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Abstract. The noise radiated by a Mach 0.9 isothermal jet at Reynolds number 65,000 (based on the jet diameter) was
investigated by an implicit large-eddy simulation method. By this approach, flow and sound propagation were directly
computed without any modeling assumption. Flow variables were solved by the compressible Navier-Stokes equations
written in a non-conservative form. As main advantages, this formulation reduces the sensitivity to aliasing errors and
avoids Favre averaging of flow variables, providing strong nonlinear stability for high-order compact schemes. Sixth-
order compact finite difference schemes were used for spatial discretization and filtering. Implicit filters were applied
to the flow variables to suppress high-frequency oscillations provided by unresolved scales, mesh non-uniformities and
boundary conditions. Boundary conditions and buffer zone treatments were prescribed by a characteristic-based formula-
tion and a conceptual model based on the characteristic analysis. In this study, the jet basic flow was kept unforced close
to the inlet in order to investigate the influence on the aerodynamic noise radiation of exponentially growing self-sustained
instabilities developed in the jet shear-layer. A feed-back mechanism induced by close interactions of vortices formed in
the shear layer was identified.
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1. INTRODUCTION

Nowadays, the world-wide aircraft and jet engine industries are facing increasingly stringent noise regulations require-
ments to reduce noise annoyance due to the near-airport aircraft flight operations. Regardless of significant advances in
the noise predictive capabilities, the complete understanding of the unsteady flow-noise generation phenomena remains
one of the most important challenges in the design of more silent aircrafts. Further improvements on the fidelity of noise
prediction tools used to aid in the airframe/engine design process require a deeper physical-based insight into the multi-
scale dynamics of the unsteady flow-noise generation phenomena. Noise prediction tools must be conceived to capture a
wide range of scales of turbulence for accurately predict the broad-banded energy spectrum of the audible sound.

Among the classical approaches commonly used for unsteady flow-noise predictions, the Direct Numerical Simulation
(DNS) is the only one that can provide the complete description of flow-noise source and sound propagation by solving
directly and simultaneously all scales of the flow. The DNS also provides highly-accurate data for the development and
validation of turbulence models for noise prediction methods, such as Large-Eddy Simulation (LES) and Reynolds Aver-
aged Naviers-Stokes (RANS). However, its application has been restricted to low Reynolds number flows and relatively
simple geometries, due to its prohibitively high computational cost. Unlike the DNS, the LES and RANS methods can
be employed for noise predictions of high-Reynolds-number flows at lower computational cost. By RANS-based models,
unsteady fluctuations are time-averaged in the attempt to obtain an equivalent noise source distribution based on mean
flow properties. Nevertheless, the empiricism of the simplified noise source terms significantly reduces the effective-
ness of this approach in accurately capture noise levels and sound directivity (Bodony, D. J. and Lele, S. K., 2002). By
large-eddy simulation, the large-scale energy containing eddies are filtered, while the small unresolved subfilter scales are
modeled or reconstructed in some appropriate fashion.

In the present study, alternatively to the traditional LES methods based on eddy-viscosity type models (Germano, M.
and Piomelli, U. and Moin, P., 1991), was developed and validated an implicit LES method based on the Approximate
Deconvolution Model (ADM) (Stolz, S. and Adams, N. A., 1999) and a non-conservative form of flow equations. The
basis of the LES/ADM approach is that truncation errors associated to the numerical discretization have similar form or
action to the subgrid scales. Such approach lies in the class of structural models, since the subgrid scales are completely
determined by the structure of the resolved scales of the flow (Sagaut, P., 2001). As this approach does not require
additional subgrid-scale stress or heat flux terms in the flow equations, flow-noise source and sound propagation may be
directly computed without the need of any subgrid-scale modeling assumption. The non-conservative form of the fully
compressible Navier-Stokes equations was used to solve the flow variables (pressure, velocity and entropy) for modeling
in an appropriated fashion unsteady flows with rapid property variations, such as compressible free-shear layers. As
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main advantages, the non-conservative form avoids the density weighting (Favre averaging) of flow variables and also
reduces the sensitivity to aliasing errors, providing strong nonlinear stability for high-order non-dissipative compact finite
difference schemes (Lele, S. K., 1992). As drawback, it is unsuitable for flows involving shocks, since the momentun and
total energy are not conserved.

