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Abstract. This paper treats the development of a software module for static analysis for any mechanism. The module
was developed as an addition to a framework for kinematic analysis created by Raul Guenther Laboratory of Robotics of
Federal University of Santa Catarina. The expanded framework can determine the static analysis of a moving mechanism,
being possible to include external forces such as gravitational forces of each link and environmental contact. The created
module realizes the analysis based on screw theory, graph theory and Assur’s virtual chains to determine the static model
of a mechanism. In order to illustrate the use of the proposed module, a didactic example are developed to validate it and
a static model of a spatial parallel robot with three degrees of freedom is solved.
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1. INTRODUCTION

The research around industrial robotics is focused on the following areas: kinematic, static, dynamic and control
Sciavicco and Siciliano (2004). Some research has been developed in these areas. Among these, the statics for robots
problem was addressed by many thesis (Cazangi, 2008; Erthal, 2010; Cruz, 2010; Weihmann, 2011; Rincon, 2012).

Recent work at Laboratory of Robotics have resulted a computational framework for modelling robotic system based
on screw theory. This framework, named as KAST (Kinematic Analysis by Screw Theory), is also used for kinematic
analysis of this systems (Rocha, 2012).

The use of computational frameworks for simulation is growing. There are many computational tools for robotic
simulations that are free software, such as OpenRAVE (Open Robotics Automation Virtual Environment), Gazebo, v-rep
(Virtual Robot Experimentation Platform) and KAST (Diankov, 2010, 2013; Open Source Robotics Foundation, 2013;
Coppelia Robotics, 2013; Rocha, 2012).

The OpenRAVE provides and environment for testing, developing and deploying motion planning algorithms in real-
world robotics applications. The main focus is on simulation and analysis of kinematic and geometric information (Di-
ankov, 2010, 2013). The Gazebo is a multi-robot simulator for outdoor environments. It is capable of simulating a
population of robots, sensors and objects, but does so in a three-dimensional world. It also has a graphical user interface
to build and edit models and simulations (Open Source Robotics Foundation, 2013). The v-rep provides the features of
the other 2 mentioned software, OpenRAVE and Gazebo, and further. It includes particle dynamics, an interface for local
and remote programming and collision detection (Coppelia Robotics, 2013). The KAST is a software in its initial state of
development, it was made to be modular and extensible. Until now, the KAST provides a module for modeling robotic
systems and kinematic analysis of robots through screw theory, a module for path generation e an additional framework
for motion planning in a context (Rocha, 2012).

None of the mentioned software allows to analyse the statics for mechanisms and robots.
This paper reports the development of a software module for statics analysis for any mechanism. This module is

developed to expand the KAST. The module can provide functions to solve the statics for any mechanism or robot, the
results given include the whole joint robot data in terms of positions, moments and forces.

This paper first presents the tools used to develop the module, that is, the screw theory and the statics modelling. The
module is also validated with a didactic example and it is explored the capability of simulate spatial robots.

2. STATICS FOR ROBOTS THROUGH SCREW THEORY

The screw represents the state of movements or actions, that is, the kinematic and statics for rigid bodies in space.
This theory is based on two theorems, the Poinsot theorem and the Mozzi-Chasles theorem (Ball, 1900).

The screws may be expressed using Plücker coordinates Davidson and Hunt (2004). The screw can be defined as
shown in Eq. (1), where ~s is the screw axis direction unit vector, ~S0 is the position vector of a point that belongs to the
screw, relative to the origin, and h is called step. The homogeneous Plücker coordinates are L, M , N , P ∗, Q∗ and R∗
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(Davidson and Hunt, 2004).

$ =

 ~S0 × ~s+ h~s
· · · · · · · · · · · ·

~s

 =



P ∗

Q∗

R∗

· · · · · ·
L
M
N


(1)

For the statics analysis, the screw in ray order are used and called wrenches, the Eq. (2) shows its representation. The
~M0 represents the torque, ~F represents the forces and the superscript A of $A shows that is a action screw, also called

wrench (Davidson and Hunt, 2004).

$A =

 ~S0 × ~s+ h~s
· · · · · · · · · · · ·

~s

 =



P ∗

Q∗

R∗

· · · · · ·
L
M
N


=

 ~M0

· · · · · ·
~F

 (2)

To analyse the statics, is needed to define the action matrix [AD]λ×C . In this matrix, the amount of rows is given
by the system order (λ) and the columns represents the unit action through each joint’s wrench, it is shown in Eq. (3)
(Cazangi, 2008).

