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Abstract. - This article presents an optimized formulation applied to the acoustic waves calculation in frequency 

domain using Finites Differences Methods (FDM). First of all, shows the governing equations, the formulation of FDM 

with the discretized domain and the resolution of the system based in the LU decomposition. Next a first optimization 

that works with the diagonal band and transforms the original matrix in a rectangular one is implemented, developing 

news triangulation algorithms. A second optimization is done removing zeros still left in the main diagonal band. In the 

tests is shown an example with the comparison of the memory gain, computational time and reduced memory between 
the standard formulation and the first and the second optimizations. Finally show up the computational gains in time 

and memory to the calculation of the inverse matrix. It can be noted how the optimizations made the problem much 

more active and possible to be calculated using less memory and computational time. 
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1. INTRODUTION 

 

 The Finite Difference Method is widely used to solve acoustic problems in the frequency domain due to its 

simplicity, practical and easy formulation. However, the size of the generated matrices and the computational time 

grows exponentially with the mesh. Also, this disadvantages grow when this technique is applied to  inverse problems 
in geophysical to determine the subsurfaces, in order to study the existence of oil reservoirs (Pratt, R.G. and M. H. 

Worthington, 1990). Some strategies are adopted to minimize these disadvantages.  

 This article presents numerical algorithms to solve the wave acoustic problem in frequency staggered-grid 

finite difference scheme. Our main motivation is to reduce the size of the system solver and the CPU time. Our goal is  

to provide an optimized formulation of the Finite Difference Methods in the frequency domain, adopting two 

optimizations that transform the original square and sparse matrix, in a rectangular one. Zeros are not stored. Some 

optimized algorithms are developed from solvers of LU decomposition to enhance the existing methods in order to 

minimize the errors associated with, improving the quality of the numerical results and reducing its computational 

effort.  Also a non reflecting boundary technique is applied to reduce the side effects. Clayton and Engquist (1977) 

proposed the Absorbing Boundary Condition (ABC) technique by applying a one-way wave equation in the boundary 

region, which proved to be efficient for events not at shallow angles on the contour. The ABC method is applied  and 
optimized aiming to reduce wave reflection at the borders, with results shown in terms of the total energy for “infinite” 

and nonreflecting models for varying absorbing layers. Results are shown in terms of the time  and the size of the 

matrix comparing with the standard one.  

 First the acoustic wave problem formulation is presented and also the ABC Boundary non reflecting method. In 

addition, the Finite Difference equations are deduced and the system is showed. Later, the first and second optimization 

in order to reduces the size of the stored matrix and the time computation are presented. Finally through two examples 

one can see the percentage of the gain for memory and computation comparing with the standard method. 

 Some examples show the memory and computational gain obtained. 
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2. PROBLEM FORMULATION 

 

 The wave equation in time domain in two dimensions is written below : 

 

                                                                                                                                           

(1) 

 

where p is the pressure field and c is the speed of pressure wave like space function. 

 To solve it in the frequency domain, the Fourier Transform (Kreyszig (1993)) must be used in the above 

equation to pass it from the time domain to the frequency domain. Thus, one obtains  (Durran 1989): 

 

                                                                                                                                             

(2) 

 
Where:  . 
 

 The equation can be rearranged replacing the wave number  and adding source term . Thus, one 

obtains the following equation: 
 

                                                                           

(3) 

 

 Finding the solution of the equation above without reflections at the boundaries, it used the follow absorption 

Boundary, called ABC (Absorving Boundary Condiction) (Clayton and Engquist (1979)):   
 

                                                                                                                                                 

(4) 

 

 Where n is the normal direction to the edge that applies the condition and i is the unit complex. 

 

3.  FINITE DIFFERENCES METHODS AND SPATIAL DISCRETIZATION 

 

 To solve the Helmholtz equation by the FDM, it´s necessary to discretize the domain with Nx points in the x 

direction uniformly distant of Dx and Ny points in the y direction uniformly distant of Dy, as shown in Fig. 1 (Ajo-

Franklin (2005)): 

                                                                

 

 

 

 

 

 

 

 

 

 

 

Figure 1  - Rectangular domain discretized by FDM. 

 
 The second derivate in relation to the x directed is approximated by the expression:  

 

                                                                                                                                      (5) 

 

npy point 

npx points 
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that ∆x is the spacing in x direction. 