2. NUMERICAL METHOD

2.1 Flow governing equations

The compressible Navier-Stokes equations written in the non-conservative form was used to solve the flow variables
in Cartesian coordinates as follows
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In the system of equations above, p denotes the pressure, u, v and w the velocity components and s the entropy. qi
represents the heat flux modeled by the Fourier’s law of heat conduction, Φ the viscous dissipation and τij the viscous
stress tensor. For simplicity, the fluid was assumed to be a calorically perfect gas with constant molecular properties.
Thus, the system of equations may be closed by the following thermodynamic relations for an ideal gas

ρ = p1/γe−s/Cp , T =
p

ρR
and c2 =

γp

ρ
(6)

where ρ, T and c represent, respectively, the density, temperature and sound speed. R = Cp − Cv is the universal gas
constant and γ = Cp/Cv the ratio of specific heats at constant pressure and volume.

2.2 Implicit large-eddy simulation

In this work was developed an implicit Large-Eddy Simulation (LES) method which combines high-order implicit
filtering of flow variables with an Approximate Deconvolution Model (ADM) (Stolz, S. and Adams, N. A., 1999). The
implicit filtering of flow variables was applied to suppress high-frequency instabilities which arise from coarse grid res-
olution, mesh non-uniformities, unresolved scales and boundary conditions, providing dissipation only to the higher
wavenumbers, where the spatial discretization already exhibits significant dissipation errors. The deconvolution model
was employed to reconstruct the effect of subfilter scales in the unfiltered flow solution. Thus, dissipation errors produced
by the numerical method may be restricted to a relatively narrow range of the highest wavenumbers. The filtering of the
flow variables in the physical space was defined by Leonard, A. (1974) as follows

f̄(x) =
∫

Ω

f(x′)G(x, x′; δ)dx′ (7)

where Ω is the entire domain, G the filter kernel and δ the filter width associated to the smaller scales retained by
the filtering operation. The filtering operation defines the size and structure of the smaller scales of the flow. At the
boundary points i = 1 and N the flow variables were kept without filtering, while at the interior of domain, for points
i = 4, ..., N − 3, the flow variables were filtered sequentially in each spatial direction at the final stage of each time step
with sixth-order accurate implicit filters (Gaitonde, D. V. and Visbal, M. R., 1999) defined by

αf f̄i−1 + f̄i + αf f̄i+1 =
4∑

n=1

an
2

(fi−n+1 + fi+n−1) (8)

where the coefficients an were derived by the analysis Taylor and Fourier series (Gaitonde, D. V. and Visbal, M. R., 1998,
1999) in terms of the filtering parameter αf defined at the interval [−0.5, 0.5]. For αf = 0.5 there is no filtering effect.
By contrast, for αf = 0 the explicit filtering presents significant degradation of the spectral frequency response. In this
study the filtering parameter αf was set to 0.4.
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As the Eq. (8) has a stencil of seven points, it cannot by employed near to the boundaries of the domain. Thus, the
following implicit filtering operation was used at points i = 2 and 3:

αf f̄i−1 + f̄i + αf f̄i+1 =
7∑

n=1

an,ifn (9)

and, analogously, at the points i = N − 2 and N − 1.
The Approximate Deconvolution Model (ADM) (Stolz, S. and Adams, N. A., 1999) was used to compute an approxi-

mation of the unfiltered solution f from the filtered solution f̄ as follows:

f̄ = G ∗ f =
∫
G(x− x′)f(x′)dx′ (10)

If the filter transfer function G has an inverse Q, then an approximation of the unfiltered variable, denoted by f∗, may be
obtained by the deconvolution of the filtered variable.

f∗ = Q ∗ f̄ (11)

where the inverse filter transfer function Q may be obtained by the truncated Taylor series expansion

QN =
N∑
ν=0

(I −G)ν (12)

where I is the identity matrix and N = 1, 2, 3, ... the number of time steps. The family of the inverse filtering functions
QN is based on an iterative method (Galdi, G. P., 2000). High-order approximations f∗ of the variable f were derived by
applying successive filtering operations to the filtered quantities

f∗ = f̄ + (I −G) ∗ f̄ + (I −G) ∗ ((I −G) ∗ f̄) + ... (13)

In smooth regions of the flow these filters present stabilizing properties and high-order consistency errors O(δ2N+2),
where δ is the filter width. According to Stolz, S. and Adams, N. A. (1999), the order of truncation of Eq. (13) determine
the level of deconvolution. Here we adopt a third level quadratic extrapolation

f∗ ≈ Q2f̄ := 3f̄ − 3 ¯̄f +¯̄̄
f (14)

since it affords sixth-order consistency error, O(δ6).

