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Abstract. We study the flow of two drops suspended in a continuous phase through a straight micro capillary. The
evolution of the drops interface is determined by a modified level set method which is incorporated to a fully coupled
implicit Navier-Stokes solver based finite element method. We investigate the effect of an initial distance between the two
drop, as well as the effects of the interfacial tension on the drop speed. The viscosity ratio and flow rate were kept constant
in the results presented here. The initial distance between the drops indicates whether the flow of one drop affects the
other or if they flow as two distinct single drops. The lower is the capillary number the more difficult is to the drops to
interact with each other.
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1. INTRODUCTION

Capillary two-phase hydrodynamics have three considerable distinctions from two-phase flows in microsystems. First,
there is an increase in the ratio of the surface area of the phases to the volume that they occupy; second, the flow is
characterized by small Capillary numbers at which the surface tension forces predominate over viscous forces; and third,
the microroughness and wettability of the wall of the microchannel exert a considerable influence on the flow pattern
formation. Recent development in micro fluid dynamics can be found in several application such as in microreactor
(Kashid and Agar, 2007; Kashid et al., 2005), in processes of liquid-liquid extration (Kashid et al., 2007), in transport of
emulsions in porous media, which is relevant in several other applications such as enviromental science (Ouyang et al.,
1995; Allan et al., 2006), bioengineering, greenhouse storage, oil recovery, among others (Hofman and Stein, 1991;
Tallaskstad et al., 2009; Idowu and Blunt, 2010). Besides, the flow of emulsions can be used as a model for the flow in
pore scale.

The basic flow phenomena of emulsion transport through pore throats are well discribed by the flow of a single drop
through a constricted microcapillary. The dynamics of immiscible drops flowing through a capillary tube with a diameter
that varies sinusoidally 0was fisrt studied experimentaly by Olbricht and Leal (1983). Tsai and Miksis (1994) investigated
using a boudanry integral method the creeping flow of a drop suspended in a Newtonian liquid in a constricted capillary,
focusing on the drop breakup that occurs at certain operating conditions. The effect of the dispersed phase on the pressure
drop was decribed by Cobos et al. (2009) showing that the flow rate relation in the flow through capillaries can be
represented by a mobility reduction factor, which is defined as the ratio of the pressure drop for the continuous phase
flow to the average pressure drop of the emulsion flow, at the same flow rate. Roca and Carvalho (2013) studied the
flow of a single drop suspended in a continuous immiscible phase flowing thhrough a constricted micro capillary. The
transient free boundary capillary flow problem was solved by coupling a modified level-set method to a fully-implicit
finite element method. The results found by Roca and Carvalho (2013) led to a better pore-scale flow model for a wide
range of parameters.

However, there are multiple drops in an emulsion that could interact with each other during the flow and this interaction
is not well defined. There are several works in the literature on microhydrodynamics. Several studies can ben found in
the literature on gas-liquid systems (Schwartz et al., 1986; Ratulowski and Chang, 1989), other studies focus on the
ydrodynamics of liquid-liquid systems, with different flow patterns such as slug (Jovanovic et al., 2011; Bico and Quéré,
2000) and drop flow (Danov et al., 2003; Baroud et al., 2010; Westborg and Hassager, 1989). Nevertheless, most of the
studies in drop flow focus the attention in the flow of a single drop. In most cases when more drops are considered in the
flow their interaction is studied only in cases of coalescence as can be seen in the work of Danov et al. (2003) and Baroud
et al. (2010). In the work of Bico and Quéré (2000) trains of juxtaposed drops in a tube are described and found to move
spontaneously, in wetting conditions, beacuse of their asymmetry, but their main focus in on the coating proprieties of the
lubricating film left by the first drop.

Here, we solve the transient flow of two drops suspended in an immiscible liquid through a straight micro capillary
using a modified level-set method incorporated to a fully coupled implicit Navier-Stokes solver based finite elements
method. The method and its numerical implementation were validated by Roca and Carvalho (2013).We focus on the
interaction of the two drops in their flow through the capillary. The results for a strapight capillary show the evolution
of two drops as they flow through the capillary. The results for a straight capillary show the evolution of the drops
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deformation and the influence of the gap distance between the drops as well as the influence of the interfacial tension in
the behavior of the flow of the drops.

2. MATHEMATICAL FORMULATION

2.1 Navier-Stokes equation and boundary conditions

Drops of oil (viscosity µo), each with volume 1
6πd

3
drop, are suspended in water (viscosity µw). We assume that

both phases have equal density, ρw = ρo = ρ, such that gravitational forces can be neglected and the flow considered
axisymetric.

