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Abstract. Artificial neural networks (ANNs) can learn from a given data set. In this context, a special kind of the ANN 
is the radial basis function neural network (RBF-NN). It can be viewed as a curve fitting method in a high-dimensional 
space. Furthermore, RBF-NN is considered as a good candidate for the forecasting problems due to its rapid learning 
capacity and, therefore, has been applied successfully to nonlinear time series modeling and forecasts. The 
contribution of this paper is to present a quantum particle swarm optimization (QPSO) approach to RBF-NN 
optimization to deal the time series forecasting. To achieve this deal, in this work, the RBF-NN configuration uses the 
k-means clustering algorithm, QPSO and pseudo-inverse method. The focus of application of the proposed RBF-NN 
design aims the force modeling in the swimming field. The results show that the proposed RBF-NN design can be 
considered as a suitable technique for force modeling of a Brazilian elite male swimmer using time series data. 
 
Keywords: neural networks, radial basis function neural network, time series forecasting, swimming, force modeling. 

 
 
 
1. INTRODUCTION 

 
Artificial neural networks have been defined by Kohonen as “massively parallel interconnected networks of simple 

(usually adaptive) elements and their hierarchical organizations, which are intended to interact with the objects of the 
real world in the same way as biological nervous system do” (Kohonen, 1988).  

Feedforward neural networks possess a number of properties which make them particularly suited to complex 
pattern classification and time series forecasting problems. Generally, the computation of the output weights in 
feedforward neural networks is based on the given error cost function (or referred to as target function), which is a 
function of the network structure and the weights. Particularly, the feedforward radial basis function neural networks 
(RBF-NNs) are flexible modeling tools that have the ability to rapidly learn complex patterns and a tendency to present 
data and adapt to changes quickly. Theoretically RBF-NNs can approximate any continuous function defined on a 
compact set to any prescribed degree of accuracy by sufficiently expanding the size of network (Park and Sandberg, 
1991). 

The classical RBF-NN consists of three layers: input layer, radial basis functions and output layer. Input layer takes 
features extracted from training samples and directly delivers them to the RBF layer. Hidden neurons are radial basis 
functions. The performance through the input layer to the output layer compete the task of classification by dividing the 
whole input space into several subspaces in the form of a hyperellipsoid. The classical training procedures for RBF 
neural networks are usually divided into two stages where the centers of the hidden layer are determined first in a self-
organizing manner, followed by the computation of the weights that connect the hidden layer with the output layer. 

Thus, to train the RBF-NN is a very important task, which requires efficient and practical optimization techniques. 
In recent years, several RBF-NN training methods have been proposed (Simon, 2002; Karayiannis, 1999; Sarimveis et 
al., 2003).  
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The main problem in RBF-NNs design concerns establishing the number of hidden neurons to use and their centers 
and radii. The aim of the present paper is to validate a RBF-NN design combined with k-means clustering method to 
tune the centers of Gaussian functions (activation functions), a quantum particle swarm optimization (QPSO) approach 
to optimize the radii values and the fine-tuning of the Gaussian functions centers, and the linear least-squares method to 
set the output weights. In order to illustrate the behavior of the RBF-NN algorithm, a case study of force modeling of a 
Brazilian elite male swimmer is realized. The forecasting results show that the proposed RBF-NN has satisfactory 
performance. 

The remainder of this paper is organized as follows: Section 2 presents the RBF-NN fundamentals. After, Section 3 
presents the forecasting results using time series data related to force measurements of a Brazilian elite male swimmer. 
Finally, the conclusion and further research are discussed in Section 4. 

 
 

2. FUNDAMENTALS OF THE RBF-NN 
 
A RBF-NN which was introduced by Broomhead and Lowe (1988), is a special type of artificial neural network that 

uses a radial basis function as its activation function. From the aspect of functional representations, RBF-NN is a 
scheme that represents a function of interest by using members of a family of compactly (locally) supported basis 
functions to perform curve fitting. The locality of the basis functions makes the RBF-NN more suitable for learning 
functions with local variations and discontinuities. 

In  RBF  networks,  the  outputs  of  the  input  layer  are determined  by  calculating  the  distance  between  the  
network  inputs and hidden layer centers. The second layer is the linear hidden layer and outputs of this layer are 
weighted forms of the input layer outputs.  The neurons of the output layer have input-output relationship that performs 
simple weighted summations. Each neuron of the hidden layer has a parameter vector called center. 