[AD]λ×C =
[

$A1 $A2 · · · $AF
]

(3)

Given the norm of each wrench of action matrix, we obtain the unit action matrix [ÂD]λ×C , represented in Eq. (4).
The magnitudes of each wrench results the magnitude action vector {~ΨC×1} shown in Eq. (5) (Cazangi, 2008).

[ÂD]λ×C =
[

$̂A1 $̂A2 · · · $̂AF

]
(4)

[~ΨC×1] =
[
ψ1 ψ2

... ψF

]T
(5)

More information can be found in (Martins, 2002; Campos, 2004; Cazangi, 2008; Simas, 2008; Erthal, 2010; Cruz,
2010; Weihmann, 2011; Rincon, 2012; Rocha, 2012)

2.1 Kirchhoff’s Laws

The Kirchhoff’s Laws for electric circuits were adapted by Davies to be used on mechanical systems (Davies, 1981;
Martins, 2002; Campos, 2004; Cazangi, 2008).

Adapting the Kirchhoff’s current law, it was possible to establish the relationships between actions belonging to the
same partition, that contributed to the statics analysis. This law states that the algebraic sum of currents in a network of
conductors meeting at a point is zero. Analogously, Davies (2006) states that the algebraic sum of wrenches belonging to
the same partition is zero, which is the Cut Law (Davies, 1981).

This implies that to any coupling networks in balance, any subset of couplings separated by partitions, the sum of each
element of this action is null. Equation (6) shows the sum considering a cut into space and using screws. In the Eq. (7) is
applied the matrix notation according to the Eqs. (3), (4) and (5).∑

P ∗ =
∑

Q∗ =
∑

R∗ =
∑

L =
∑

M =
∑

N = 0 (6)∑
$A = [AD]λ×C = [ÂD]λ×C{~Ψ}C×1 = [~0]λ× 1 (7)

2.2 Statics Analysis

Cazangi (2008) presents the statics analysis for mechanisms and robots separated into 9 steps. This simplifies its
development in a computational tool. These steps are briefly shown below.

1. Mechanism characterization
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(a) Schematic representation with coordinated system Oxyz .
(b) Coupling network representation.
(c) Coupling graph representation.: GC .
(d) Determine the incidence matrix from graph GC : [IC ]n×e.
(e) Calculate the echelon form of incidence matrix [IC ]n×e to obtain the cut-f matrix of GC : [QC ]k×e.

2. Coupling characterization

(a) Geometric characterization (~sA, ~SA0 , h
A) and action (cp, ca).

3. Topologic (Cuts)

(a) Action graph representation: GA.
(b) Parallel expansion of the C unit constraint of cut-f matrix: [QA]k×C .

4. Geometric (Wrench)

(a) Defining wrenches: $A

(b) Action matrix determination: [AD]λ×C

5. Equation system

(a) Unit actions network matrix determination: [ÂD]λ.k×C .

(b) Kirchhoff’s Law: [ÂD]λ.k×C{~Ψ}C×1 = [~0]λ.k × 1.

6. Under constraint (extra freedom)

(a) Determination of the FN dependent equations.
(b) Eliminating the dependent equations.

7. Variable separation

(a) Selecting the CN primary variables on vector { ~Psi}C×1.
(b) Separating the primary and secondary variables on the equation system.

8. Solution

(a) Calculate the inverse matrix of [ANS ]a×a, give values to {~ΨP }CN×1 and obtain the solution {~ΨS}a×1

9. Actions instant state

(a) Apply the magnitudes {~Ψ} to the wrench $A of each coupling.

Examples and more information can be found in (Cazangi, 2008; Erthal, 2010; Cruz, 2010; Weihmann, 2011; Rincon,
2012).

3. FRAMEWORK FOR KINEMATIC AND STATICS ANALYSIS

The framework KAST, developed by Rocha (2012), is a computational tool for kinematic analysis using the Davies
method. With this framework is possible to analyse different types of kinematic chains. The input kinematic models are
exclusively based on screw theory. The development was motivated by the need to ease the creation of cooperative/vehicle-
manipulator systems simulations.