The liquids flow through a 1.0mm long straight cappilary with radius of D/2 = 50µm as shown in Fig. 1.

Figure 1: Sketch of the flow domain with two oil drops

The velocity and pressure fields of incompressible, axisymetrical flow of Newtonian immiscible fluids with equal
densities are governed by the continuity and momentum equations.

∇ · u = 0, (1)

ρ

[
∂u

∂t
+ u · ∇u

]
= ∇ ·Ti + f (2)

where ρ is the density of both phases, Ti is the stress tensor of each phase i. For Newonian liquids, it is given by
Ti = −pI + µi[∇u + (∇u)T ], where I is the Identity tensor, p is the pressure, µi is the viscosity of each phase and f ia
a body force. In this work, we use i = w for the continuous phase (water) and i = o for the dispersed (oil) phase, as was
used by Roca and Carvalho (2013) in their work.

In order to solve the Navier-Stokes system, boundary conditions are needed. The domain is bounded by inflow and
outflow planes, a solid wall and a symmetry axis. In addition, two boundary conditions, force balance and velocity
continuity given by Eq. (3) and (4), need to be specified along the interlayer that separates the two liquids. The definition
of the other boundary conditions are discussed by Roca and Carvalho (2013).

nI · (Tw −To) = σ
dtI
ds

, (3)

uw = uo, (4)

where nI and tI are the unit normal and tangent vectors to the interlayer and s is an arc-length coordinate along the free
surface. ui and Ti are the velocity and stress tensor for phase i and σ is the interfacial tension.

A free boundary problem is presented by the formulation discussed above. The drop configuration at each time is an
unknown and it is a part of the solution.

We use the same approach used by Roca and Carvalho (2013). This approach is based on capturing the interface
through the definition of a scalar field called the level-set function. The level-set method was fisrt introduced by Osher
and Sethian (1988) and is discussed in the next subsection.

2.2 Level-Set formulation

Level-set method was used here to capture the interfaces between the liquids as the drops flows through the capillary.
In the level-set approach, a smooch function c(x ) is defined over the entire domain such that it has different signs inside
the domain region occupied by each of the two different phases, here, c < 0, in the oil phase and c > 0 in the water phase.
The interface is described by the curve at each c ≡ 0 (Osher and Sethian, 1988). Tipically, the initial level-set function is
defined as the signed-distance d(x) from the interface, defined as:

d(x) = min(x− xi),∀xi ∈ interface. (5)
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The evolution of the interface is described by an advection equation

∂c

∂t
+ u · ∇c = 0 (6)

In the level-set method, the momentum equations for the two phases can be expressed in an unified way by considering
the liquid proprierties at each point of the domain to be a function of the level-set function. The unified viscosity is given
by Eq. 7.

µ(x) = µo + (µw − µo)Hε(c(x)) (7)

where µo and µw are viscosities of oil and water repectively and Hε(c) is the smoothed Heaviside function, a continuous
approximation of the Heaviside function that helps to improve the numerical stability when the viscositu is interpolated
across the interface. It is defined as

Hε(c) =
c+ ε

2ε
+

1

2π
sin(

πc

ε
) (8)

where ε is a layer along the interface where the Heaviside function is smoothed.
The unified momentum conservation equation for both phases is written as

ρ

[
∂u

∂t
+ u · ∇u

]
= ∇ · [−pI + µ(c)(∇u + (∇u)T ] + σκ∇cδε(c), (9)

where κ is the interface curvature, ∇c describes the vector normal to the interface and δε(c) is a smoothed continuous
approximation of the Dirac delta function.

The interface curvature κ is evaluated in terms of the level-set function

κ = ∇ · ∇c
‖∇c‖

. (10)

Since there is an inflow plane in the analysis presented here, the value of the level-set function along this boundary
needs to be specified at each time step, as a boundary condition. The distance from each point of the inflow boundary to
the interface at each time step is not known and therefore the level-set function cannot be defined as the signed distance
function. Here we use the smooth function proposed by Roca and Carvalho (2013).

c(x) =


1, min(x− xi) > εc,∀xi ∈ interface;

d(x)
εc

+ 1
π sin(πd(x)εc

), ‖min(x− xi)‖ ≤ εc,∀xi ∈ interface;
−1 min(x− xi) < εc,∀xi ∈ interface.

(11)

It approximates the signed-distance function only close to the interface and has a constant value away from it, as shown
in Fig. 2 for a spherical drop placed inside a capillary. Roca and Carvalho (2013) set the parameter εc = 5h, where h is a
characteristic length scale of the finite element mesh.

