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Abstract. Mathematical modelling of fluid flow and heat transfer processes leads to systems of second order linear or 
non linear partial differential equations. For solving such systems of partial differential equations through the use of 
numerical methods such as finite elements is necessary to do the discretization process that transforms the original 
systems of equations, defined over a continuum domain, into a linear or non linear algebraic system of equations. Due 
to the characteristics of such methods for the partial differential equations domain as well for the equations themselves, 
generally the algebraic system that appears has the coefficient matrix with a very high sparsity. In this work we present 
new implementations for parallel processing of routines capable to solve large linear sparse systems with positive 
definite coefficient matrix, exploiting and preserving the initial sparsity. When split techniques such as the 
Characteristic Based Split (CBS) are employed, a Poisson equation for the pressure field is obtained. For this kind of 
equation, conjugate gradient methods are appropriated. In this work, it is used the conjugate gradient method for 
solution of large sparse linear systems running on multicore processors. 
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1. INTRODUCTION 

 
In the solution of fluid flows and heat transfer problems by numerical methods such as finite element method (FEM) 

and/or finite difference method (FDM), systems of partial differential equations are transformed to large and highly 
sparse systems of algebraic equations. More than ninety nine percent of the elements in the matrices are nulls, so some 
structured data is almost mandatory to prevent storage of zeros and to reduce cost of numerical solutions of the linear 
systems resulting. 

There are several iterative methods that can be used to solve linear systems, for example, Gauss-Seidel, Jacobi, 
SOR, SSOR and conjugate gradient methods. Campos-Silva & Aparecido (2003) presented results of data structure in 
the context of the Gauss-Seidel and SOR methods. Aparecido et al. (2011) presented data structure and algorithms to 
solve large sparse linear systems using conjugate gradient and preconditioned conjugate gradient methods. In both 
works were used serial processing. Aparecido et al. (2012) analyzed the use of the conjugate gradient method (CG) to 
solve large and sparse linear systems but running in parallel under the paradigm of shared memory. Particularly, to 
achieve that we used OpenMP – Open Multi-Processing (Chapman et al., 2008). In the present work we extend further 
the problem and algorithm presented by Aparecido et al. (2012) by increasing the problem size and extending the 
OpenMP parallel constructs. 

A set of linear systems similar to those that originate in three dimensional applications of FEM and/or FDM are 
solved by a CG algorithm running under OpenMP and the results of performance, speedup and efficiency of the method 
are presented and discussed. It has been considered linear problems with up to one hundred million of unknowns. 
 
2. SOLUTION OF LINEAR SYSTEMS AND METHODS FOR MINIMIZATION 
 

This paper is an extension to shared memory parallel processing from our previous paper on this subject (Aparecido 
et al., 2011). Here we shortened a little bit some mathematical details that can be found there. 

Consider the linear system 

bAx*                                                                                                                                                                     (1) 

where nnA  is the coefficient matrix and nb  the independent vector. Both are supposedly known. x* is the 
vector of unknowns or solution vector to be determined. 
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The above equation can be restructured as 

Axbr(x)                                                                                                                                                             (2) 

in which the solution vector x* was replaced by a generic vector x, so there will be a residual vector r(x). Of course, 
when x = x* the residue will be zero, r(x) = 0. Applying the rules of linearity, it is clear that the residue r(x) is linear 
with x, and thus infinitely differentiable, so )()( nC  

xr . 
Additionally, we can define a quadratic functional as follows 

bxAxxx
TT

2
1)(F  ,                                                                                                                                            (3) 

whose gradient and Hessian are 

r(x)bAx
x
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Having obtained the gradient and Hessian of the function F(x), one can use some method of minimization to obtain 
the position x* and the value of F(x*) at the minimum point. Note that at the minimum point g(x) = 0, r(x) = 0 and 
Ax* - b = 0. Therefore, calculation of the minimum point of the functional F(x), Eq. (3), corresponds to the solution of 
the linear system, Eq. (1). 