 Using this approximation it is possible to rewrite the Helmholtz equation as follows: 

 

                                                     

(6) 

 

 With the derivatives in the ABC equation, the equation to the boundaries of the domain is expressed as: 

 

                                                                                                                                         

(7) 

 

 So, assuming a 4 x 4 domain, a matrix is generated (see Fig. 2): 

 

 
 

Figure 2 - Coefficients matrix generated by the Finite Difference Method 

 

that X refers to real numbers and Xi to complex numbers, due to application of ABC. 

Note that the above matrix is a sparse matrix with the order of (npx.npy, anpx.npy). The bandwidth is (2npx+1) 
size, for the node´s domain relates with its neighboring, the right and left and the upper and lower ones, according to the 

diagram showed in Fig. 3: 

 

 
 

Figure 3 - Relationship of node i with its neighbors 

 
The complex numbers Xi come from the application of ABC technique. The frequency appears in the diagonal, 

só that, changing the frequency, just the diagonal is changed. 

Assembling to a desired frequency, the coefficients' matrix A and the independent terms' vector b, form a 

system.  The vector b represents the source point. A common technique to compute inverse problems is to vary the 

source position, and solving the system repeated times. The matrix A remains constant. 

In Inverse geophysics problems, the system (8) has to be solved many times for different values of b, without 

changing A. For this purpose LU factorization is indicated (Press et alii (2007)), which transforms the original matrix A 

in a upper triangular matrix and lower triangular matrix (9) as follows: 

i 

i+1 i-1 

i+npx 

i-npx 
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A.x = b                                                                                                                                                                 (8) 

 

A = L.U                                                                                                                                                                (9) 

 

L.U.x = b                                                                                                                                                             

(10) 

 

L.y = b                                                                                                                                                                

(11) 

 
U.x = y                                                                                                                                                                

(12) 

 

The triangularization of A is made just once. The value of b are the columns of the Identity matrix, computing 

each column of the Inverse matrix. The system is quickly solved by backward (12) and forward substitution (11). 

 

4. FIRST OPTIMIZATION 

 

The matrix A is sparse and more then 90% of its elements are zeros Thus, in order to optimized the procedure a 

first otimization was done  to reduce the space memory and the computational time required, and consists in store the 

original square matrix in a rectangular reduced one of the order (npx.npy, 2npx+1), and eliminating the zero terms, as 
follow system (see fig.4) 

 

 
 

Figure 4 - Reduced matrix after first optimization 

 

 Note that the main diagonal was stored in the middle column and the original columns are now on the diagonal 

of the reduced matrix. 

 Then, a triangulation algorithm that works with the reduced matrix was implemented. The results of the 

application of these algorithms is a matrix in order of (npx.npy,2npx+1), also reduced, and has the terms of the matrices 

L and U respectivaly, as one can see on fig. 5: 
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Figure 5 - Matrix that contains the matrices L and U. 

 

Even reducing the size of the matrix, one can see that some columns of A are zeros. A second optimization has 

to be made in an reduced inverse matrix, removing all the columns formed by zeros, in consequence, the obtained 

matrix, with just 5 columns and 2.npx+1 lines.  

  

5. TESTS 

 

 A program was implemented in Fortran 90, that incorporates algorithm for the solution of the sparse reduced 

matrices and compares with the standard LU factorization algorithm. The processing time was measured and the 
numbers of operations was evaluated and compared. 

 Table 1 shows the amount of memory occupied. On the first column, one can see the size of the domain, and on 

the second the size of the entire standard matrix. The third and fourth columns show the size of the matrix using the first 

and second optimization and then three last columns shows the gain comparing the various the standard, first and 

second optimizations. One can see the percentage of the space memory reduced by the optimizations. 

 

Table 1: Amount of memory dispended and the space of memory gain by the optimizations. 

