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Abstract. In the present work, a parallel, distributed-memory implementation, of a rectilinear Cartesian mesh solver,
is described. It is based on the Navier-Stokes equations with a Newtonian, viscous incompressible fluid with constant
coefficients. We used the Finite Volume Method, with the central-differences and the Adams-Bashforth methods, with
second order accuracy in both space and time, respectively. To solve the Poisson equation, from the pressure correction
of the fractional-step method, we applied a parallel external solver. The numerical results are compared with numerical
and experimental data, and the agreement is found to be good.
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1. INTRODUCTION

The research in the field of computational fluid dynamics (CFD) has grown in recent years, mainly due the develop-
ment of new mathematical models, algorithms and computational power available. This way, its possible to engineers
to simulate the physics behind increasing problem sizes. However, in the simulations of problems like the deep and
ultra-deep exploration of water oilfields by Petrobras, as well as in the pre-salt oilfields, complex models and high com-
putational power are required, even with simplifications. Also, in the recent years, there has been an impressive increase
in the number of multi-core processors together with small to medium computational clusters. This happened as the high
speed networks becomes cheaper and therefore more accessible, mainly to scientific institutions. Furthermore, micro-
processors were highly improved in the last few decades, particularly with regard to floating-point performance. These
hardware performance improvements have provided a basis to overcome some challenges in the simulation of problems
large proportions. In a cluster, a big number of interconnected processors nodes can be used to achieve a common goal.
However, subdivide the computational solution of a continuous physical problem into sub-applications is not a straightfor-
ward task. The inherent difficulty is due the fact of problems are generally inherently not fully parallelizable. Moreover,
there is currently a large number of numerical libraries available of scientific computing, both open source and commer-
cial ones. Consequently, there is an increasing number of scientific frameworks, with dozens of tools that can be directly
or indirectly applied in CFD. Thus, the aim of the present work is to make use of these numerical libraries in an optimized
and flexible way, in order to improve our application.

1.1 LOAD BALANCING

Generally, the physical problem is discretized in a mesh or grid using schemes like the Finite Volume Method (FVM),
Finite Difference Method (FDM) or Finite Element Method (FEM). Perhaps the most frequent strategy adopted to par-
allelize problems in this way is using the Domain Decomposition Method, where a certain number of nodes or volumes
of the computational mesh, is assigned to each processor in the cluster. Similarly, in a matrix-vector multiplication for
example, the multiplication blocks can be assigned to different nodes and the final result is then summed to a root node
or to all nodes in the cluster. Although it seems intuitive, in practice this is not a simple task. Fortunately, there are
computational libraries and frameworks, both commercial and free(generally open source) ones, with the only purpose of
distribute the nodes or volumes forming a problem domain, in order to perform load balancing.

Such framework is Zoltan (Catalyurek et al., 2007), a collection of data management services for unstructured, adap-
tive and dynamic applications, used to perform the load balancing in all cases considered in the present work. Here,
the Eulerian, rectilinear mesh is passed, together with another variables, as input parameters to Zoltan. In this case, the
output are the definitions of the blocks/domains assigned to each processor utilized. In the dynamic case, its also possible
to utilize Zoltan to manage the migration of data between processors. The new blocks are created not only in order to
distribute the load evenly among the processors, but also to optimize the data transfer between partitions.
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2. MATHEMATICAL AND NUMERICAL MODELING

The equations of mass conservation and balance of momentum are used to model the cases simulated in this work,
considering an incompressible flow with a Newtonian fluid. These equations are given, in dimensional form and Cartesian
coordinates, respectively as:
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were ui and p are the velocity components and pressure field respectively, ρ is the density and ν is the kinematic viscosity.
In this paper, the discretization of the governing equations Eqs. (1-5), for the Eulerian field uses the finite volume

method (Patankar, 1980) in a staggered computational grid, using the Adams-Bashforth (Bashforth and Adams, 1883)
scheme in time and central-differences scheme in space, both of second order. The velocity pressure coupling uses a two
step fractional step method of Kim and Moin (1985).

