

22nd International Congress of Mechanical Engineering (COBEM 2013)
November 3-7, 2013, Ribeirão Preto, SP, Brazil

Copyright © 2013 by ABCM

SOLVING LARGE SPARSE LINEAR SYSTEMS RESULTING FROM

FLUID MECHANICS FLOW EQUATIONS ON MULTICORE

PROCESSORS

João Batista Aparecido

Natallie Zilio de Souza

João Batista Campos Silva
Faculdade de Engenharia de Ilha Solteira – UNESP, Depto. Engenharia Mecânica. Av. Brasil Centro, 56, CEP 15385-000,
Ilha Solteira - SP.
jbaparecido@dem.feis.unesp.br
natalliezilio@yahoo.com.br
jbcampos@dem.feis.unesp.br

Abstract. Mathematical modelling of fluid flow and heat transfer processes leads to systems of second order linear or
non linear partial differential equations. For solving such systems of partial differential equations through the use of
numerical methods such as finite elements is necessary to do the discretization process that transforms the original
systems of equations, defined over a continuum domain, into a linear or non linear algebraic system of equations. Due
to the characteristics of such methods for the partial differential equations domain as well for the equations themselves,
generally the algebraic system that appears has the coefficient matrix with a very high sparsity. In this work we present
new implementations for parallel processing of routines capable to solve large linear sparse systems with positive
definite coefficient matrix, exploiting and preserving the initial sparsity. When split techniques such as the
Characteristic Based Split (CBS) are employed, a Poisson equation for the pressure field is obtained. For this kind of
equation, conjugate gradient methods are appropriated. In this work, it is used the conjugate gradient method for
solution of large sparse linear systems running on multicore processors.

Keywords: Iterative Solution, Sparse System, Conjugate Gradient, Parallel Processing, Multicore.

1. INTRODUCTION

In the solution of fluid flows and heat transfer problems by numerical methods such as finite element method (FEM)

and/or finite difference method (FDM), systems of partial differential equations are transformed to large and highly
sparse systems of algebraic equations. More than ninety nine percent of the elements in the matrices are nulls, so some
structured data is almost mandatory to prevent storage of zeros and to reduce cost of numerical solutions of the linear
systems resulting.

There are several iterative methods that can be used to solve linear systems, for example, Gauss-Seidel, Jacobi,
SOR, SSOR and conjugate gradient methods. Campos-Silva & Aparecido (2003) presented results of data structure in
the context of the Gauss-Seidel and SOR methods. Aparecido et al. (2011) presented data structure and algorithms to
solve large sparse linear systems using conjugate gradient and preconditioned conjugate gradient methods. In both
works were used serial processing. Aparecido et al. (2012) analyzed the use of the conjugate gradient method (CG) to
solve large and sparse linear systems but running in parallel under the paradigm of shared memory. Particularly, to
achieve that we used OpenMP – Open Multi-Processing (Chapman et al., 2008). In the present work we extend further
the problem and algorithm presented by Aparecido et al. (2012) by increasing the problem size and extending the
OpenMP parallel constructs.

A set of linear systems similar to those that originate in three dimensional applications of FEM and/or FDM are
solved by a CG algorithm running under OpenMP and the results of performance, speedup and efficiency of the method
are presented and discussed. It has been considered linear problems with up to one hundred million of unknowns.

2. SOLUTION OF LINEAR SYSTEMS AND METHODS FOR MINIMIZATION

This paper is an extension to shared memory parallel processing from our previous paper on this subject (Aparecido
et al., 2011). Here we shortened a little bit some mathematical details that can be found there.

Consider the linear system

bAx* (1)

where nnA is the coefficient matrix and nb the independent vector. Both are supposedly known. x* is the
vector of unknowns or solution vector to be determined.