The Hessian matrix (G) in the case is the same matrix of coefficients, A, and it must be positive definite, to attend 
the second necessary condition for the occurrence of a strong minimum in a given position, and should also be 
symmetrical, since 
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3. METHOD OF CONJUGATE GRADIENTS (CG) 
 

A classical method of minimization that is most used in the solution of large sparse linear systems is the Conjugate 
Gradient Method. Different definitions of the functional F(x), Eq. (3), will lead to different variants of the method 
(Barret et al., 1994). In Aparecido et al. (2011) we give some details about those methods and its mathematical 
foundations. There are vast literature about conjugate gradient methods and solution of large sparse linear systems by 
using conjugate gradient methods, we can cite Golub and van Loan(1996), Golub and Meurant(1983), and Faber and 
Manteufel(1984). 

Doing so Aparecido et al. (2012) obtained an algorithm for the serial processing implementation of the Conjugate 
Gradient Method. 
 

Algorithm 1 – Method of Conjugate Gradients (CG) 
xo = initial vector 
 = stop parameter (positive and sufficiently small) 

 

 
o
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k = 0 
while 

 k = k + 1 
 if k = 1 
  

  else 
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






  

                          11   kkkk prp   
 end if 
 kk Apw   
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k
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wp
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

kα  

 xk = xk-1 + kpk 

 kkkk wrr  1  

 k
T
kk rr  

end while 
 

When Hestenes & Stiefel(1952) created the Conjugate Gradient Method, they presented formulation very similar to 
that shown above to the solution of linear systems. This methodology is suitable for solving large sparse linear systems, 
since do not perform computations “inside” the matrix A and thus avoids the phenomenon of fill-in common in direct 
methods. In the above algorithm the coefficient matrix A is used in only one matrix-vector product. Initially this method 
was designed as a direct method since, in exact arithmetic, the algorithm converges to the exact solution. However, in 
computer arithmetic, with round-off error, this finite termination in n steps is not guaranteed. On the other hand, for 
large linear systems a set of n iterations represent a high computational cost. Thus, for large linear systems, the 
conjugate gradient method is used with termination based on maximum number of iterations, usually much less than n, 
and in the value of the norm of the residue. The idea of considering the conjugate gradient method as iterative method 
was developed by Reid (1971). The use of iterative conjugate gradient method is useful; however the rate of 
convergence is critical to its success (van der Sluis and van der Vorst, 1992). 
 
4. METHOD OF CONJUGATE GRADIENTS (CG) FOR PARALLEL PROCESSING WITH SHARED 

MEMORY 
 

Also Aparecido et al. (2012) parallelized the Algorithm 1 that became Algorithm 2 aimed to run using OpenMP. For 
that case it was parallelized just the most computer intensive part of the algorithm that is the product matrix-vector Apk. 
 

Algorithm 2 – Method of Conjugate Gradients (CG) – Parallel OpenMP (Aparecido et al., 2012) 
xo = initial vector 
ε = stop parameter (positive and sufficiently small) 
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k = 0 
while || 
 k = k + 1 
 if k = 1 
  

  else 
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k








  

                 11   kkkk prp   
 end if 
 !Here starts parallel section 
 !$OMP PARALLEL DO SHARED(list-of-shared) PRIVATE(list-of-private) SCHEDULE(STATIC)    & 
 !$OMP NUM_THREADS(intNumThreads) DEFAULT(NONE) 
 kk Apw   
 !$OMP END PARALLEL DO 
 !Here finishes parallel section 
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
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 xk = xk-1 + αkpk 

 kkkk wrr  1  

 k
T
kk rr  

end while 
 

In the present work we extend further the parallelization presented by Aparecido et al. (2012). To do that we moved 
upwards the placing of PARALLEL SECTION beginning and moved downwards its end. Besides we introduced some 
parallel DO constructs to do some linear combination of vectors and computing some scalar products. Additionally was 
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necessary to introduce the SINGLE construct to avoid data corruption when different threads write to a given memory 
position. The resulting Algorithm 3 is as follows: 
 

Algorithm 3 – Method of Conjugate Gradients (CG) – Parallel OpenMP 
xo = initial vector 
ε = stop parameter (positive and sufficiently small) 

 

 
o

T
oo rr

 
k = 0 
while || 

      
2k

1k
k








  