2.1 Poisson’s equation

The time discretization of Eq. 2 is made using a modification of the Adams-Bashforth method by Lilly (1965), an
explicit extrapolation from the preceding time step, avoiding an additional linear system of equations to solve. The Eq. 2
then becomes:

ut+1
i − uti

∆t
=

3

2
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2
U t−1 − P t+1

i (3)

where U t and U t−1 are the discretized RHS of the momentum equation, in the current and from the previous time steps
respectively. The velocity component ut+1

i in the equation above needs the discretized pressure gradient evaluated in next
time step t + 1, P t+1

i . Applying the classical fractional step method, using two steps, one for prediction and another for
correction, its possible to find the equations Eq. 4 and Eq. 5.
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where φ is the pressure correction variable. In the first step, u∗i is estimated using the pressure in the current time t. Then,
ut+1
i and p are corrected using the pressure correction variable (Ferziger and Peric, 2002), respectively as:

ut+1
i = u∗ti − (∇φi) ∆t (6)

pt+1 = pt + φ (7)

The greater the complexity of a problem, generally greater will be the number of degrees of freedom to be solved.
The solution of the Poisson equation arising from Eq. 5, is a serious computational bottleneck, mainly in unsteady sim-
ulations. In this study, we used the scientific computation framework Trilinos (Heroux et al., 2003) to solve the linear
system of equations in parallel, using the libraries ML and AztecOO, provided by framework. We used the Bi-Conjugated
Gradient Stabilized (BiCGStab) and Generalized Minimum Residual methods (Saad and Schultz, 1986), both of them pre-
conditioned by Algebraic Multigrid (AMG). In the sequential solver used previously by the authors, the Strongly Implicit
Procedure SIP Stone (1968) was used as the Poisson pressure correction solver.

3. PROBLEM DESCRIPTION

Here we used the classical lid-driven cavity fluid flow as a test case, due to the simplicity of implementation and by
the great number of available data for comparison. The problem is depicted in Fig. 1.
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Figure 1: Diagram for the lid-driven cavity problem.

It is a cubic cavity, with no-slip boundary conditions in all of the six faces. All faces are static, with the exception of
the upper face, which moves with prescribed velocity u0 only in the x direction and with the respective dimensions shown
in the figure. For all the faces, the boundary condition of null derivative is imposed for the pressure correction

(
∂φ
∂η = 0

)
.

The Reynolds number is the non-dimensional factor governing the flow, given by:

Re =
u0L

ν
(8)

where L is the side length of the cavity and ν is the cinematic viscosity of the fluid. In the first numerical investigations
of the problem, in two-dimensions, there are (Kawaguti, 1961; Bozeman and Dalton, 1973). Another two-dimensional
simulation are the work of Ghia et al. (1982), for Reynolds numbers in the range of Re = 102 to Re = 104, using high
resolution meshes with a vorticity-stream function formulation (de Vahl Davis and Mallinson, 1976). An overview on the
subject can be found in the work of Shankar and Deshpande (2000).

4. RESULTS

4.1 Lid-driven cavity flow

The comparisons are made with the numerical works Ku et al. (1987) Kato et al. (1990), Babu and Korpela (1994),
Sheu and Tsai (2002), Deshpande and Milton (1998) and Padilla and da Silveira Neto (2005). The works of Kato et al.
(1990) and Sheu and Tsai (2002) are based on the FEM, while the work of Babu and Korpela (1994) uses a FDM
formulation. In the last one, to take advantage on the plane of symmetry of the problem in the z direction, was utilized a
mesh of 63×63×33 nodes. Ku et al. (1987) shows high resolution simulations, determined by a pseudo-spectral method
for Reynolds numbers of Re = 100, Re = 400 e Re = 1000. The FDM is also used in the work of Deshpande and
Milton (1998), and they present solutions for various aspect ratios and Reynolds numbers.
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Figure 2: Velocity profile of u through the center of the cavity, passing by the point (x/L = 0.5; z/L = 0.5). Comparisons
are made to Re = 100 and Re = 400.
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Figure 3: Velocity profile of v through the center of the cavity, passing by the point (y/L = 0.5; z/L = 0.5). Comparisons
are made to Re = 100 and Re = 400.

In Fig. 2 is presented the x velocity distribution over the vertical line (x/L = 0.5; z/L = 0.5) for Re = 100 and
Re = 400. Also for Reynolds numbers of Re = 100 and Re = 400, the y velocity component, v, is presented in the
Fig. 3, over the horizontal line, trough the point (y/L = 0.5; z/L = 0.5). The results for Re = 100 are compared only
with the results of Ku et al. (1987), showing good agreement, except in regions near the cavity walls. This can be due the
coarse mesh (32× 32× 32) in these regions, or by influence of linear interpolations used in the post-processing.

