159.824 222.023 249.610 
Numerical 53.626 150.51 163.16 224.55 252.84 

% Difference 14.33% 1.10% 2.04% 1.13% 1.28% 

Damaged Numerical 59.515 149.320 158.055 223.055 249.574 
Experimental 53.598 150.51 163.04 223.80 252.84 

% Difference 11.04% 0.79% 3.06% 0.33% 1.29% 
 
The H27.2FRFs for the undamaged and damaged structure is shown in Fig. 7. These specific FRFs were chosen as 

they were used in deeper experimental analysis and are some of the obtained pair that does not present anti-resonances. 
As such, the data for each vibration mode can be decoupled and better studied for damage detection purposes. 

 

Low stiffness springs suspending the plate 

Equipotencial over the piezoelectric surfaces 
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Figure 7. Numerical FRFs for the each piezoelectric sensor for the undamaged and damaged cases. 
 
Some discrepancies between the shape of the frequency response functions found in the experiments and the 

implemented model can be seem. However, these are explained by both the numerical analysis being undamped and the 
inclusion of the piezoelectric sensors adding mass and stiffness to the system. Also, the points for both input and output 
evaluated at the numerical problem are not exactly the same as the ones used in the experiments due to imprecisions in 
the experimental impact points and accelerometers errors. 

 
4.2 Damaged x Undamaged Comparison and Piezoelectric Sensor Results 

 
The magnitude voltage measured in the piezoelectric sensors per force FRFs are found in Fig. 8. It can be seem that 

the damage was better perceived in the fourth mode of vibration. That occurs as this is a flexural mode with nodal 
points in the areas of the sensors, which function based on strains. 
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Figure 8. Numerical FRFs for the each piezoelectric sensor for the undamaged and damaged cases. 
 

The difference ratio between the accelerance FRFs for H27.2 and the magnitude for the piezoelectric measures are 
found in Fig. 9 and 10. It can be observed that the piezoelectric sensors observed the damaged in a broader range of 
modes. However, both measures observed the damage in the regions of the resonance. Also the values of the ratios are 
large due to undamped nature of the simulation, which increases the resonance magnitude values 

 

 
 

Figure 9. Accelerance difference ratios between the H27.2 FRFs the damaged and undamaged cases. 
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Figure 10. Magnitude difference ratios between the FRFs for the piezoelectric sensors between the damaged and 

undamaged cases. 
 

5. CONCLUSIONS 
 
In this paper, a carbon-epoxy composite plate containing accelerometers and four piezoelectric patches used as 

sensors was analyzed experimentally and numerically through finite element analysis using the commercial FEM 
package Abaqus. For the numerical analysis, a shell finite element containing electro-mechanical coupling effects to 
account for piezoelectric sensors was implemented in Abaqus using its UEL subroutine. The analyses and experiments 
were made for both the undamaged structure and a simulated damaged structure, with a hole drilled in its center. 

The resonance frequencies found by both the experimental and numerical results for the different level of damage 
studied did not change in a significant matter, expect for the first vibration mode, due to boundary condition effects. 
Some discrepancies between the shape of the frequency response functions found in the experiments and the 
implemented routine were found, but this fact was addressed due to some differences in the experiment and the 
numerical simulations as boundary conditions and mainly damping effects. Also, the FRFs found by the numerical 
model were close to the experimental data, proving the effective of the method to calculate the mechanical behavior of 
smart composites. 

The simulations of the piezoelectric sensors proved efficient in showing the potential such transducers have for 
SHM applications as, for the studied example, the results of direct difference in FRFs for the damaged and undamaged 
structures were better seem in the piezoelectric signals than in the accelerances. 

However, the results found some limitations in using the pure data from the frequency responses of structures as, 
except for some specific modes and point combinations; a small difference between the damaged and undamaged 
structures was observed. This fact happened especially in the numerical example as the simple drilling of a small hole in 
the structure cause a local change in the mass and stiffness of the model that is difficult to detect using global parameter 
such as FRFs. Not only that, the greatest change in the structure dynamics from damage is a change in damping, that 
was ignored in the numerical simulations due to those being undamped. 

This shows that reeling in pure FRF data is not enough for SHM technics, and more complex metrics based upon 
modal shapes, resonance peaks, damping, phase or its derivates needs to be used for better prediction of damage. 
Finally, it is noted that future works will make use of experiments with actual piezoelectric sensors on the structure for 
better comparison and validation of the finite element model. 
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