ISSN 2176-5480

8266

mailto:jbaparecido@dem.feis.unesp.br
mailto:jbaparecido@dem.feis.unesp.br
mailto:natalliezilio@yahoo.com.br
mailto:natalliezilio@yahoo.com.br
mailto:jbcampos@dem.feis.unesp.br
mailto:jbcampos@dem.feis.unesp.br

J. B. Aparecido, N. Z. de Souza and J. B. Campos-Silva
Solving Large Sparse Linear Systems Resulting From Fluid Mechanics Flow Equations On Multicore Processors

The above equation can be restructured as

Axbr(x)  (2)

in which the solution vector x* was replaced by a generic vector x, so there will be a residual vector r(x). Of course,
when x = x* the residue will be zero, r(x) = 0. Applying the rules of linearity, it is clear that the residue r(x) is linear
with x, and thus infinitely differentiable, so)()(nC  

xr .
Additionally, we can define a quadratic functional as follows

bxAxxx
TT

2
1)(F  , (3)

whose gradient and Hessian are

r(x)bAx
x

x
g(x) 






)(F
, (4)

A
x

g(x)
xG 




)(. (5)

Having obtained the gradient and Hessian of the function F(x), one can use some method of minimization to obtain
the position x* and the value of F(x*) at the minimum point. Note that at the minimum point g(x) = 0, r(x) = 0 and
Ax* - b = 0. Therefore, calculation of the minimum point of the functional F(x), Eq. (3), corresponds to the solution of
the linear system, Eq. (1).

The Hessian matrix (G) in the case is the same matrix of coefficients, A, and it must be positive definite, to attend
the second necessary condition for the occurrence of a strong minimum in a given position, and should also be
symmetrical, since

)(G
xx

)F(
xx

)F()(G ji
ij

2

ji

2

ij x
xx

x 








 . (6)

3. METHOD OF CONJUGATE GRADIENTS (CG)

A classical method of minimization that is most used in the solution of large sparse linear systems is the Conjugate
Gradient Method. Different definitions of the functional F(x), Eq. (3), will lead to different variants of the method
(Barret et al., 1994). In Aparecido et al. (2011) we give some details about those methods and its mathematical
foundations. There are vast literature about conjugate gradient methods and solution of large sparse linear systems by
using conjugate gradient methods, we can cite Golub and van Loan(1996), Golub and Meurant(1983), and Faber and
Manteufel(1984).

Doing so Aparecido et al. (2012) obtained an algorithm for the serial processing implementation of the Conjugate
Gradient Method.

Algorithm 1 – Method of Conjugate Gradients (CG)
xo = initial vector
 = stop parameter (positive and sufficiently small)

o

T
oo rr

k = 0
while 

 k = k + 1
 if k = 1

 else

2k

1k
k










 11   kkkk prp 
 end if
 kk Apw 

ISSN 2176-5480

8267

22nd International Congress of Mechanical Engineering (COBEM 2013)
November 3-7, 2013, Ribeirão Preto, SP, Brazil

k

T

k

1k

wp




kα

 xk = xk-1 + kpk

 kkkk wrr  1

 k
T
kk rr

end while

When Hestenes & Stiefel(1952) created the Conjugate Gradient Method, they presented formulation very similar to
that shown above to the solution of linear systems. This methodology is suitable for solving large sparse linear systems,
since do not perform computations “inside” the matrix A and thus avoids the phenomenon of fill-in common in direct
methods. In the above algorithm the coefficient matrix A is used in only one matrix-vector product. Initially this method
was designed as a direct method since, in exact arithmetic, the algorithm converges to the exact solution. However, in
computer arithmetic, with round-off error, this finite termination in n steps is not guaranteed. On the other hand, for
large linear systems a set of n iterations represent a high computational cost. Thus, for large linear systems, the
conjugate gradient method is used with termination based on maximum number of iterations, usually much less than n,
and in the value of the norm of the residue. The idea of considering the conjugate gradient method as iterative method
was developed by Reid (1971). The use of iterative conjugate gradient method is useful; however the rate of
convergence is critical to its success (van der Sluis and van der Vorst, 1992).