2.3 Message passing interface multi-block parallel solver

In this study, a Message Passing Interface (MPI) multi-block parallel strategy was deemed in the attempt to preserve
the high-order of accuracy of the numerical schemes employed at the interfaces, since the accurate data transfer at the
interfaces is of fundamental importance on noise predictions. In order to reduce memory allocation and communication
time, each working process was initialized by the master process with your respective portion of the original single-block
domain. Therefore, the multi-block parallel solver needs only to allocate memory to the block which is being currently
initialized by the master process. As the memory allocated by each working process is inversely proportional to the total
number of blocks decomposed, this procedure substantially reduces the need of memory allocation, especially for 3-D
computations.

In order to illustrate the data transfer at the inter-block interface, a single block domain was decomposed in Fig. 1 into
two adjacent blocks L− 1 and L with 9 points overlap interface. In the attempt to preserve at the interface the high-order
of accuracy of the original numerical scheme applied to the single-block domain, the flow solution at points 1 to 4 of
block L was transferred from points N − 8 to N − 5 of block L − 1. Similarly, the flow solution at points 6 to 9 of
block L was transferred from points N − 3 to N of block L − 1. The arrows indicate the direction of data transfer in
each point at the interface, except at middle points (5 and N −4), which were computed independently in each block and,
consequently, does not transfer data. The double solution at these points was used to detect possible deviations of the flow
solution at the interface, since it was advanced independently in each adjacent block. The data transfer at the inter-block
interface was performed at the final stage of the Runge-Kutta time advancement, as well as after applying the implicit
filtering operation.
The effect of the overlap interface extent on accuracy of data transfer between blocks was evaluated by the analysis
of the maximum root-mean-square (R.M.S) error of u-velocity, given by the difference of values computed by parallel
MPI multi-block domain decomposition and single block domain (serial computation), taken as the reference solution.
As shown in Fig. 2, the maximum R.M.S error of u-velocity at the interface was reduced in two orders of magnitude by
increasing the overlap stencil from 9 to 13 points. Although, inter-block interfaces with larger overlap stencils have shown
to be more accurate, they significantly increase the memory allocation, data processing and inter-block communication.
Thus, in this study we chose to adopt inter-block interfaces with 13 points of overlap.
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Figure 1. Single-block decomposed into two adjacent blocks L − 1 and L with 9 points overlap interface. The arrows indicate the direction
of data transfer between blocks, except at the middle points (5 and N − 4), where the flow solution was advanced independently in each block.

Figure 2. Maximum root-mean-square (R.M.S) error of u-velocity computed by multi-block decomposition relative to the single block
solution. Inter-block interfaces with different overlap stencils: 9, 11 and 13 points.

3. FLOW CONFIGURATION

In the present implicit LES, the jet nozzle exit was modeled by imposing at the inflow boundary of computational
domain the following hyperbolic-tangent mean velocity profile

u(r) =
Uj
2

(
1 + tanh

(
ro − r

2θ

))
(15)

where Uj is the inlet mean velocity, ro the jet radius and θ the shear layer momentum thickness.
The Reynolds number was set to ReD = UjD/ν = 6.5 × 104 and the Mach number to M = Uj/co = 0.90,