The KAST was developed to be modular and extensible, therefore it was decided to create a module for statics for
mechanisms and robots in addition to KAST. With the expanded framework, named KSAST (Kinematic and Static Anal-
ysis by Screw Theory), is possible to analyse the statics for any mechanism or robot through screw theory. The module
allows to include external forces such as gravitational forces of each link and environmental contact.

The framework provides two ways to define kinematic chains, using a description file, XML (W3C, 2013) based, or
directly through Python code. The first is generic and contribute to create a kinematic chains models repository. The
second allows to change the kinematic chain during the simulation, enabling to simulate reconfigurable chains.

Figure 1 shows the UML diagram for the whole framework.
The diagram shown in Fig. 1 is divided in 3 groups: Transformation, Loader and Components. The Transformation

group are classes that are responsible for change the coordinate system of specialized classes from BaseScrew. The
Loader group are classes that are responsible for loading the XML based file into the memory of the system, converting
the file attributes into classes of the Components group. The Components group brings together classes that represent a
component of the system.
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Attribute AttributeList Identity

ScrewTransformation

Posture

PostureFromMatrices
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KCComponent

BaseScrew
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Joint

Constraint

State

Defs

BaseKinematicChain

KCComposable

Link

KCFactory

KCParser
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KinematicChain

Loader

Components

Transformation

Figure 1. UML diagram

3.1 Using the framework

To use the framework, it is needed to provide information about the robot and its couplings. The better way to provide
such data is using a XML based file. To ease the comprehension, the explanation about how to use the framework will be
based on the steps shown at Subsection 2.2and will be applied to the structure shown in Fig. 2. This example is from the
book Hibbeler (1999), page 261, solved problem 4.8.

y

x

z

1,20 m

1,20 m

1,50 m

1,20 m
2,40 m

1,80 m

0,90 m

0,60 m

B

E

D

C

FBDFEC

Ax

Ay

Az

0,75 m

Figure 2. Schematic representation (Hibbeler, 1999)
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The example shows a sign fixed on the wall by a ball joint, cable BD and cable EC.
Some steps does not need input data from the user, these steps are performed automatically by the KSAST. The steps

(1.a), (1.b), (1.c), (4.a) and (7.a) are the steps which need input. The step (2.a) is not used directly to create the XML file,
but it is used by the step (4.a). They are explained and exemplified along this subsection.

Step (1.a) Within this step, the user must gather the information about the state variables needed to put them into the
XML file. For the example, we have 6 variables for statics, being Ax, Ay , Az , FBD, FEC and P . The XML file
snippet is shown in List. 1.

<states>

<state type="static">

<var name="Ax">0.0</var>

<var name="Ay">0.0</var>

<var name="Az">0.0</var>

<var name="Fbd">0.0</var>

<var name="Fec">0.0</var>

<var name="P">-1350.0</var>

</state>

</states>

Listing 1: Structure’s state variables

Step (1.b) With the coupling network shown in Fig. 3 is possible to determine the structure’s links. In this case, we have
2 links, the wall and the sign. The XML snippet is shown is List. 2.

Wall

Sign

A
FCE FBD

P

Figure 3. Structure’s coupling network

<links>

<Link id="0" name="wall" base="yes" />

<Link id="1" name="sign" />

</links>

Listing 2: Structure’s links

Step (1.c) The coupling graph, in Fig. 4 shows the relations between the links of the mechanisms. The information
obtained in this step is used to fill the fields linkfrom and linkto of each constraint. The XML snippet for the whole
constraint definition is shown in List. 3.

A FCEFBD

Wall

Sign

P

Figure 4. Structure’s coupling graph

Step (2.a) In this step we gather coupling geometric characteristics for each constraint. The vector ~s of each constraint is
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shown in Eq.(8) and the position vector ~S0 is shown in Eq. (9).

~sax =

 1
0
0

 , ~say =

 0
1
0

 , ~saz =

 0
0
1

 ,

~sb =

 −0, 6666
0, 3333
−0, 6666

 , ~se =

 −0, 8571
0, 4285
0, 2857

 , ~sP =

 0
−1
0


(8)

~S0a =

 0
0
0

 , ~S0b =

 −2, 4
1, 2
2, 4

 , ~S0e =

 −1, 8
0, 9
0, 6

 , ~S0P =

 1, 2
0, 75
0, 0

 (9)

Step (4.a) With the couplings geometric characteristics shown in Step (2.a), the wrench is defined as displayed in the
Eq. (2). In this step, we will consider the wrenches $AFEC

and $AP . The result for the example wrenches used in this
step are shown in the Eq. (10).