 
 !$OMP PARALLEL SHARED(list-of-shared)  NUM_THREADS(intNumThreads) DEFAULT(NONE) 
 
 k = k + 1 
 if k = 1 
  !$OMP DO PRIVATE(list-of-private)  SCHEDULE(STATIC) 
         

  !$OMP END DO
  else 

  !$OMP DO PRIVATE(list-of-private)  SCHEDULE(STATIC) 
                       11   kkkk prp   
  !$OMP END DO 
 end if 

!$OMP DO PRIVATE(list-of-private)  SCHEDULE(STATIC) 
       kk Apw   
 !$OMP END DO 
 

!$OMP DO PRIVATE(list-of-private)  SCHEDULE(STATIC) REDUCTION(operator:variable) 
         k

T
kk wpγ  

 !$OMP END DO 
 
 !$OMP SINGLE 

       
k

1k

γ
ραk

  

 !$OMP END SINGLE 
 

!$OMP DO PRIVATE(list-of-private)  SCHEDULE(STATIC) REDUCTION(operator:variable) 
       xk = xk-1 + αkpk 

      kkkk wrr α1    

      k
T
kk rrρ  

 !$OMP END DO 
 
 !$OMP END PARALLEL 
end while 

 
Note that OpenMP is no verbose allowing with few lines of code to produce big computational effects. 

OpenMP have some constructs that are used do parallelize code (Chapman et al., 2008). OpenMP has a webpage 
http://openmp.org were information can be obtained. 

In the pseudo code above the main constructs are: 
 PARRALLEL – starts the parallel section creating some threads; 
 DO – starts the parallelization of the outermost loop inside the parallel construct; 
 SHARED(list-of-shared) – declares which computational entities (the list-of-shared) are shared among all 

threads; 
 PRIVATE(list-of-private) – declares which computational entities (the list-of-private) are not shared among all 
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threads having its own memory allocation for each thread; 
 SCHEDULE(STATIC) – indicates how the loop workload will be distributed among all threads. The clause 

STATIC means that the workload will be distributed equally; 
 NUM_THREADS(intNumThreads) – declares how many working threads are intended to be used. The aimed 

quantity of threads is equal to intNumThreads and must be less or equal to the maximum quantity of available 
threads for a given processor. 

 DEFAULT(NONE) – Means that no one default are allowed in that construct. 
 SINGLE – The code block inside a SINGLE construct will be computed by just one thread, the first that 

arrives. At the final of the construct there are implicit BARRIER. 
 

5. SOLUTION OF AN ELLIPTICAL EQUATION 
 

In many solutions of fluid flows and heat transfer equations by some numerical method, split techniques or 
fractional schemes are used in order to explore the parabolical, hyperbolical or elliptical nature of those equations. For 
example, in using the Galerkin finite element method stabilized by the Characteristic Based Split scheme (Lewis, 
Nithiarasu and Seetharamu, 2004), the velocity field is obtained explicitly and the pressure field is obtained implicitly 
by solving a Poisson equation that is an elliptical equation in its mathematical nature. That equation has the form: 
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where p is the pressure field, ),,( wvu  is an intermediate velocity field that does not satisfy the mass conservation and 

t  is the time step.  In a 3D flow, the discretized equation results in a very large system of linear equations like that 
defined in Eq. (1). And to obtain results in relatively short times, parallel processing can be employed. 
 
6. DEFINITION OF AN EXAMPLE CASE 
 

Here we use as example the same problem presented by Aparecido et al. (2012). Be the linear system Ax = b, 
where 
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if
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if
if

bA    (8) 

This is a positive definite and symmetric matrix inspired by heptadiagonal matrices that appear in the discretization, 
using a variety of methods, of the steady or unsteady Poisson partial differential equation, when defined over 
three-dimensional domains. The storage methodology used in this project is generic and can absorb various settings of 
matrices. The solution of similar type of linear systems, using some stationary methods and data structures like 
CRS - Compressed Row Storage was treated in Campos-Silva & Aparecido (2003). In Aparecido et al. (2011) was 
defined a data structure so called SCRS – Symmetric Compressed Row Storage aimed on saving some memory storage 
by exploiting the matrix symmetry. Also in this work we used SCRS. 
 