Figure 1 shows a typical structure of RBF-NN, including the input layer, a single hidden layer, and the output layer. 
The variables w represented in Figure 1 are the weights between the hidden layer and the output layer of the RBF-NN. 
In Figure 1, i  is the activation function of the i-th hidden neuron. The RBF-NN with a single hidden layer of Gaussian 
neurons are considered to be universal approximators. Therefore, we choose the Gaussian function as the nonlinear 
function of each neuron. The Gaussian basis functions are given by 
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where x=[x1, x2,…, xm] is the input vector, ci=[c1i, c2i,…, cmi] is the center vector of the i-th neuron, ri is the radii of the 
function of the i-th neuron, and a  denotes the Euclidian norm of the vector a. In general, an RBFNN is a multi-
dimensional function that depends on the distance between the input vector and a center vector. By building up several 
basis functions hi with Euclidean distance between the input and the center, the mapping relationship between inputs 
and outputs can be obtained. 

Since RBF-NNs are linear-in-the-parameters for fixed centers and radii, the coefficients i  can be determined using 
the linear least-squares method. The choice of the values of centers and radii is crucial for the performance of the neural 
compensation. In this context, clustering algorithms can be used to find a set of centers which more accurately reflects 
the distribution of the data points. 

 

 
Fig. 1. Representation of the RBF-NN. 
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The performance of an RBF-NN model depends crucially on the model construction method. One of the most 

important issues in developing an RBF-NN model is to determine the RBF centers, and another is to determine the 
number of such centers based on the generalization capability (Du et al., 2012). 

In this paper, the k-means clustering method is adopted to tune the centers of Gaussian functions (activation 
functions), a quantum particle swarm optimization (QPSO) approach to optimize the radii values and the fine-tuning of 
the Gaussian functions centers, and the linear least-squares method to set the output weights. 

Clustering algorithms are generally used in an unsupervised fashion. They are presented with a set of data instances 
that must be grouped according to some notion of similarity. K-means (MacQueen, 1967; Hartigan and Wang, 1979) is 
one of the simplest unsupervised learning algorithms which use prototypes (centroids) to represent clusters by 
optimizing the squared error function. 

The particle swarm optimization (PSO) was first introduced in Kennedy and Eberhart (Kennedy and Eberhart, 1995; 
Eberhart and Kennedy, 1995). It is a flexible, robust, population-based stochastic optimization algorithm. Furthermore, 
PSO is a kind of swarm intelligence paradigm that is based on social-psychological principles and provides insights into 
social behavior, as well as contributing to engineering applications. 

In the quantum model of a PSO called here quantum PSO (QPSO) proposed in Sun et al. (2004), the state of a 
particle is depicted by wavefunction (x, t) (Schrödinger equation), instead of position and velocity of classical PSO. 
The probability of the particle’s appearing in position xi from probability density function |(x,t)|2, the form of which 
depends on the potential field the particle lies. Employing the Monte Carlo method, the particles move according to the 
following iterative equation by Sun et al. (2004) and Sun et al. (2005): 
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where xi,j(t+1) is the position for the j-th dimension of i-th particle in t-th generation (iteration); Mbestj(t) is the global 
point called Mainstream Thought or Mean Best (Mbest) for the j-th dimension;  is a design parameter called 
contraction-expansion coefficient; u and k are values generated according to a uniform probability distribution in range 
[0,1]; and pi(t) is local point (local attractor) defined by Clerc and Kennedy (2002). The Mainstream Thought or Mean 
Best (Mbest) is defined as the mean of the pbest positions of all particles and it given by 
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where N represents the dimension of optimization problem and g represents the index of the best particle among all the 
particles’ swarm in j-th dimension. In this case, the local attractor to guarantee convergence of the algorithm presents 
the following coordinates: 
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where pk,i (pbest) represents the best previous i-th position of the k-th particle and pg,i (gbest) represents the i-th position 
of the best particle of the population. Positive constants c1 and c2 are the cognitive and social components, respectively, 
as in the classical PSO. The procedure for implementing the QPSO is given by the following steps (Coelho, 2008): 
 
Step 1: Initialization of swarm positions: Initialize a population (array) of particles with random positions in the n 
dimensional problem space using a uniform probability distribution function. 

Step 2: Evaluation of particle’s fitness: Evaluate the fitness value of each particle. 

Step 3: Comparison of each particle’s fitness with its pbest (personal best): Compare each particle’s fitness with the 
particle’s pbest. If the current value is better than pbest, then set a novel pbest value equals to the current value and the 
pbest location equals to the current location in n-dimensional space. 

