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Abstract. - This article presents an optimized formulation applied to the acoustic waves calculation in frequency
domain using Finites Differences Methods (FDM). First of all, shows the governing equations, the formulation of FDM
with the discretized domain and the resolution of the system based in the LU decomposition. Next a first optimization
that works with the diagonal band and transforms the original matrix in a rectangular one is i mplemented, devel oping
news triangulation algorithms. A second optimization is done removing zeros still I€eft in the main diagonal band. In the
tests is shown an example with the comparison of the memory gain, computational time and reduced memory between
the standard formulation and the first and the second optimizations. Finally show up the computational gainsin time
and memory to the calculation of the inverse matrix. It can be noted how the optimizations made the problem much
more active and possible to be calculated using less memory and computational time.
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1. INTRODUTION

The Finite Difference Method is widely used to solve acoustic problems in the frequency domain due to its
simplicity, practical and easy formulation. However, the size of the generated matrices and the computationa time
grows exponentially with the mesh. Also, this disadvantages grow when this technique is applied to inverse problems
in geophysica to determine the subsurfaces, in order to study the existence of ail reservoirs (Pratt, R.G. and M. H.
Worthington, 1990). Some strategies are adopted to minimize these disadvantages.

This article presents numerical agorithms to solve the wave acoustic problem in frequency staggered-grid
finite difference scheme. Our main motivation is to reduce the size of the system solver and the CPU time. Our goal is
to provide an optimized formulation of the Finite Difference Methods in the frequency domain, adopting two
optimizations that transform the original square and sparse matrix, in a rectangular one. Zeros are not stored. Some
optimized algorithms are developed from solvers of LU decomposition to enhance the existing methods in order to
minimize the errors associated with, improving the quality of the numerica results and reducing its computational
effort.  Also a non reflecting boundary technique is applied to reduce the side effects. Clayton and Engquist (1977)
proposed the Absorbing Boundary Condition (ABC) technique by applying a one-way wave equation in the boundary
region, which proved to be efficient for events not a shallow angles on the contour. The ABC method is applied and
optimized aiming to reduce wave reflection at the borders, with results shown in terms of the total energy for “infinite”
and nonreflecting modds for varying absorbing layers. Results are shown in terms of the time and the size of the
matrix comparing with the standard one.

First the acoustic wave problem formulation is presented and also the ABC Boundary non reflecting method. In
addition, the Finite Difference equations are deduced and the system is showed. Later, the first and second optimization
in order to reduces the size of the stored matrix and the time computation are presented. Finally through two examples
one can see the percentage of the gain for memory and computation comparing with the standard method.

Some examples show the memory and computational gain obtained.
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2. PROBLEM FORMULATION

The wave equation in time domain in two dimensions is written below :

1 d%p dp dp
ol — +

c? at? dact e

@
where p isthe pressure field and c is the speed of pressure wave like space function.

To solve it in the frequency domain, the Fourier Transform (Kreyszig (1993)) must be used in the above
equation to passit from the time domain to the frequency domain. Thus, one obtains (Durran 1989):

wre dp ap

@)
Where: w = 2xf.

The equation can be rearranged replacing the wave number &% = ‘;— and adding source term 5. Thus, one
obtains the following equation:

s s
o[22+ 22] = s

©)

Finding the solution of the equation above without reflections at the boundaries, it used the follow absorption
Boundary, called ABC (Absorving Boundary Condiction) (Clayton and Engquist (1979)):

% —ikp=0
@

Where n isthe normal direction to the edge that applies the condition and i isthe unit complex.
3. FINITE DIFFERENCESMETHODSAND SPATIAL DISCRETIZATION
To solve the Helmholtz equation by the FDM, it’s necessary to discretize the domain with Nx points in the x

direction uniformly distant of Dx and Ny points in the y direction uniformly distant of Dy, as shown in Fig. 1 (Ajo-
Franklin (2005)):

npx points
(@)
S OO O -
npy point OO -

Figure 1 - Rectangular domain discretized by FDM.
The second derivate in relation to the x directed is approxi mated by the expression:

e Pi-1j 2PiitPitj
Fx” Ax”

©)
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that Ax isthe spacing in x direction.