 

 
Domain 

Matrix size 
Standard 

(Str) 

Size of the 
1th opt 

Size of the 
2nd opt 

standard vs 
1th opt (%) 

1th vs 2nd 
opt (%) 

2nd vs 
standard (%) 

5 25x25 25x11 25x5 56 54,55 80,00 
10 100X100 100x21 100x5 79 76,19 95,00 

15 225x225 225x31 225x5 86,22 83,87 97,78 

20 400x400 400x41 400x5 89,75 87,80 98,75 

25 625x625 625x51 625x5 91,84 90,20 99,20 

30 900x900 900x61 900x5 93,22 91,80 99,44 

35 1225x1225 1225x71 1225x5 94,20 92,96 99,59 

40 1600x1600 1600x81 1600x5 94,94 93,83 99,69 

45 2025x2025 2025x91 2025x5 95,51 94,51 99,75 

50 2500x2500 2500x101 2500x5 95,96 95,05 99,80 

55 3025x3025 3025x111 3025x5 96,33 95,50 99,83 

60 3600x3600 3600x121 3600x5 96,64 95,87 99,86 

65 4225x4225 4225x131 4225x5 96,90 96,18 99,88 

70 4900x4900 4900x141 4900x5 97,12 96,45 99,90 

75 5625x5625 5625x151 5625x5 97,32 96,69 99,91 

80 6400x6400 6400x161 6400x5 97,48 96,89 99,92 

85 7225x7225 7225x171 7225x5 97,63 97,08 99,93 

90 8100x8100 8100x181 8100x5 97,76 97,24 99,94 

95 9025x9025 9025x191 9025x5 97,88 97,38 99,94 
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100 10000x10000 10000x201 10000x5 97,99 97,51 99,95 

105 11025x11025 11025x211 11025x5 98,09 97,63 99,95 

110 12100x12100 12100x221 12100x5 98,17 97,74 99,96 

 

 Table 2 shows the processing time in seconds. On the second column, one can see the time required to solve 

the standard method, and on the third and fourth columns, the computational time for the first and second optimization.  

The last two columns show a comparison between the first and second optimization with the standard end from each 

other. It can be seen that the gain increases exponentially and, for example, for a domain with 110x110 nodes, the 2nd 

optimization is 99,81% faster than the standard on. 

 
Table 2: Processing Time with the comparison of  the computational time gain. 

 

Domain Str time (s) Time 1th opt Time 2nd opt Str vs 2nd opt 1th vs 2nd opt 
5 0 0 0 91,67 0,00 

10 0 0 0 97,47 0,00 
15 0 0 0 98,14 0,00 
20 0,03 0 0 98,75 0,00 
25 0,12 0,01 0,01 99,19 33,33 
30 0,79 0,02 0,02 99,37 41,67 
35 3,22 0,06 0,04 99,47 26,32 
40 9,6 0,12 0,07 99,53 29,03 
45 23,4 0,19 0,14 99,59 33,33 
50 49,54 0,31 0,22 99,64 36,71 
55 95,46 0,51 0,34 99,67 33,62 
60 168,48 0,79 0,50 99,70 32,93 
65 282,66 1,16 0,77 91,67 32,17 
70 451,43 1,64 1,10 97,47 30,99 
75 700,6 2,3 1,56 98,14 40,20 
80 1051,02 3,13 2,16 98,75 28,12 
85 1534,55 4,90 2,93 99,68 26,86 
90 2195,9 5,37 3,86 99,76 27,28 
95 3094,34 7,00 5,12 99,77 26,88 

100 4221,64 8,98 6,53 99,79 27,12 
105 5700,11 11,42 8,35 99,80 33,33 
110 7497,49 14,38 10,48 99,81 41,67 

 

 Next, Figure 6 shows how the computational gain grows up with the order of the system (Figure 6). Note that 

how much higher is the order, or the number of the points in the domain, higher is the memory and CPU time saving 

(Figure 7). So one can conclude that the use of algorithm to the reduced matrix is almost mandatory to optimize 

computational resources. 

 

 

              
                        Figure 6: Computational gain                                                               Figure 7: Memory gain. 

 

Finally, Table 3 shows the numbers of operations for each algorithm. Note that the use of the optimizations 

gives a significant reducing for the numbers of operations. For example, in a domain with 110x110 points, the number 
of operations for the 2nd optimization is 3993 times lesser than the standard 
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Table 3: Comparison of the operation numbers gain 