4. METHOD OF CONJUGATE GRADIENTS (CG) FOR PARALLEL PROCESSING WITH SHARED

MEMORY

Also Aparecido et al. (2012) parallelized the Algorithm 1 that became Algorithm 2 aimed to run using OpenMP. For
that case it was parallelized just the most computer intensive part of the algorithm that is the product matrix-vector Apk.

Algorithm 2 – Method of Conjugate Gradients (CG) – Parallel OpenMP (Aparecido et al., 2012)
xo = initial vector
ε = stop parameter (positive and sufficiently small)

o

T
oo rr

k = 0
while ||
 k = k + 1
 if k = 1

 else

2k

1k
k










 11   kkkk prp 
 end if
 !Here starts parallel section
 !$OMP PARALLEL DO SHARED(list-of-shared) PRIVATE(list-of-private) SCHEDULE(STATIC) &
 !$OMP NUM_THREADS(intNumThreads) DEFAULT(NONE)
 kk Apw 
 !$OMP END PARALLEL DO
 !Here finishes parallel section

k

T

k

1k

wp




kα

 xk = xk-1 + αkpk

 kkkk wrr  1

 k
T
kk rr

end while

In the present work we extend further the parallelization presented by Aparecido et al. (2012). To do that we moved
upwards the placing of PARALLEL SECTION beginning and moved downwards its end. Besides we introduced some
parallel DO constructs to do some linear combination of vectors and computing some scalar products. Additionally was

ISSN 2176-5480

8268

J. B. Aparecido, N. Z. de Souza and J. B. Campos-Silva
Solving Large Sparse Linear Systems Resulting From Fluid Mechanics Flow Equations On Multicore Processors

necessary to introduce the SINGLE construct to avoid data corruption when different threads write to a given memory
position. The resulting Algorithm 3 is as follows:

Algorithm 3 – Method of Conjugate Gradients (CG) – Parallel OpenMP
xo = initial vector
ε = stop parameter (positive and sufficiently small)

o

T
oo rr

k = 0
while ||

2k

1k
k










 !$OMP PARALLEL SHARED(list-of-shared) NUM_THREADS(intNumThreads) DEFAULT(NONE)

 k = k + 1
 if k = 1
 !$OMP DO PRIVATE(list-of-private) SCHEDULE(STATIC)

 !$OMP END DO
 else

 !$OMP DO PRIVATE(list-of-private) SCHEDULE(STATIC)
 11   kkkk prp 
 !$OMP END DO
 end if

!$OMP DO PRIVATE(list-of-private) SCHEDULE(STATIC)
 kk Apw 
 !$OMP END DO

!$OMP DO PRIVATE(list-of-private) SCHEDULE(STATIC) REDUCTION(operator:variable)
 k

T
kk wpγ

 !$OMP END DO

 !$OMP SINGLE

k

1k

γ
ραk



 !$OMP END SINGLE

!$OMP DO PRIVATE(list-of-private) SCHEDULE(STATIC) REDUCTION(operator:variable)
 xk = xk-1 + αkpk

 kkkk wrr α1  

 k
T
kk rrρ

 !$OMP END DO

 !$OMP END PARALLEL
end while

Note that OpenMP is no verbose allowing with few lines of code to produce big computational effects.

OpenMP have some constructs that are used do parallelize code (Chapman et al., 2008). OpenMP has a webpage
http://openmp.org were information can be obtained.

In the pseudo code above the main constructs are:
 PARRALLEL – starts the parallel section creating some threads;
 DO – starts the parallelization of the outermost loop inside the parallel construct;
 SHARED(list-of-shared) – declares which computational entities (the list-of-shared) are shared among all

threads;
 PRIVATE(list-of-private) – declares which computational entities (the list-of-private) are not shared among all

ISSN 2176-5480

8269

http://openmp.org/
http://openmp.org/

22nd International Congress of Mechanical Engineering (COBEM 2013)
November 3-7, 2013, Ribeirão Preto, SP, Brazil

threads having its own memory allocation for each thread;
 SCHEDULE(STATIC) – indicates how the loop workload will be distributed among all threads. The clause

STATIC means that the workload will be distributed equally;
 NUM_THREADS(intNumThreads) – declares how many working threads are intended to be used. The aimed

quantity of threads is equal to intNumThreads and must be less or equal to the maximum quantity of available
threads for a given processor.