For Re = 400, the results are also in agreement with the spectral based solutions of Ku et al. (1987). The small
difference observed with the results of Padilla and da Silveira Neto (2005) is probably due to different mesh resolutions
of (50× 50× 50) and (60× 60× 60) of the present work.

In Fig. 4, the comparison results are presented for Re = 1000. Also in the other cases, for Reynolds numbers of
Re = 100 and Re = 400, shown a good agreement with the references. The profiles for the x velocity component, u,
was get in the line passing trough (x/L = 0.5; z/L = 0.5). The distribution for the y velocity component, v, lies over
(y/L = 0.5; z/L = 0.5). The values are quite the same for both parallel and sequential simulations.
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Figure 4: Velocity profiles in the lid-driven cavity flow. Comparison with the works of Ku et al. (1987); Deshpande and
Milton (1998) withRe = 1000: (a) Component u over the vertical line y and passing trough the point (x/L = 0.5; z/L =
0.5) and; (b) Component v over the horizontal line in x, crossing the point (y/L = 0.5; z/L = 0.5).

4.2 Computational aspects

In the tests performed, we used meshes of 32× 32× 32, 60× 60× 60 and 100× 100× 100 volumes, for simulations
with the Reynolds numbers of Re = 100, Re = 400 and Re = 1000, respectively. For Re = 1000, was used a non-
uniform mesh, with a stretching of about 6% near the walls. Was found that the number of iterations of solution are
highly dependent on the parameters passed to the AMG precondition. Furthermore, this number of iterations is inversely
proportional to the time spent in each iteration and of the number of processors utilized. The number of iterations of
solution are shown in Table 1.
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Table 1: Iterations of solution for 3 test cases analyzed in the lid-driven cavity flow.

Re 100 400 103

Mesh Uniforme Uniforme Refinada
Resolution 32× 32× 32 60× 60× 60 100× 100× 100
N◦ of processors 2 8 16
N◦ of iterations of solution 4 5 5

We have partitioned a mesh between 64 processors, and the load balancing for the test is depicted in Fig. 5. The mesh
have 128× 128× 128 volumes, and can be seen by the results a small difference of 0.5% in the distribution.

Processor

Cells per processor

Figure 5: Load balance for the lid-driven cavity flow at Re = 400.

The Fig. 6 shows the speedup for the simulation of the lid-driven cavity flow withRe = 1000, mesh of 256×256×256
volumes in the x,y and z, respectively, partitioned on 2, 4, 8, 16, 32, 64 and 128 processors. Only the case with 128
processors used Hyperthreading1. In the test, was performed 25 iterations of solution using the BiCGStab method to
solve the Poisson equation.
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Figure 6: Speedup and ideal slope for the lid-driven cavity flow at Re = 1000.

1Computer system that processes two or more tasks simultaneously, best known as SMT (Simultaneous Multi Threading), with the intent to make
better use of computer resources.
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5. CONCLUSIONS

In this work was described a distributed-memory parallel implementation of a rectilinear solver, based on the Navier-
Stokes equations with a Newtonian, viscous, incompressible fluid with constant coefficients. We used the Finite Volume
Method, with second order accuracy methods central-differences and the Adams-Bashforth, in both space and time,
respectively. The numerical results are compared with numerical data in the literature and the agreement between is found
to be good. We conclude that it seems feasible to use an external library to solve critical parts in the simulation, since the
huge background of these libraries are difficult to achieve in terms of performance in a short term.

6. ACKNOWLEDGEMENTS

The authors like to tank the Support and Research of Minas Gerais State (FAPEMIG), the CNPq and the Research
Center of PETROBRAS (CENPES) for the financial support.

7. REFERENCES

Babu, V. and Korpela, S.A., 1994. “Numerical solution of the incompressible three-dimensional navier-stokes equations”.
Computers & Fluids, Vol. 23, No. 5, pp. 675 – 691. ISSN 0045-7930. doi:10.1016/0045-7930(94)90009-4. URL
http://www.sciencedirect.com/science/article/pii/0045793094900094.

Bashforth, F. and Adams, J., 1883. An attempt to test the theories of capillary action: by comparing the theoretical and
measured forms of drops of fluid. With an explanation of the method of integration employed in constucting the tables
which give the theoretical forms of such drops. University Press.