Domain 
Full Matrix  

Order 
Sparse matrix 

order 
N

o
. operations 

Standard form 

N
o
. operations 

2nd 
optimization Total gain 

5 25x25 25x11 5274 800 6,59 

10 100X100 100x21 3,33 x10
5
 1,13 x10

4
 29,47 

15 225x225 225x31 3,79 x10
6
 5,52 x10

4
 150,40 

20 400x400 400x41 2,13 x10
7
 1,71 x10

5
 124,56 

25 625x625 625x51 8,14 x10
7
 4,12 x10

5
 193,35 

30 900x900 900x61 2,43 x10
8
 8,46 x10

5
 287,23 

35 1225x1225 1225x71 6,13 x10
8
 1,56 x10

6
 392,95 

40 1600x1600 1600x81 1,37 x10
9
 2,65 x10

6
 516,98 

45 2025x2025 2025x91 2,77 x10
9
 4,22 x10

6
 656,40 

50 2500x2500 2500x101 5,21 x10
9
 6,42 x10

6
 811,53 

55 3025x3025 3025x111 9,23 x10
9
 9,38 x10

6
 984,01 

60 3600x3600 3600x121 1,56 x10
10

 1,32 x10
7
 1181,82 

65 4225x4225 4225x131 2,51 x10
10

 1,82 x10
7
 1379,12 

70 4900x4900 4900x141 3,92 x10
10

 2,45 x10
7
 1600,00 

75 5625x5625 5625x151 5,93 x10
10

 3,22 x10
7
 1841,61 

80 6400x6400 6400x161 8,74 x10
10

 4,16 x10
7
 2100,96 

85 7225x7225 7225x171 1,26 x10
11

 5,30 x10
7
 2377,36 

90 8100x8100 8100x181 1,77 x10
11

 6,66 x10
7
 2657,66 

95 9025x9025 9025x191 2,45 x10
11

 8,26 x10
7
 2966,10 

100 10000x10000 10000x201 3,33 x10
11

 1,01 x10
8
 3297,03 

105 11025x11025 11025x211 4,47 x10
11

 1,23 x10
8
 3634,15 

110 12100x12100 12100x221 5,91 x10
11

 1,48 x10
8
 3993,24 

 In figure 3, one can see how the operation number's gain grows up with the numbers of points adopted. 

 

 
 

Figure 3: Numbers of operation gains in function of numbers of points npx. 

 

6. CALCULATION OF THE INVERSE 

 

 The inverse of a Matrix can be calculated using L.U changing for each system the independent term b. On each 

iteration, each b will be the columns of the identity matrix. The inverse of the sparse and banded matrix will not be a 

sparse and banded, but a full one. 

 Using algorithm that works with the reduced matrix, one can reduce significantly the computational time. Table 

4 shows a comparison between the formulations, and on Figure 8 one can see a graph showing the computational gain 

obtained using the solver with the 2nd optimization. 
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Table 4: Comparison of computational time gain to the inverse calculation 

 

Nodes  CPU Time Standard (s) CPU Time  Opt Computational gain 

5 0 0 0 

10 0,01 0 0 

15 0,01 0,01 1 

20 0,07 0,03 2,33 

25 0,4 0,09 4,44 

30 2,75 0,2 13,75 

35 9,41 0,38 24,76 

40 23,82 0,66 36,09 

45 51,6 1,7 30,35 

50 101,59 1,74 58,38 

55 185,99 2,54 73,22 

60 323,08 3,89 83,05 

65 531,57 5,28 100,67 

70 836,47 7,62 109,77 

75 1284,96 11,1 115,76 

80 1960,15 12,88 152,18 

85 2799,73 19,25 145,44 

90 3943,94 26,99 146,12 

 

 
 

Figure 8 – Computational gain Increase  in function of adopted number's node 

 

7. CONCLUSIONS 

 

A Finite Difference Frequency formulation was presented to solve wave acoustic propagation. Two optimizations to 

reduce both storing space memory and computational time were made. Also a classical nonreflecting boundary method 

– ABC – was applied aiming to reduce wave reflections at the borders of the 2D computational domain.  

Through examples one can see that a great saving memory and computational time was obtained by reducing the 

computational time and memory space up to 20 times. This indicates, that this optimizations are strongly recommended 

to solve the Finite Difference Frequency Domain problem, reducing the memory space and also the computational time, 

making possible to solve these problems in small computers. 

The decrease of computational time and great saving memory is results of a decrease of numerical operations given 

by the second optimization, so, the numerical errors fall significantly, resulting in a more accurate result then the 
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coventionals ones. 

Some applications can be observed, the authors developed these optimizations to model numerically the situations of 

probes sent to soil and detect oil and tectonic plates with more precision. But these algorithms can be used for spring 

mass system, electrical circuits, analysis of lattice and every situation involving linear sparse systems.   
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