 DEFAULT(NONE) – Means that no one default are allowed in that construct.
 SINGLE – The code block inside a SINGLE construct will be computed by just one thread, the first that

arrives. At the final of the construct there are implicit BARRIER.

5. SOLUTION OF AN ELLIPTICAL EQUATION

In many solutions of fluid flows and heat transfer equations by some numerical method, split techniques or
fractional schemes are used in order to explore the parabolical, hyperbolical or elliptical nature of those equations. For
example, in using the Galerkin finite element method stabilized by the Characteristic Based Split scheme (Lewis,
Nithiarasu and Seetharamu, 2004), the velocity field is obtained explicitly and the pressure field is obtained implicitly
by solving a Poisson equation that is an elliptical equation in its mathematical nature. That equation has the form:

)(1
2

2

2

2

2

2

z
w

y
v

x
u

tz
p

y
p

x
p































. (7)

where p is the pressure field,),,(wvu is an intermediate velocity field that does not satisfy the mass conservation and

t is the time step. In a 3D flow, the discretized equation results in a very large system of linear equations like that
defined in Eq. (1). And to obtain results in relatively short times, parallel processing can be employed.

6. DEFINITION OF AN EXAMPLE CASE

Here we use as example the same problem presented by Aparecido et al. (2012). Be the linear system Ax = b,
where

n.1,2,...,ji,1/i;band

,0
)nint(ij,1
)nint(ij,1

1ij,1
ji,6

1ji,1
)nint(ji,1
)nint(ji,1

Awhere][b],[A i

3
2

3
1

3
1

3
2

ji,iji, 



































otherwise
if
if
if
if
if
if
if

bA (8)

This is a positive definite and symmetric matrix inspired by heptadiagonal matrices that appear in the discretization,
using a variety of methods, of the steady or unsteady Poisson partial differential equation, when defined over
three-dimensional domains. The storage methodology used in this project is generic and can absorb various settings of
matrices. The solution of similar type of linear systems, using some stationary methods and data structures like
CRS - Compressed Row Storage was treated in Campos-Silva & Aparecido (2003). In Aparecido et al. (2011) was
defined a data structure so called SCRS – Symmetric Compressed Row Storage aimed on saving some memory storage
by exploiting the matrix symmetry. Also in this work we used SCRS.

7. RESULTS AND DISCUSION

Results presented in this paper were run in a desktop personal computer with a quad-core Intel i7 processor
providing 8 threads. This type of computer uses three kinds of caches: L1, L2 and L3. So, the flow of data and

ISSN 2176-5480

8270

J. B. Aparecido, N. Z. de Souza and J. B. Campos-Silva
Solving Large Sparse Linear Systems Resulting From Fluid Mechanics Flow Equations On Multicore Processors

instructions from RAM to cores, back and forth, is complex and if the algorithm does not exploit adequately the
characteristics of processor then computations would be inefficient.

We solved the proposed sparse linear systems from 10 million until 100 million of unknowns. We developed two
main codes: the first one running serial; the second running in parallel, OpenMP, with from 2 to 4 threads. We avoided
using from 5 to 8 threads because Aparecido et al. (2012) showed that for that quantity of active threads the quad-core
processor does not perform well running that algorithm.

The parallel code running with 2 to 4 threads were developed using Algorithm 3 shown previously in this paper.
The memory footprint for Algorithms 1, 2 and 3 were taken to be approximately equal to (60n+12nnz) bytes. Where

n is the order of the matrix A and nnz is the number of non zero elements in it. Results for memory footprint are shown
in Figure 1. One can see that memory footprint is linear with matrix A order. This characteristic can be used to define a
sparse matrix: that its memory footprint be linear with its order.

Figure 1 – Memory footprint for running the Conjugate Gradient Algorithms 1, 2 and 3.