where D = 2ro is the jet diameter, ν the kinematic viscosity and co the ambient sound speed. The choise of this Mach
number may be justified by the considerable amount of numerical and experimental studies at similar flow conditions.
The Reynolds number adopted (ReD = 6.5× 104) is an intermediate value between jets obtained by DNS (ReD < 103)
and experimentally (ReD > 105). The inlet shear-layer momentum thickness was set to θ = 0.05ro, which authorizes
turbulence development between the nozzle exit and the end of potential core. The mesh was discretized in Cartesian
coordinates with 2553 ≈ 16.6 millions points. The physical domain extends in the streamwise direction from the jet exit
until to 60ro and from −20ro to 20ro in the cross-stream directions. A buffer zone of aerodynamic dissipation/acoustic
absorption, with additional grid stretching, was applied just downstream of the physical domain until to 74ro, to damp
large scale structures of turbulence before they interact with the outflow boundary and minimize spurious wave reflections
at the outflow boundary.
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3.1 Boundary conditions and buffer zone treatments

In this work, boundaries conditions and buffer zone treatments especially adapted for aeroacoustic computations were
prescribed by a conceptual model based on the characteristic analysis (Thompson, K. W., 1990) and a non-conservative
characteristic-based formulation (Sesterhenn, J., 2001) of compressible Navier-Stokes equations
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The wave modal structure of this formulation decomposes small-scale fluctuations of wavy nature into three wave modes
of propagation:

• Acoustic waves:

X± = (u+ c)
(

1
ρc

∂p

∂x
± ∂u

∂x

)
, Y ± = (v + c)

(
1
ρc

∂p

∂y
± ∂v

∂y

)
e Z± = (w + c)

(
1
ρc
∂p
∂z
± ∂w
∂z

)
(21)

• Entropy waves:
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• Vorticity waves:
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Boundary conditions. The conceptual model based on the characteristic analysis (Thompson, K. W., 1990) gives the
essence of this wave modal approach for prescribing boundary conditions. By the conceptual model, outgoing waves are
completely determined by the flow governing equations, with data contained within and at the boundaries of domain, while
the behaviour of incoming waves is specified by boundary conditions. As the physical domain must be large enough to
allow wave propagation in regions of far-field where the deviations of reference flow are of order of acoustic fluctuations,
non-reflecting boundary conditions may be prescribed by simply setting to zero incoming acoustic waves at lateral and
outflow boundaries. At the inflow boundary were considered constant entropy, total energy and cross-stream velocities.
However, instead of imposing conditions to these quantities, characteristic-based boundary conditions were specified by
forcing their time derivatives to zero: (i) ∂s/∂t = 0, (ii) ∂H/∂t = 0, (iii) ∂v/∂t = 0 and (iv) ∂w/∂t = 0.
The entropy equation (20) together with condition (i) allows to solve for the unknown inlet entropy wave

Xs =
R
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+ Φ
)
− Y s − Zs (24)

The application of condition (ii) in the definition of enthalpy: H = E + pV , results
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where E, p and V are the energy, pressure and volume of the system, respectively. The use of condition (i) in Eq. (25)
gives the following expression
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The substitution in Eq. (26) of the momentum and pressure transport equations (Eqs. (16) and (17)) gives the unknown
inlet incoming acoustic wave
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Finally, the application of conditions (iii) and (iv), respectively, in the momentum transport equations (18) and (19) gives
the unknown inlet vorticity wave

Xv = −1
2
(
Y + − Y + + Z+ − Z−

)
+

1
ρ

(
∂τ2j
∂xj

+
∂τ3j
∂xj

)
(28)

Buffer zone treatments. A buffer zone of aerodynamic dissipation and acoustic absorption was constructed just down-
stream of the physical domain. To help on the artificial dissipation process, the grid was gradually stretched in the buffer
zone. Similarly to Colonius, T. and Lele, S. K. and Moin P. (1993), large-scale vortical and entropic structures of the flow
were dissipated inside the buffer zone before they interact with the outflow boundary by adding artificial damping terms
to the flow governing equations:

∂Q
∂t

∣∣∣∣
dp

=
∂Q
∂t
− σdpQ′ (29)

where Q is the solution vector [u, p] and ∂Q
∂t time derivatives computed by Eqs. (16) and (17). σdp is an damping function

defined as
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4
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))
(30)

with r2 = x2 + y2 and ao = 0.575. The disturbance Q′ in Eqs. (29) is computed at each time step as follows

Q′(t) = Q(t) −
(
αQ̄(t−1) + (1− α)Q(t)