Step 4: Comparison of each particle’s fitness with its gbest (global best): Compare the fitness with the population’s 
overall previous best.  If the current value is better than gbest, then reset gbest to the current particle’s array index and 
value.  

Step 5: Updating of global point: Calculate the Mbest using equation (2). 
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Step 6:Updating of particles’ position: Change the position of the particles where c1 and c2 are two random numbers 
generated using a uniform probability distribution in the range [0, 1].   

Step 7: Repeating the evolutionary cycle: Loop to Step 2 until a stop criterion is met, usually a sufficiently good fitness 
or a maximum number of iterations (generations). 

 
3. DESCRIPTION OF THE CASE STUDY AND THE FORECASTING RESULTS 

 
This section describes the case study in the swimming field and forecasting results. First, a brief overview of the 

case study of the force measurements of a swimmer is provided, and finally the forecasting results of the proposed 
RBF-NN design are presented. 

 
3.1 Case study  

 
In the sports field, numerical simulation techniques have been shown to provide useful information about 

performance and to play an important role as a complementary tool to physical experiments. In swimming, this 
methodology has been applied in order to better understand swimming performance (Marinho et al., 2012). 

Maximal swimming velocity, especially at sprint distances, depends on pulling force characteristics besides 
technical and energetic abilities of swimmers. Viewed kinematically, swimming is a series of cyclic movements 
performed by alternation of arm and leg strokes. Each stroke results in a characteristic force, which pulls the swimmer 
forward and is realized by contracting the muscles involved (Doopsaj et al., 2000). 

The propulsive force of swimming (Gourgoulis et al., 2008), velocity (Stamm et al., 2011) and technique (Akis and 
Orcan, 2004) are key factors in the performance of swimmer. A specific method to evaluate the propulsive force 
dynamometry is fully tethered swimming. Tethered swimming has been in use for long in order to measure and evaluate 
swimmers propulsive force (Yeater et al., 1981). The results of tethered swimming can be useful to relationship 
between swimming speed and the propulsive forces, and the instantaneous power. 

In this paper, the force data of a Brazilian elite male swimmer in crawl stroke swimming were measured. In this 
context, the purpose of the measurement was to propose a time series model for this test. The obtained of the force data 
was carried out using a dynamometer Instrutherm DD-300. The device was linked with the platform using a cable. 
Furthermore, the dynamometer was connected to a personal computer to store the tension force signals. The swimmer 
did a 10-second warm-up, followed by a 30-second high intensity trial of tethered swimming in order to get the force 
data. The sampling time was approximately 200 ms, according to the dynamometer manufacturer. Trials were 
simultaneously video recorded using an underwater camera. An illustration of procedure is presented in the Figures 2, 3 
and 4. The force measures of the Brazilian elite male swimmer are presented in Figure 5 and Table 1. 

It is advised that the swimmer should use something to clip their feet, in order to avoid any noise generated by the 
stride. As the legs tend to sink, it also should be used some floaters to help keeping the body alignment.  

 
 

 
Fig. 2. Illustration of tether mechanism, where ‘A’ is a belt; ‘B’, ‘C’, ‘D’, ‘E’, ‘G’ and ‘H’ are ropes; ‘F’ is a bar; ‘I’ 

is the pool wall; ‘J’ is the starting block; ‘K’ and ‘L’ are racing lanes.  
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Fig. 3. The dynamometer used to measure tethered force of the swimmer. 

 

 
Fig. 4. Part of the tethered force test video realized with the swimmer. 
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Fig. 5. Measured force data of the male swimmer during the tethered force test. 
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Table 1. Analyzed data (using a image processing software) of the male swimmer during the tethered force test. 
Description Value 
Time to peak of force (18 N)  0.2960 s 
Mean time to transition of best to worst arm 0.2806 s 
Mean time to transition of worst to best arm 0.2879 s 
Mean force (worst arm)   7.9902 N 
Mean force (best arm)   13.0152 N 
Maximum of the force signal 18.0001 N 
Mean of the force signal 10.3706 N 
Median of the force signal 10.3850 N 
Variance of the force signal 7.4227 N 

 
 