Using this approxi mation it is possible to rewrite the Helmholtz equation as follows:
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Pi-1,j2Pij+Pi+1j Dij—1— 2P+ P j+1
kep,  + Ll I 4 |2 it ¢
LJ Ax? Myt LJ
(6)
With the derivatives in the ABC equation, the equation to the boundaries of the domain is expressed as:
Piva,j Pij =
Aact Ikpi’j
(7)
So, assuming a4 x 4 domain, ameatrix is generated (see Fig. 2):
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Figure 2 - Coefficients matrix generated by the Finite Difference Method

that X refersto rea numbers and X; to complex numbers, due to application of ABC.

Note that the above matrix is a sparse matrix with the order of (npx.npy, anpx.npy). The bandwidth is (2npx+1)
size, for the node’s domain relates with its neighboring, the right and left and the upper and lower ones, according to the
diagram showed in Fig. 3:

i+npx

i+1

i-npx
Figure 3 - Relationship of nodei with its neighbors

The complex numbers X; come from the application of ABC technique. The frequency appears in the diagond,
s0 that, changing the frequency, just the diagonal is changed.

Assembling to a desired frequency, the coefficients' matrix A and the independent terms' vector b, form a
system. The vector b represents the source point. A common technique to compute inverse problems is to vary the
source position, and solving the system repeated times. The matrix A remains constant.

In Inverse geophysics problems, the system (8) has to be solved many times for different vaues of b, without
changing A. For this purpose LU factorization isindicated (Press et alii (2007)), which transforms the original matrix A
in aupper triangular matrix and lower triangular matrix (9) asfollows:
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Ax=b )
A=L.U ©)
L.Ux=b

(10)

Ly=b

(11)

U.x=

(12)

The triangularization of A is made just once. The vaue of b are the columns of the Identity matrix, computing
each column of the Inverse matrix. The systemis quickly solved by backward (12) and forward substitution (11).

4.FIRST OPTIMIZATION

The matrix A is sparse and more then 90% of its elements are zeros Thus, in order to optimized the procedure a
first otimization was done to reduce the space memory and the computationd time required, and consists in store the
original sguare matrix in arectangular reduced one of the order (npx.npy, 2npx+ 1), and eliminating the zero terms, as
follow system (see fig.4)

Ly Ao A1g
Fig K26
Fig g Haz
Haz  Figg Hyp
Figg Hgp
K.z Xes  Yas  Hes Koo
Xia Xi 6 Lex X p X
Xg; Figg
Fi 5.5 Y?_:.D
Xios ¥ios  Hioge Fipna Xio1a
Xy7 fa0 Kiar Hipae Hy19s
fiz01 Hlazaz
Xyzs Hiyzaz Xizaa
Xia10 Hiya1a
A5 A58
Kigaz Hlie1e ]

Figure 4 - Reduced matrix after first opti mization

Note that the main diagonal was stored in the middle column and the original columns are now on the diagonal
of the reduced matrix.

Then, a triangulation algorithm that works with the reduced matrix was implemented. The results of the
application of these dgorithmsis a matrix in order of (npx.npy,2npx+ 1), aso reduced, and has the terms of the matrices
L and U respectivaly, as one can see on fig. 5:
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Figure 5 - Matrix that contains the matrices L and U.

Even reducing the size of the matrix, one can see that some columns of A are zeros. A second optimization has
to be made in an reduced inverse matrix, removing al the columns formed by zeros, in consequence, the obtained
matrix, with just 5 columns and 2.npx+1 lines.

5. TESTS

A program was implemented in Fortran 90, that incorporates algorithm for the solution of the sparse reduced
matri ces and compares with the standard LU factorization algorithm. The processing time was measured and the
numbers of operations was evauated and compared.

Table 1 shows the amount of memory occupied. On the first column, one can see the size of the domain, and on
the second the size of the entire standard matrix. The third and fourth columns show the size of the matrix using the first
and second optimization and then three last columns shows the gain comparing the various the standard, first and
second optimizations. One can see the percentage of the space memory reduced by the optimizations.

Table 1: Amount of memory dispended and the space of memory gain by the optimizations.