Figure 2: Initial value of the level-set function for a single drop

3. SOLUTION METHOD

Finite element method was used to solve the mommentum and mass conservation equations, Eqs. (9) and (1), coupled
with the level-set advection equation Eq.(6). The flow domain was divided into quadrilateral elements.
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The velocity, pressure and level-set function were approximated with a linear combination of a finite number of basis
functions.

u =
∑
j

ũj(t)ϕ
u
j =

∑
j

[ũj(t), ṽj(t)]
Tϕuj , p =

∑
j

p̃j(t)ϕ
p
j , c =

∑
j

c̃j(t)ϕ
c
j (12)

To evaluate the curvature κ at each point of the domain, it is necessary to compute the second derivative of the level-
set function. Because the derivatives of the finite elemen basis functions used to approximate the level-set funcion c
are discontinuous along the element boundaries, the courvature cannot be evaluated directly. Roca and Carvalho (2013)
proposed to use an additional variable g = [gz, gr] to represent the gradient of the level-set function as an independent
field wich is also approximated which a linear combination of a finite number of continuous basis functions.

g =
∑
j

= g̃j(t)ϕ
g
j =

∑
j

[g̃zj(t), g̃rj(t)]
Tϕgj (13)

Then the courvature κ can be evaluated in terms of g such as,

κ = ∇ · g

‖g‖
=

1

r

gr
(g2z + g2r)1/2

+
g2z

∂gr
∂r − 2gzgr

∂gz
∂r + g2r

∂gz
∂z

(g2z + g2r)3/2
(14)

The basis functions used to expand the independent variables were: Lagrangian biquadratic polynomials for velocity
ϕu and level-set function ϕc, linear discontinuous for pressure ϕp, and Lagrangian bilinear for interpolated level-set
function gradient ϕg .

The weak form of the formulaton was obtained by multipluing each equation of the system, Eqs. (12) and (13),
by weighting functions, integrating over the physical domain and applying the divergence theorem to the appropriate
terms. Galerkin’s method was applied to the equations of momentum conservation, continuity and interpolated level-set
gradient, i.e the weighting functions are the basis functions. Streamline Petrov-Galerkin weighting functions were used
in the level-set equation, ψc = ϕc + he

u
‖u‖ · ∇ϕ

c, where he is the upwind parameter.
Essential boundary conditions were imposed by replacing the corresponding weighted residual equation with imposed

value of velocity and level-set function. Natural boundary conditions were applied through the boundary integrals that
came from the divergence theorem.

Once all the variables are represented in terms of the basis functions, the system of partial differential equations
reduces to a set of ordinary differential and algebraic equations that describe the evolution of the coefficients with time:

R(v, v̇, f) = 0, (15)

where R is the set of the weighted residual equations, v is the vector of basis functions coefficiens, v̇ its time derivative
and f is a vetor of all input parameters (physical properties, geometry of the flow and boudary condition information).

The temporal discretization of the set of equations, Eq. (15), was followed by predictor-corrector algorithm. The
predictor step consists of a foward Euler method and the corrector step consists of a first-order fully implicit Euler method,
wich is unconditionally stable.

The resulting set of nonlinear algebraic equations at each time was solved simultaneously by Newton’s method with
an initial estimate resulting from an explicit Euler step from the solution at the previous two time steps, as showed by
Roca and Carvalho (2013).

4. RESULTS

The formulation and solution method used here were validated by Roca and Carvalho (2013), comparing the predic-
tions of the flow through a straight capillary with results available in the literature. A mesh with 15x150 quadrangular
elements was used to obtain the results presented in this paper.

The discretization of the level-set formulation does not enforce mass conservation. The fully coupled / fully implicit
method used to discretize the set of differential equations minimizes this mass conservation problem by choosing the
appropriate element size and time step.

As discussed by Roca and Carvalho (2013), the maximum time step to assure mass conservation within a precribed
accuracy is a function of the interface velocity, therefore the imposed flow rate, and the element size. They showed that to
keep the mass loss smaller than 10% of the original mass of the drop, the time step needs to be smaller then 1/10 of the
traveling time of the drop through a single element.

Figure 3 shows a second drop included in the initial guess of the field of the level-set function with a prescripted gap
between the drops.