$AFEC
=



0
−0, 5143
0, 7714
· · · · · · · · ·
−0, 8571
0, 4286
0, 2857


, $AP =



0
0
−1, 2
· · · · · · · · ·

0
−1, 0

0


(10)

The wrench components, in the XML file, are represented by the component field of each Constraint. The List. 3
shows a full example of defining the wrenches $AFEC

and $AP .

<constraints>

<Constraint id="104" name="el104"

type="translational" var="Fec">

<components>0.0 -0.5143 0.7714

-0.8571 0.4286 0.2857</components>

<linkfrom>parede</linkfrom>

<linkto>cartaz</linkto>

</Constraint>

<Constraint id="105" name="el105"

type="translational" var="P">

<components>0.0 0.0 -1.2 0.0 -1.0 0.0</components>

<linkfrom>parede</linkfrom>

<linkto>cartaz</linkto>

</Constraint>

</constraints>

Listing 3: Constaint example

Step (7.a) To select the primary variables of vector {~Ψ}C×1 is shown in the List. 4. The vector inside partitioning has
size equal to the amount of variables defined on Step (1.a). Each digit indicates if it is a primary variable (with
value 1) or a secondary variable (with value 0). In this example, only the force P is primary, therefore, only the last
digit is 1.

<partitioning type="static">0 0 0 0 0 1</partitioning>

Listing 4: Partitioning example

Step (8.a) The solution values are shown in Tab. 1. This table also show a comparison between the KSAST results and
the results presented in Hibbeler (1999). The difference in the values are because the framework does not round the
obtained values nor considers only significant digits.

The comparison in Tab. 1 contributes to validate the framework for spatial statics analysis.
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Table 1. Statics result comparison

KSAST (Hibbeler, 1999)
Ax 1687,5 N 1690 N
Ay 506,25 N 504 N
Az -112,5 N -114 N
FBD 506,25 N 506 N
FEC 1575 N 1580 N

4. STATICS MODEL THROUGH SCREW THEORY FOR THE SPATIAL DELTA ROBOT

In this section, the statics model for a Delta robot is developed using screw theory. In the Section 5 this model is
applied in the framework KSAST and results are presented. Figure 5 shows the Delta robot modelled in this paper. This
robot is a spacial parallel robot with 3 degrees of freedom.

Figure 5. The Delta robot (Liu et al., 2005)

The 3 legs of this robot are symmetrical, therefore, we can model the leg according the angle ϕ relative to the x axis.
The Tab. 2 shows the values of ϕ for each leg i.

Table 2. Angle ϕ for each leg

i ϕ
0 0◦

1 120◦

2 240◦

Step (1.a) Figure 6 shows the schematic representation of leg i at the initial position, the origin Oxyz . In this figure is
also possible to observe the screw axis relative to each joint’s motion.

lBase lA lC

lD

lEf

1i

2

3i

4i

0

5

Ai

Bi

C1i

C2i

D1i

D2i

x

y

z
ϕ

θAi

θC2i

θC1i

θBi
θD2iy

θD2ix

θD2iz

θD1iz

θD1iy

θD1ix

Figure 6. Schematic representation of Delta’s leg i at the assumed reference position
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Figure 7. Delta’s coupling network

Step (1.b) In Fig. 7 is shown the robot coupling network, with a single leg highlighted.

Step (1.c) The robot coupling graph is shown at Fig. 8.

0

11

21

31

41

5

12

22

3242
33

43

23

13 Leg 1

Figure 8. Delta’s coupling graph

Step (2.a) In this step the coupling geometric characteristics are obtained. The i-th leg has e = 6 couplings, being that
the Ai, Bi, C1i and C2i are rotative pairs, that is, they have cp = 5 constraints. The couplings D1i and D2i are
spherical pairs and have cp = 3 constraints. The direction of constraintsAi eBi are along x-axis, y-axis and z-axis,
and also around x-axis and z-axis, while the couplings C1i and C2i have constraints along x-axis, y-axis and z-axis,
and also around x-axis and y-axis. The spherical pairs D1i and D2i have the only the force constraints Fx, Fy e Fz .
Besides these, is needed to consider ea = 3 more active couplings, being one for each leg in coupling Ai, around
the y-axis.