7. RESULTS AND DISCUSION 
 

Results presented in this paper were run in a desktop personal computer with a quad-core Intel i7 processor 
providing 8 threads. This type of computer uses three kinds of caches: L1, L2 and L3. So, the flow of data and 
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instructions from RAM to cores, back and forth, is complex and if the algorithm does not exploit adequately the 
characteristics of processor then computations would be inefficient. 

We solved the proposed sparse linear systems from 10 million until 100 million of unknowns. We developed two 
main codes: the first one running serial; the second running in parallel, OpenMP, with from 2 to 4 threads. We avoided 
using from 5 to 8 threads because Aparecido et al. (2012) showed that for that quantity of active threads the quad-core 
processor does not perform well running that algorithm. 

The parallel code running with 2 to 4 threads were developed using Algorithm 3 shown previously in this paper. 
The memory footprint for Algorithms 1, 2 and 3 were taken to be approximately equal to (60n+12nnz) bytes. Where 

n is the order of the matrix A and nnz is the number of non zero elements in it. Results for memory footprint are shown 
in Figure 1. One can see that memory footprint is linear with matrix A order. This characteristic can be used to define a 
sparse matrix: that its memory footprint be linear with its order. 
  

 
Figure 1 – Memory footprint for running the Conjugate Gradient Algorithms 1, 2 and 3. 

 
 In Figure 2 we show the number of iterations to achieve convergence under the stopping criteria 

1410 r . Generally, as expected when the order of the matrix A grows the number of iterations to achieve 
convergence also increases. It is notable that for 100 million of unknowns the algorithms spent just about 3500 
iterations to converge. 
 

 
Figure 2 – Number of iterations to achieve convergence under the criteria 1410 r  
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 In Figure 3 we can see that the best performance is reached when using 3 threads and the worst performance is  

 
obtained for 2 threads. Performance for 4 threads is similar to that one obtained for 3 threads. Relatively, to the size of 
the problem, n, performance remains almost constant. 

Similarly, to Figure 3 the best results obtained for speedup, Figure 4, were obtained using 3 threads and the worst 
were obtained using 2 threads. Relatively, to the size of the problem, n, the speedup grows slightly as the problem size 
grows. All curves generally presents a wavy behavior that is caused by data and instructions flow, back and forth, from 
RAM to cores, passing through caches (Wiggers et al., 2007). 
 

 
Figure 4 – Speedup as function of matrix order and parameterized by the number of threads. 

 
The best efficiency obtained in the parallel multithreading is achieved using 2 threads, about 70%, as seen in 

Figure 5. Best performance and speedup happen for 3 threads but efficiency happens for 2 threads. The efficiency for 3 
and 4 threads are about 50% and 38%, respectively. 

 

Figure 3 – Performance as function of matrix order and parameterized by the number of threads. 
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Figure 5 – Efficiency as function of matrix order and parameterized by the number of threads. 
 
 In Figure 6 are shown the results obtained using Algorithms 3. Note that the norm of the residual goes down 
until reaching the stopping criteria that was 1410 r . For 100 million of unknowns were necessary about 3200 
iterations to reach convergence. The wall time spent to solve the problem with 10 million unknowns using 2 threads 
spent about 238s and to solve with 100 million unknowns, 2 threads, spent about 5099s. We speculate that in the same 
computer one can reach until about 150 million of unknowns, running in about 8500s. 
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Figure 6 – L2 norm of the residual as function of the number of iterations. 

 

8. CONCLUSION 
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parallel processing theory and with OpenMP standards; 
 Parallelized Conjugate Gradient Algorithm 3 presented here worked well and was able to solve sparse linear 

systems with up to 100 million of unknowns in about 5100 seconds; 
 The best performance and speedup were obtained using 3 threads; 
 The best efficiency was obtained using 2 threads. 
 Maybe, Algorithm 3 could be improved through a cautions profiling and rearranging some parts of it; 
 Algorithm 3 and/or the i7 processor does not scales so well and thus efficiency goes down quickly as the 

number of threads increases. 
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