Matrix size Size of the Size of the standard vs | 1th vs 2nd 2nd vs
Domain Standard 1th opt 2nd opt 1th opt (%) opt (%) standard (%)
Str

5 2(5x2)5 25x11 25x5 56 54,55 80,00
10 100X100 100x21 100x5 79 76,19 95,00
15 225x225 225x31 225x5 86,22 83,87 97,78
20 400x400 400x41 400x5 89,75 87,80 98,75
25 625x625 625x51 625x5 91,84 90,20 99,20
30 900x900 900x61 900x5 93,22 91,80 99,44
35 1225x1225 1225x71 1225x5 94,20 92,96 99,59
40 1600x1600 1600x81 1600x5 94,94 93,83 99,69
45 2025x2025 2025x91 2025x5 95,51 94,51 99,75
50 2500x2500 2500x101 2500x5 95,96 95,05 99,80
55 3025x3025 3025x111 3025x5 96,33 95,50 99,83
60 3600x3600 3600x121 3600x5 96,64 95,87 99,86
65 4225x4225 4225x131 4225x5 96,90 96,18 99,88
70 4900x4900 4900x141 4900x5 97,12 96,45 99,90
75 5625x5625 5625x151 5625x5 97,32 96,69 99,91
80 6400x6400 6400x161 6400x5 97,48 96,89 99,92
85 7225x7225 7225x171 7225x5 97,63 97,08 99,93
90 8100x8100 8100x181 8100x5 97,76 97,24 99,94
95 9025x9025 9025x191 9025x5 97,88 97,38 99,94
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100 10000x10000 | 10000x201 10000x5 97,99 97,51 99,95
105 11025x11025 11025x211 11025x5 98,09 97,63 99,95
110 12100x12100 | 12100x221 12100x5 98,17 97,74 99,96

Table 2 shows the processing time in seconds. On the second column, one can see the time required to solve
the standard method, and on the third and fourth columns, the computational time for the first and second optimization.
The last two columns show a comparison between the first and second optimization with the standard end from each
other. It can be seen that the gain increases exponentidly and, for example, for a domain with 110x110 nodes, the 2nd

optimization is 99,81% faster than the standard on.

Table 2: Processing Time with the comparison of the computationd time gain.

Domain | Strtime (s) Time 1th opt | Time 2nd opt | Str vs 2nd opt 1th vs 2nd opt
5 0 0 0 91,67 0,00
10 0 0 0 97,47 0,00
15 0 0 0 98,14 0,00
20 0,03 0 0 98,75 0,00
25 0,12 0,01 0,01 99,19 33,33
30 0,79 0,02 0,02 99,37 41,67
35 3,22 0,06 0,04 99,47 26,32
40 9,6 0,12 0,07 99,53 29,03
45 23,4 0,19 0,14 99,59 33,33
50 49,54 0,31 0,22 99,64 36,71
55 95,46 0,51 0,34 99,67 33,62
60 168,48 0,79 0,50 99,70 32,93
65 282,66 1,16 0,77 91,67 32,17
70 451,43 1,64 1,10 97,47 30,99
75 700,6 2,3 1,56 98,14 40,20
80 1051,02 3,13 2,16 98,75 28,12
85 1534,55 4,90 2,93 99,68 26,86
90 2195,9 5,37 3,86 99,76 27,28
95 3094,34 7,00 5,12 99,77 26,88

100 4221,64 8,98 6,53 99,79 27,12
105 5700,11 11,42 8,35 99,80 33,33
110 7497,49 14,38 10,48 99,81 41,67

Next, Figure 6 shows how the computational gain grows up with the order of the system (Figure 6). Note that
how much higher is the order, or the number of the points in the domain, higher is the memory and CPU time saving
(Figure 7). So one can conclude that the use of agorithm to the reduced matrix is amost mandatory to optimize

computational resources.
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Figure 6: Computational gain

Figure 7: Memory gain.