In the predictions presented here, the viscosity ratio was λ = µo/µw = 10 and the flow rate was set toQ = 0.05ml/h.
We studied the evolution of the drops configuration as a function of the capillary number (interfacial tension between both
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Figure 3: Initial level-set function of a pair of drops 30µm distant of each other

phases) and initial distance between the drops. For each case studied, the time step was changed until the solution became
independent of its value. An example of the time step independency analysis is shown in Fig. 4. The distance between
the drops is plotted as a function of time for different values of time steps. The solution becomes independent of the time
step for ∆t = 3× 10−4. In this example, the initial distance between the drop was δ = 30µm and the interfacial tension
effect was neglected, i.e. Ca =∞.

Figure 4: Gap between drops with different values of time step ∆t with Ca =∞

Including the effect of the interfacial tension the characteritics of the flow change, therefore it is possible that the time
step needed for a solution to become independent of its value could also change. Tests with different capillary numbers
(Ca = 0.75, Ca = 0.25 and Ca = 0.10) were made in order to find the time step necessary for each sittuation. For
Ca = 0.75 and 0.25 the solution becomes independent for a time step ∆t = 3.0 × 10−4. For Ca = 0.10 the solution
did not become independent with the same time step as the other cases. In this case the independecy was achieved with
∆t = 1× 10−4.

However, those time steps are chosen to ensure mass conservation. Figure 5 shows the evolution of the mass of the
drops over time for different time steps. Although the larger time step is sufficient for the solution to independent, it does
not ensure mass conservation. With that in mind, the time step is ∆t = 1× 10−4 for all the cases studied.

Figure 5: Drop volume for different time steps with Ca =∞

Figure 6 shows the flow of two drops, initially separated by a gap distance δ = 30µm, with Ca = 0.75 in three
different time steps. It can be seen that the distance between them decreases until they start to merge. The coalescence of
the drops and it’s effect on the flow are not studied in this work.

We will assume that the drop on the left in Fig 6 is drop number one or the fisrt drop, while the one on the right is
drop number two or second drop. Knowing the evolution of the position of the extremities of the drops, we were able to
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Figure 6: Evolution of the drops with Ca = 0.75

(a) δ = 30µm (b) δ = 500µm

Figure 7: Velocity of the extremities of the drops at Ca = 0.75

calculate by central difference the velocity at those points. Figure 7 shows the evolution of the velocity of the extremities
of drops one and two along with the velocity of the extremities of a single drop flowing through the capillary. It can be
seen that for a gap of δ = 30µm (Fig 7a) the first drop is influenced by the flow of the second drop. As can be seen in
Fig 7a the front of the first drop flows faster then the back of the second drop and the back of a single drop. That’s why
the gap between the drops decreases. However when the initial gap distance is sufficient big (Fig 7b), both drops flow like
a single drop.

In Fig. 8 the size of the two drops with different initial gap distance are compared with a single drop flowing through
the capillary. The second drop flows as a single drop regardless the distance to the first drop as can be seen in Fig. 8b.
Drop number one does not behave as a single drop flowing through the capillary unless the initial gap distance is big
enough. Figure 8a shows that with δ < 100µm the size of the first drop is influenced by the initial gap distance.

The gap distance was normalized with its initial value in order to compare the evolution of the gap between the drops
for different initial gap distance. The effect of the capillary number on the behavior of the train of drops is shown in
Fig. 9. The interfacial tension forces the drops to become more spherical and changes the way the gap decreases. At lower
capillary number the size of the drop decreases due to the bigger interfacial tension (Fig. 9a), hence the gap between
the drops increases (Fig. 9b). This means that the drops take more time to close the gap and eventually merge when the
capillary number decreases.

5. FINAL REMARKS

A fully coupled / fully implicit modified level-set method together with incompressible Navier-Stokes equation were
used to describe the flow of one or more oil drops immersed in water through a straight capillary. The system of differential
equations was solved by the finite element method.

A modified definition of the level-set function was used in order to impose the necessary boundary condition along the
inflow plane. The fully implicit time integration minimized the flux through the interface inherent to interface capturing
approaches, such as the level-set method.
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(a) First drop (b) Second drop
Figure 8: Size of the two drops with Ca = 0.75 and different gap distances

(a) Drop size (b) Gap distance of 30µm
Figure 9: Influence of the capillary number
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The results show how a train of drops flow through a straight capillary. The gap between the drops dictates if the train
flows as two distinct drops or if they interact during the flow. This behavior was shown by the influence of the initial gap
distance on the velocity of the drops. The interfacial tension creates some dificulties to the flow of the drops, making it
more difficult their interaction. All predictions were obtained at a viscosity ratio λ = 10 and fixed flow rate. The time
step used in all simulations was small enough to ensure mass conservation and an independent solution.
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