3.2 Forecasting results using RBF-NN 
 

In the RBF-NN design, it was adopted the QPSO using c1 = c2 = 2.05 and  based on a linear reduction equation 
with initial and final values of 1 and 0.2. The setup adopted in the QPSO also includes the swarm size (population size) 
equal to 30 particles and the stopping criterion is 100 generations.  The computational programs and functions of the 
RBF-NN design were run in Matlab (MathWorks Inc., MA) on a 3.2 GHz Pentium IV processor with 8 MB of 
Random Access Memory. 
       The data that we used for our runs consist of 170 data points. Our method exploits the output dependence across 
time using a delay vector. It was adopted an input vector in the RBF-NN with three delayed outputs (force 
measurement) in a series-parallel setup.  
       As splitting criterion we have chosen approximately 59% of the data for training set and the remaining for 
validation. In other words, forecasting simulations were carried out for the estimation phase of the mathematical model 
using samples 1 to 100. For the validation phase, the RBF-NN model used signals of samples 101 to 171. The system 
identification by the RBF-NN model is appropriate if the values of the performance index are permissible for the user’s 
needs.  In this case, the objective is the maximization of the harmonic mean of multiple correlation indices of estimation 
and validation phases. That function (to be maximized) is calculated using the expression of 2

estR  given by:   
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where 2

estR  is the multiple correlation index of the estimation phase, y(t) is the output of the real system, )t(ŷ  is the 
output estimated by the RBF-NN, and y  is the mean value of the system’s output. For the validation phase (verification 

of generalization capability) of the RBF-NN, we employed the 2
valR  index given by 
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where 2

valR  is the multiple correlation index of the validation phase. When the value 2R =1.0 (estimation or validation 

phases), it indicates the model’s accurate approach to the system’s measured data. A 2R  value between 0.9 and 1.0 is 
considered sufficient for applications in forecasting and identification applications. QPSO used in the RBF-NN design 
deals the minimization of the sum of the equations (4) and (5). 
       Table 2 contains the forecasting results using RBF-NN design using QPSO in 30 runs. It can be seen that the RBF-
NN design using 5 to 12 Gaussian functions in the hidden layer with obtain reasonably good results in terms of 2

estR  

and 2
valR . 
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Table 2. Forecasting results using RBF-NN design using QPSO in 30 runs. 

Setup 2
estR in 30 runs 2

valR  in 30 runs 
Test  nG 

 
Maximum Mean Minimum Standard 

Deviation 
Maximum Mean Minimum Standard 

Deviation 

1 2 0.5377    0.4656     0.1304     0.0932 0.5960     0.5282     0.1849     0.1048 
2 3 0.5460     0.5312     0.5104     0.0079 0.6196     0.5928     0.5697     0.0110 
3 4 0.5960     0.5557     0.4640     0.0257 0.7216     0.6349      0.5887   0.0389 
4 5 0.6580     0.6319     0.5980     0.0141 0.8062     0.7908     0.7404     0.0138 
5 6 0.6571     0.6461     0.6032     0.0108 0.8125     0.8023     0.7833     0.0069 
6 7 0.6587     0.6539     0.6410     0.0045 0.8126     0.8067     0.8005     0.0028 
7 8 0.6592     0.6569     0.6504     0.0021 0.8151     0.8086     0.8048     0.0022 
8 9 0.6590     0.6574     0.6551     0.0010 0.8121     0.8097     0.8078     0.0013 
9 10 0.6588     0.6575     0.6559     0.0009 0.8119     0.8101     0.8083     0.0009 

10 11 0.6603     0.6548     0.6358     0.0056 0.8155     0.8083     0.7888     0.0063 
11 12 0.6615     0.6520     0.5437     0.0212 0.8141     0.8015     0.7477     0.0153 

* nG: Number of Gaussian functions in the hidden layer of the RBF-NN 
 

0 20 40 60 80 100 120 140 160 180
40

60

80

100

120

140

160

180

200

sample

fo
rc

e 
(N

)

 

 
real force
estimated force by RBF-NN

 
Fig. 6. Forecasting result using RBF-NN with nG=5 (best result in 30 runs). 

 
 

4. CONCLUSION 
 
An important property of the RBF-NN is that multidimensional space nonlinearity can be taken to be a linear 

combination of the nonlinear RBFs. This ability of learning the relation and structure of a multidimensional data by 
RBF-NN in a nonlinear way has been exploited in many engineering problems.  

RBF-NNs have been trained by different learning algorithms in the literature. In this study we have proposed and 
investigated a RBF-NN design based on the QPSO approach used to force modeling of a Brazilian elite male swimmer. 
As the Table 2 shows, our proposed RBF-NN design can be useful to force modeling. Furthermore, the results obtained 
were used to establish a prediction model and monitoring for competitive level of fitness in swimmers, which is 
important to athletes and coaches. 

In the future work the proposed RBF-NN scheme will be applied to other practical case studies related to swimming 
biomechanics. 
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