Finally, Table 3 shows the numbers of operations for each a gorithm. Note that the use of the opti mizations
gives asignificant reducing for the numbers of operations. For example, in a domain with 110x110 points, the number
of operations for the 2nd optimization is 3993 times | esser than the standard
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Table 3: Comparison of the operation numbers gain

N°. operations
Full Matrix Sparse matrix | N°. operations 2nd

Domain Order order Standard form optimization Total gain
5 25%25 25x11 5274 800 6,59
10 100X100 100x21 3,33 x10° 1,13 x10* 29,47
15 225x225 225x31 3,79 x10° 5,52 x10* 150,40
20 400x400 400x41 2,13 x10’ 1,71 x10° 124,56
25 625x625 625x51 8,14 x10’ 4,12 x10° 193,35
30 900x900 900x61 2,43 x10° 8,46 x10° 287,23
35 1225x1225 1225x71 6,13 x10° 1,56 x10° 392,95
40 1600x1600 1600x81 1,37 x10° 2,65 x10° 516,98
45 2025x2025 2025x91 2,77 x10° 4,22 x10° 656,40
50 2500x2500 2500x101 5,21 x10° 6,42 x10° 811,53
55 3025x3025 3025x111 9,23 x10° 9,38 x10° 984,01
60 3600x3600 3600x121 1,56 x10° 1,32 x10’ 1181,82
65 4225x4225 4225x131 2,51 x10™° 1,82 x10’ 1379,12
70 4900x4900 4900x141 3,92 x10"° 2,45 x10’ 1600,00
75 5625x5625 5625x151 5,93 x10*° 3,22 x10’ 1841,61
80 6400x6400 6400x161 8,74 x10" 4,16 x10’ 2100,96
85 7225x7225 7225x171 1,26 x10™ 5,30 x10’ 2377,36
90 8100x8100 8100x181 1,77 x10* 6,66 x10’ 2657,66
95 9025x9025 9025x191 2,45 x10M" 8,26 x10’ 2966,10
100 10000x10000| 10000x201 3,33 x10" 1,01 x10° 3297,03
105 11025x11025 |  11025x211 4,47 x10" 1,23 x10° 3634,15
110 12100x12100| 12100x221 5,91 x10™ 1,48 x10° 3993,24

In figure 3, one can see how the operation number's gain grows up with the numbers of points adopted.

2300 -
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3300

20 40

o0 80

100 120

Figure 3: Numbers of operation gainsin function of numbers of points npx.

6. CALCULATION OF THE INVERSE

The inverse of aMatrix can be calculated using L .U changing for each system the independent term b. On each
iteration, each b will be the columns of the identity matrix. The inverse of the sparse and banded matrix will not be a

sparse and banded, but a full one.

Using a gorithm that works with the reduced matrix, one can reduce significantly the computational time. Table
4 shows a comparison between the formulations, and on Figure 8 one can see a graph showing the computationa gain

obtained using the solver with the 2nd optimization.
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Table 4: Comparison of computational time gain to the inverse cal culation

Nodes CPU Time Sandard (s) CPU Time Opt Computational gain
5 0 0 0
10 0,01 0 0
15 0,01 0,01 1
20 0,07 0,03 2,33
25 0,4 0,09 4,44
30 2,75 0,2 13,75
35 9,41 0,38 24,76
40 23,82 0,66 36,09
45 51,6 1,7 30,35
50 101,59 1,74 58,38
55 185,99 2,54 73,22
60 323,08 3,89 83,05
65 531,57 5,28 100,67
70 836,47 7,62 109,77
75 1284,96 1,1 115,76
80 1960,15 12,88 152,18
85 2799,73 19,25 145,44
90 3943,94 26,99 146,12

Figure 8 — Computational gain Increase in function of adopted number's node
7. CONCLUSIONS

A Finite Difference Frequency formulation was presented to sol ve wave acoustic propagation. Two optimizationsto
reduce both storing space memory and computationad time were made. Also a classical nonreflecting boundary method
— ABC —was applied aiming to reduce wave reflections at the borders of the 2D computationa domain.

Through examples one can see that a great saving memory and computational time was obtained by reducing the
computationa time and memory space up to 20 times. Thisindicates, that this opti mizations are strongly recommended
to solve the Finite Difference Frequency Domain problem, reducing the memory space and also the computational time,
making possi ble to solve these problems in small computers.

The decrease of computational time and great saving memory is results of a decrease of numerical operations given
by the second optimization, so, the numericd errors fall significantly, resulting in a more accurate result then the
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coventionals ones.

Some applications can be observed, the authors devel oped these opti mizations to model numerically the situations of
probes sent to soil and detect oil and tectonic plates with more precision. But these algorithms can be used for spring
mass system, electricd circuits, analysis of | attice and every situation involving linear sparse systems.
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