)
(31)

where Q̄(t−1) is a mean flow solution computed in the previous time step and α = 0.90.
Additionally, an efficient acoustic absorbing condition (Moser, C. A. S. and Lamballais, E. and Gervais, Y., 2006) was

gradually applied inside the buffer zone to minimize high-frequency spurious wave reflections at the outflow boundary,
by adding artificial absorbing terms to the flow governing equations

∂Q
∂t

∣∣∣∣
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where Q is the solution vector [u, p] and ∂Q
∂t time derivatives computed by Eqs. (16) and (17). σab is an absorbing

function defined as

σab =
r

2
(1 + tanh(α(x− xo))), (33)

with r = 1, α = 0.05, xo = 0.90Lx and {0 ≤ σab(x) ≤ 1} for {xab ≤ x ≤ Lx}, where Lx is the length of the
computational domain. As at the beginning of the buffer zone, x = xab and σab = 0, Eq. (32) reduces to

∂Q
∂t

∣∣∣∣
ab

=
∂Q
∂t

(34)

Whereas, at the end of buffer zone, x = Lx and σab = 1. Thus, at the outflow boundary Eq. (32) is given by

∂Q
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∣∣∣∣
ab

= σab
∂Q
∂t
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X−=0

(35)

Reflections of spurious waves at the inlet were minimized by the application of an acoustic absorbing buffer zone (Moser,
C. A. S. and Lamballais, E. and Gervais, Y., 2006) in the shear-layer region near the inflow boundary.

4. NUMERICAL RESULTS

Mean flow dynamic characteristics of a Mach 0.9 unforced jet at Reynolds number 65,000 were investigated by an
implicit LES method for a considerably large extent of the computational domain. Similarly to forced jets (Moser, C. A.
S. and Medeiros, M. A. F., 2012), the mean streamwise velocity profiles U/Uj shown in Fig.3(a) exhibit the well-known
top-hat shape inside the potential core region, at the streamwise locations x/ro = 5 and 10. Whereas in the turbulence
mixing region, for x/ro ≥ 15, the profiles were strongly reduced in magnitude and gradually enlarged in the cross-stream
direction. The profiles of the normalized mean velocity U/Uc represented in Fig.3(b) as a function of the axial distance
scaled by the jet-half width (x/r1/2) exhibit very good self-similarity, since they almost perfectly collapse onto each
other. The small unmatched differences between the profiles were due to the mean flow statistics that were not yet fully
converged, requiring longer time of simulation.
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Figure 3. Cross-stream profiles of mean streamwise velocity U taken at different streamwise locations x/ro and for different normalizations: (a)
U/Uj scaled by the normalized distance z/ro and (b) U/Uc scaled by the normalized distance z/r1/2, where r1/2 is the jet-half width.

(a) (b)The spatial evolution of the jet width and lateral spreading, depicted in Fig. 4 by instantaneous isocontours of the
mean streamwise velocity U/Uc, allows to distinguished three regions: the low-speed (blue), the medium-speed (red) and
the high-speed (yellow). In the high-speed turbulence mixing region, the jet width was significantly reduced by strong
interactions of large-scale vortical structures across the jet column (Samimy, M. and Kim, J. -H. and Kastner, J. and
Adamovich, I. and Utkin, Y., 2007). In addition, the vortex-vortex interaction across the jet column seems to be the major
factor related to the mean centreline velocity decay near the end of potential core and the linear increase of jet width in
the medium-speed region. The entrainment of ambient fluid into the jet flow and the ejection of jet fluid into the ambient
induces the significant increase of lateral spreading in the low-speed region.

Figure 4. Evolution of jet growth width and spreading depicted by isocontours of normalized mean streamwise velocity U/Uc. Three regions
may be clearly distinguished downstream the end of potential core. In blue the low-speed region (0.05 ≤ U/Uc < 0.40), in red the medium-

speed region (0.40 ≤ U/Uc ≤ 0.90) and in yellow the high-speed region (0.90 < U/Uc ≤ 1.00). Cross-stream x-z plane at y = 0.