Bozeman, J.D. and Dalton, C., 1973. “Numerical study of viscous flow in a cavity”. Journal of Computa-
tional Physics, Vol. 12, No. 3, pp. 348 – 363. ISSN 0021-9991. doi:10.1016/0021-9991(73)90157-5. URL
http://www.sciencedirect.com/science/article/pii/0021999173901575.

Catalyurek, U., Boman, E., Devine, K., Bozdag, D., Heaphy, R. and Riesen, L., 2007. “Hypergraph-based dynamic load
balancing for adaptive scientific computations”. In Proc. of 21st International Parallel and Distributed Processing
Symposium (IPDPS’07). IEEE. Best Algorithms Paper Award.

de Vahl Davis, G. and Mallinson, G., 1976. “An evaluation of upwind and central difference approximations by a study
of recirculating flow”. Computers & Fluids, Vol. 4, No. 1, pp. 29 – 43. ISSN 0045-7930. doi:10.1016/0045-
7930(76)90010-4. URL http://www.sciencedirect.com/science/article/pii/0045793076900104.

Deshpande, M. and Milton, S., 1998. “Kolmogorov scales in a driven cavity flow”. Fluid Dynamics Re-
search, Vol. 22, No. 6, pp. 359 – 381. ISSN 0169-5983. doi:10.1016/S0169-5983(97)00043-9. URL
http://www.sciencedirect.com/science/article/pii/S0169598397000439.

Ferziger, J.H. and Peric, M., 2002. Computational methods for fluid dynamics. Springer, 3rd edition.
Ghia, U., Ghia, K. and Shin, C., 1982. “High-re solutions for incompressible flow us-

ing the navier-stokes equations and a multigrid method”. Journal of Computational Physics,
Vol. 48, No. 3, pp. 387 – 411. ISSN 0021-9991. doi:10.1016/0021-9991(82)90058-4. URL
http://www.sciencedirect.com/science/article/pii/0021999182900584.

Heroux, M., Bartlett, R., Hoekstra, V.H.R., Hu, J., Kolda, T., Lehoucq, R., Long, K., Pawlowski, R., Phipps, E., Salinger,
A., Thornquist, H., Tuminaro, R., Willenbring, J. and Williams, A., 2003. “An Overview of Trilinos”. Technical
Report SAND2003-2927, Sandia National Laboratories.

Kato, Y., Kawai, H. and Tanahashi, T., 1990. “Numerical flow analysis in a cubic cavity by the gsmac finite-element
method : In the case where the reynolds numbers are 1000 and 3200”. JSME international journal. Ser. 2, Fluids en-
gineering, heat transfer, power, combustion, thermophysical properties, Vol. 33, No. 4, pp. 649–658. ISSN 09148817.
URL http://ci.nii.ac.jp/naid/110002492540/.

Kawaguti, M., 1961. “Numerical solution of the navier-stokes equations for the flow in a two-dimensional cavity”.
Journal of the Physical Society of Japan, Vol. 16, No. 11, pp. 2307–2315. doi:10.1143/JPSJ.16.2307. URL
http://jpsj.ipap.jp/link?JPSJ/16/2307/.

Kim, J. and Moin, P., 1985. “Application of a fractional-step method to incompress-
ible navier-stokes equations”. Journal of Computational Physics, Vol. 59, No. 2,
pp. 308 – 323. ISSN 0021-9991. doi:DOI: 10.1016/0021-9991(85)90148-2. URL
http://www.sciencedirect.com/science/article/B6WHY-4DD1VRS-146/2/a3d27f0031b262180e467036ab03e9db.

Ku, H.C., Hirsh, R.S. and Taylor, T.D., 1987. “A pseudospectral method for solution of the
three-dimensional incompressible navier-stokes equations”. Journal of Computational Physics,
Vol. 70, No. 2, pp. 439 – 462. ISSN 0021-9991. doi:10.1016/0021-9991(87)90190-2. URL
http://www.sciencedirect.com/science/article/pii/0021999187901902.

Lilly, D.K., 1965. “On the computational stability of numerical solutions of time-dependent non-linear geophysical fluid
dynamics problems”. Monthly Weather Review - American Meteorological Society, Vol. 93, p. 24.

ISSN 2176-5480

7108



M. A. S. Lourenço, E. L. M. Padilla, A. Silveira Neto and A. L. Martins
A parallel fluid flow simulation with external solvers

Padilla, E.L.M. and da Silveira Neto, A., 2005. “Desenvolvimento de um cÃşdigo computacional tridimensional para
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