 In Figure 2 we show the number of iterations to achieve convergence under the stopping criteria

1410 r . Generally, as expected when the order of the matrix A grows the number of iterations to achieve
convergence also increases. It is notable that for 100 million of unknowns the algorithms spent just about 3500
iterations to converge.

Figure 2 – Number of iterations to achieve convergence under the criteria 1410 r

Order of the matrix, n

M
a

x
im

u
m

n
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

2E+07 4E+07 6E+07 8E+07 1E+08
1000

1500

2000

2500

3000

3500

4000

Order of the matrix, n

A
lg

o
ri

th
m

m
e

m
o

ry
fo

o
tp

ri
n

t
(M

B
y
te

s
)

0 2E+07 4E+07 6E+07 8E+07 1E+08
0

2000

4000

6000

8000

10000

12000

ISSN 2176-5480

8271

22nd International Congress of Mechanical Engineering (COBEM 2013)
November 3-7, 2013, Ribeirão Preto, SP, Brazil

 In Figure 3 we can see that the best performance is reached when using 3 threads and the worst performance is

obtained for 2 threads. Performance for 4 threads is similar to that one obtained for 3 threads. Relatively, to the size of
the problem, n, performance remains almost constant.

Similarly, to Figure 3 the best results obtained for speedup, Figure 4, were obtained using 3 threads and the worst
were obtained using 2 threads. Relatively, to the size of the problem, n, the speedup grows slightly as the problem size
grows. All curves generally presents a wavy behavior that is caused by data and instructions flow, back and forth, from
RAM to cores, passing through caches (Wiggers et al., 2007).

Figure 4 – Speedup as function of matrix order and parameterized by the number of threads.

The best efficiency obtained in the parallel multithreading is achieved using 2 threads, about 70%, as seen in

Figure 5. Best performance and speedup happen for 3 threads but efficiency happens for 2 threads. The efficiency for 3
and 4 threads are about 50% and 38%, respectively.

Figure 3 – Performance as function of matrix order and parameterized by the number of threads.

Matrix order, n

P
e

rf
o

rm
a

n
c
e

(M
F

lo
p

/s
)

0 2E+07 4E+07 6E+07 8E+07 1E+08
1500

1550

1600

1650

1700

1750

1800

Number of threads = 2

Number of threads = 3

Number of threads = 4

Matrix order, n

S
p

e
e

d
u

p

0 2E+07 4E+07 6E+07 8E+07 1E+08
1.2

1.3

1.4

1.5

1.6

1.7

1.8

Number of threads = 2

Number of threads = 3

Number of threads = 4

ISSN 2176-5480

8272

J. B. Aparecido, N. Z. de Souza and J. B. Campos-Silva
Solving Large Sparse Linear Systems Resulting From Fluid Mechanics Flow Equations On Multicore Processors

Figure 5 – Efficiency as function of matrix order and parameterized by the number of threads.

 In Figure 6 are shown the results obtained using Algorithms 3. Note that the norm of the residual goes down
until reaching the stopping criteria that was 1410 r . For 100 million of unknowns were necessary about 3200
iterations to reach convergence. The wall time spent to solve the problem with 10 million unknowns using 2 threads
spent about 238s and to solve with 100 million unknowns, 2 threads, spent about 5099s. We speculate that in the same
computer one can reach until about 150 million of unknowns, running in about 8500s.

Iteration number

L 2
no

rm
of

th
e

re
si

du
al

0 500 1000 1500 2000 2500 3000 3500
10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

101

n = 100 millions

n = 50 millions

n = 10 millions

Figure 6 – L2 norm of the residual as function of the number of iterations.