The aerodynamic field of the subsonic unforced jet depicted in Fig.5(a) may be characterized by an orderly quasi-
periodic development of Kelvin-Helmholtz instabilities. The large-scale instabilities saturate and collapse into small-
scale vortices in the turbulence mixing region, just downstream of potential core. The examination of the acoustic field
represented in Fig.5(b) shows that the low velocity fluctuation levels observed close to the jet inlet seem to be unable
to start-up the self-sustained shear-layer instabilities or induce significant spurious wave reflections at the inlet. By the
analysis of both aerodynamic and acoustic fields it is also possible to verify that the dominant noise source radiates from
the shear layer region localized near the end of potential core. As already observed by several studies of forced jets, in the
unforced jet the noise radiates to the acoustic field at small angles relative to the jet axis and is highly directive.
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(a) (b)

Figure 5. Snapshots of the aerodynamic (a) and acoustic (b) fields represented, respectively, by the vorticity and divergence. Physical domain
includes the buffer zone of acoustic absorption, near the jet inlet.

Streamwise velocity fluctuations u′ were evaluated in Fig.6 at five instants of time and at different positions. The snapshot
of Fig.6 (left) shows that close to the jet exit the velocity fluctuation is very low, u′(x/ro ≈ 1) ≈ O(10−5), and increases
exponentially in the downstream direction until to attain values of order O(10−3) for x/ro ≈ 4. As shows Fig.6 (right),
u′ continuous to increase exponentially along the potential core until to attain values of order O(10−1), with saturation
of shear-layer instabilities at the end of potential core (x/ro ≈ 12). However, even that close to the jet inlet the values
of velocity fluctuations are significantly smaller than the values at the end of potential core, i. e. u′(x/ro ≈ 1) ≈
10−5 << u′(x/ro ≈ 12) ≈ 10−1, one may yet expect some small-scale feedback effects, which could be originated by
flow-acoustics interactions with the inflow boundary conditions and/or with the near-inlet acoustic absorbing buffer zone.
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Figure 6. Snapshots of velocity fluctuations u′ taken at five instants of time t at jet axis (x/ro, 0, 0) and shear-layer: (x/ro,−1, 0),
(x/ro, 0, 1), (x/ro, 0,−1) and u′(x/ro, 1, 0). Detail of the region close to the jet inlet for (0 ≤ x/ro ≤ 4) (left) and the potential core

region for (0 ≤ x/ro ≤ 12) (right), where ro is the jet radius.
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In figure 7 is represented the time evolution of velocity fluctuations u′ spatially averaged with four measurements taken
from the jet shear-layer at the streamwise locations x/ro = {3, 6, . . ., 27, 30}. Close to the jet inlet (for x/ro = 3)
the velocity fluctuations presents a random-fashion pattern similar to the one observed in the fully developed turbulence
mixing region (for (x/ro ≥ 24), which contrasts with the orderly quasi-periodic pattern developed in the jet potential core
(for 12 ≤ x/ro ≤ 18) suggesting the existence of a self-sustained feedback mechanism induced by close interactions of
vortices formed in the jet shear layer. This mechanism seems to be independent of inflow boundary conditions and the
near-inlet buffer zone.
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Figure 7. Time evolution of velocity fluctuations u′ spatially averaged with measurements taken from the jet shear-layer: (y/ro, z/ro) =

(−1, 0), (0, 1), (0,−1), (1, 0) at different streamwise locations.

5. CONCLUSIONS

The influence of self-sustained instabilities on the aerodynamic noise radiated by a subsonic unforced isothermal jet
was investigated by an implicit large-eddy simulation method. The low disturbance level of flow velocity fluctuations
detected close to the jet inlet seems to be unable to start-up the development of self-sustained shear-layer instabilities or
induce significant spurious wave reflections at the inlet. Distinct patterns of velocity fluctuations were observed in the
jet shear layer. Close to the jet inlet was detected a random-fashion pattern similar to the one observed in the turbulence
mixing region, which contrasts with the orderly quasi-periodic pattern observed in the potential core. This suggests the
existence of a self-sustained feedback mechanism induced by close interactions of vortices formed in the jet shear layer.
Local instability properties, such as turbulence intensities and natural frequency of instability waves, will be evaluated
by comparing the ongoing work with numerical and experimental results obtained from the literature at similar flow
conditions.
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