The Eq. (11), Eq. (12), Eq. (13) and Eq. (14) presents the vector ~s for Ai, Bi, Cji and Dji constraint, respectively.

~sAiFx
= ~sAiTx

=

 cos(ϕ)
sin(ϕ)

0

 , ~sAiFy
= ~sAiTy

=

 cos(ϕ+ π/2)
sin(ϕ+ π/2)

0

 , ~sAiFz
= ~sAiTz

=

 0
0
1

 (11)
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~sBiFx
= ~sBiTx

=

 cos(ϕ)
sin(ϕ)

0

 , ~sBiFy
=

 cos(ϕ+ π/2)
sin(ϕ+ π/2)

0

 , ~sBiFz
= ~sBiTz

=

 0
0
1

 (12)

~sCjiFx
=

 1
0
0

 , ~sCjiTx
=

 cos(θ1 + θ2) ∗ cos(ϕ)
cos(θ1 + θ2) ∗ sin(ϕ)

sin(θ1 + θ2)

 , ~sCjiFy
=

 0
1
0


~sCjiTy

=

 cos(ϕ+ π/2)
sin(ϕ+ π/2)

0

 , ~sCjiFz
=

 0
0
1


(13)

~sDjiFx
=

 1
0
0

 , ~sDjiFy
=

 0
1
0

 , ~sDjiFz
=

 0
0
1

 (14)

The position vector ~S0 for each constraint are defined in Eq. (15).

~S0Ai
=

 0
0
0

 , ~S0Bi
=

 bx
by
bz

 , ~S0C1i
=

 c1x
c1y
c1z

 , ~S0C2i
=

 c2x
c2y
c2z


~S0D1i

=

 d1x
d1y
d1z

 , ~S0D2i
=

 d2x
d2y
d2z


(15)

Step (4.a) With the geometric characteristic of the coupling, the wrenches are defined according the Eq. (2).

Step (7.a) The primary variables for vector {~Ψ}C×1 for this model are the constraints related to the linear constraints Fx,
Fy and Fz of the virtual chain, its through them that the actions are imposed at the end effector.

The robot modelled in this section is applied in the framework in the Section 5. Some graphical results are shown and
analysed.

5. APPLYING THE STATICS MODEL IN THE FRAMEWORK

To show the use of the framework with a complex mechanism, the statics model of the Delta was applied on the
KSAST. For this application, the end effector path was a circular path on xy-plane with a radius R, centered at the point
P = (0, 0,−0.9m). A constant force F = (Fx, Fy, Fz) was applied at the center of end effector. The model was used
with different values for the radius R and the force F .

In every figure in this section, the x axis represents the x position of the end effector, the y axis represents the y
position and the z axis represents the calculated torque of the first joint, named A in Section 4.. All the units are expressed
in the S.I. (metric) system.

Figure 9 shows the torque of the joint A of each leg with a R = 0.2m and the force F = (0, 0,−10N). In this figure
is possible to observe that the torques applied in each leg are symmetrical. In the Section 4.was shown the symmetry of
the analysed robot, therefore this result was expected for a symmetrical force.
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Figure 9. Positions and torques with radius R = 0.2m and F = (0, 0,−10N)

Figure 10 shows only the joint A of the first leg, but for different values for the radius R.

Figure 10. Positions and torques with different values for the radius R and F = (0, 0,−10N)

Figure 11 shows the torque of the joint A of each leg with a R = 0.2m and the force F = (1N, 0,−10N). This figure
shows that the leg 2 and leg 3 have symmetrical torques, while the leg 1 shows a different torque. That is because the Fx
is aligned with the x axis, this alignment let the leg 2 and leg 3 with an angle of 120o and −120o with the applied force.
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Figure 11. Positions and torques with radius R = 0.2m and F = (1N, 0,−10N)

6. CONCLUSIONS

This paper presented another feature of a computational tool in its initial stage of development. With this new module
it is possible to analyse the statics for any mechanism, which none of the tools surveyed have this feature.

In Subsection 3.1, a didactic example was solved to validate the developed module. To show that it is possible to model
complex robots with ease, the Delta robot model was applied in the framework. The results obtained with the simulation
in the framework includes the whole joint robot data in terms of positions, moments and forces.

The module contributes in projects and design of robots.
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