8. CONCLUSION

 From the results and reasoning displayed before we can conclude that:

 OpenMP is a non verbose application programming interface that allows with few lines of code to produce
code parallelization. Naturally, the code that goes inside an OpenMP construct must be in according with

Matrix order, n

E
ff

ic
ie

n
c
y

0 2E+07 4E+07 6E+07 8E+07 1E+08
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of threads = 2

Number of threads = 3

Number of threads = 4

ISSN 2176-5480

8273

22nd International Congress of Mechanical Engineering (COBEM 2013)
November 3-7, 2013, Ribeirão Preto, SP, Brazil

parallel processing theory and with OpenMP standards;
 Parallelized Conjugate Gradient Algorithm 3 presented here worked well and was able to solve sparse linear

systems with up to 100 million of unknowns in about 5100 seconds;
 The best performance and speedup were obtained using 3 threads;
 The best efficiency was obtained using 2 threads.
 Maybe, Algorithm 3 could be improved through a cautions profiling and rearranging some parts of it;
 Algorithm 3 and/or the i7 processor does not scales so well and thus efficiency goes down quickly as the

number of threads increases.

9. ACKNOWLEDGEMENTS

The authors would like to thank Fundação de Amparo a Pesquisa do Estado de São Paulo - FAPESP for

supporting our projects in the last two decades.

10. REFERENCES

Aparecido, J. B., Souza, N. Z. and Campos-Silva, J. B., 2012. “Conjugate Gradient Method for Solving Large Sparse

Linear Systems on Multi-Core Processors”. In: 10th World Congress on Computational Mechanics, São Paulo.
10th World Congress on Computational Mechanics, Belo Horizonte, MG: ABMEC, 2012. v. 1.

Aparecido, J. B., Souza, N. Z. and Campos-Silva, J. B., 2011. “Data Structure and the Pre-Conditioned Conjugate
Gradient Method for Solving Large Sparse Linear Systems with Symmetric Positive Definite Matrix”. Proceedings
of CILAMCE-2011, Ouro Preto.

Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J. M., Dongarra, J., Eikhout, V., Pozo, R. , Romine, C. and Van
Der Vorst, H., 1994. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, PA.

Campos-Silva, J. B. and Aparecido, J. B., 2003. “Data structure and stationary iterative solution methods for large
sparse linear systems”. Proceedings of the 17th International Congress of Mechanical Engineering – COBEM
2003, Paper 0036, November 10-14, São Paulo, SP.

Chapman, B., Jost, G. and van der Pas, R., 2008. Using OpenMP, The MIT Press, Cambridge, 2008.
Faber, V. and Manteuffel, T., 1984. “Necessary and Sufficient Conditions for the Existence of a Conjugate Gradient

Method”, SIAM J. Numer. Anal., 21, pp. 315-339, 1984.
Golub, G. H. and Meurant, G., 1983. “Résolution Numérique des Grandes Systèmes Linéaires”, Collection de la

Direction des Etudes et Recherches de l´Electricité de France, vol. 49, Eyolles, Paris.
Golub, G. H. and van Loan, C. F., 1996. Matrix Computations, Third Edition, The John Hopkins University Press.
Hestenes, M. R. and Stiefel, E., 1952. “Methods of conjugates gradients for solving linear systems”, J. Res. Nat. Bur.

Standards, 49, pp. 409-436.
Lewis, R. W., Nithiarasu, P., Seetharamu, K. N., 2004. Fundamentals of the finite element method for heat and fluid

flow. John Wiley, 335 p.
Reid, J., 1971. “On the method of conjugate gradients for the solution of large sparse systems of linear equations”, in

Large Sparse Sets of Linear Equations, Ed. J. Reid, Academic Press, London, pp. 231-254.
Van Der Sluis, A. and Van Der Vorst, H., 1992. “The Rate of Convergence of Conjugate Gradients”, Numer. Math., 48,

pp. 543-560.
Wiggers, W.A., Bakker, V., Kokkeler, A. B. J. and Smit, G. J. M., 2007. “Implementing the conjugate gradient

algorithm on multi-core systems”, In: International Symposium on System-on-Chip, SoC, Tampere, Finland.

11. RESPONSIBILITY NOTICE

The authors are the only responsible for the printed material included in this paper.

ISSN 2176-5480

8274

http://lattes.cnpq.br/2164394495032150
http://lattes.cnpq.br/2164394495032150

