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and the mixed convection over the temperature of the conductors and establish a more detailed method for calculating 
the coefficients of natural and mixed convection including, for example, the influence of the angle between the cable 
and the horizontal. For calculating the mixed convection, Morgan [7] creates a fictitious effective Reynolds number, 
equaling the Nusselt number of the natural convection to the Nusselt number of forced convection. Corrections to the 
Nusselt number to take into account the wind direction relative to the axis of the conductor are also different in the three 
methods. In this work, the influence of these three methods of calculating the thermal convection is evaluated over an 
estimated ampacity and the steady surface temperature of a commercial electrical cable type ACSR, aluminum 
conductor steel reinforced, in the range of wind speeds from 0 to 1 m / s. 
2. METHOD 

The conductor used in this work is the Grosbeak, which has a core with outer diameter D = 25.16 mm and the 
diameter of the aluminum wires d = 3.97 mm. The other parameters used in the calculations were taken from Schmidt 
[4]: 
Ambient temperature: 40 ° C 
Latitude: 30 
Azimuth of the Conductor: 90 th 
Atmosphere: Clean 
Solar heating: present 
Diffuse solar radiation: ignored 
Emissivity: 0.5 
Absorptivity: 0.5 
Elevation above sea level: 0 m 
Type of ground surface: urban 
Time: 11:00 
Day of the year: June, 10 
Conductor temperature: 100°C. 

A preliminary analysis, considering the conductor Grosbeak with superficial temperature of 100°C in an 
environment at 40°C and 100 kPa, allows the following conclusions: 

 
For wind speeds between 0 and 0.06 m/s or, in other words, the ambient air is nearly stagnant, the ratio Gr/Re², 

with Gr and Re being the Reynolds and Grashoff numbers, respectively, is greater than 10 so that the natural 
convection prevails [10]. 

a) For wind speeds between 0.02 and 0.6 m/s results the range 0.1 <Gr/Re² <10 and the mixed convection 
predominates. 
b) For wind speeds above 0.6 m / s implies Gr/Re2 <0.1 and therefore the forced convection predominates. 

 
It is apparent, therefore, that especially for wind speeds between 0 and 0.6 m/s it is needed most rigorous calculation 

of heat loss by convection of the conductor. Importantly, each of the three methods analyzed here adopts a distinct 
approach to establish limits of influence of natural and forced convection, but none specifically uses the criterion 
Gr/Re². 

An energy balance per meter of conductor, neglecting ferromagnetic ionization effects (corona) and evaporation 
results in [5, 11]: 

 ௝ܲ ൅ ௦ܲ ൌ ௖ܲ ൅ ௥ܲ 
Where: 

௝ܲ ൌ  .ଶ  the thermal power generated in the conductor by Joule effect in W/mܫܴ

௦ܲ  the solar power incident on the surface of conductor W/m. 

௖ܲ   the convective thermal power dissipated by the conductor in W/m. 

௥ܲ the radiative thermal power dissipated by the conductor in W/m. 
R the electrical resistance of the conductor in ohms/m. 
 .the intensity of the current (ampacity) conductor in amperes ܫ
The radiative power dissipated by the conductor has been established for all three methods as: 

 ௥ܲ ൌ ሺܦߨߝ10ି଼ݔ5,67 ௣ܶ
ସ െ ஶܶ

ସሻ 
 

Where: 

௣ܶ the surface temperature of the cable in K. 

ஶܶ the considered temperature of the sky in K. 
The IEEE standard considers smooth conductor in the calculation of heat dissipation by convection. In the methods 

of CIGRE and Morgan the conductor roughness will be considered and it is given by [7]: 
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       ܴܴ ൌ
݀

2 · ሺܦ െ ݀ሻ
 

The convection is considered as mixed at a range of speeds between 0 and 0.5 m/s for methods CIGRÉ and Morgan. 
The Power dissipated by convection and thermal radiation and received by solar irradiation were then evaluated for 
various wind conditions, applying the procedures described in GIGRÉ [1] IEEE [2] and Morgan [7,8,9]. 
To make easier the calculations, a program was developed in the software EES - Engineering Equation Solver applying 
the three methods. Thus, the ampacity can be determined given the surface temperature of the conductor. Alternatively, 
the surface temperature of the conductor can also be calculated given its ampacity. The other conditions were 
previously established. 

Figure 1 shows a screen with the default program inputs, the cable temperature, the thermal powers and the 
ampacities calculated. 

 

Figure 1. Screen reproduction of the program developed in EES to calculate ampacity. 
3. RESULTS 

Figure 2 shows the results of the ampacities calculated by the three methods for a wind speed normal to the axis of 
the conductor that has zero angles to the horizontal. The largest variances occur at speeds ranging from 0 to 0.5 m / s for 
methods Morgan and CIGRÉ. The maximum percentage deviation in this range is 52 amperes or 7.4%, taking as 
reference the values obtained with the Morgan standard. The method IEEE presents the average behavior between 
CIGRÉ and Morgan in this range and almost coincides with the Morgan method for speeds between 0.5 and 1 m/s. The 
maximum deviation between CIGRÉ and IEEE is 35 amperes or 4.8% and 29.1 amperes or 4.1% between Morgan and 
IEEE. 

Tc = 100  [C]

Ta = 30  [C]

option$= paralelo

D = 0,02516  [m]

dia = 10  [-]

horario = 11  [-]

= 0,5  [-]

Lat = 30  [degrees]

atm$= clear

He = 100  [m]

Zl = 43  [degrees]

= 0,5  [-]

Dados do condutor

Diâmetro:

Emissividade: 

Absortividade solar:

Máxima temperatura permitida para o condutor:

Resistência do condutor, em corrente alternada:

R25 = 0,000084  []

R75 = 0,000108  []

Elevação média do condutor:

OBSERVAÇÃO: A direção da linha é Leste-Oeste, então o azimute é:

Dados do ambiente

Temperatura ambiente:

Latitude:

Condição atmosférica:

Ângulo de incidência do vento no cabo:

Velocidade do vento: 

Clique aqui se a opção acima for 'inclinado'!

Mês, Dia e Horário

Mês:

Dia:

Horário:

V = 0,1  [m/s]

Clique aqui para editar as entradas específicas da norma CIGRÉ

mes = 6  [-]

Clique aqui para editar as entradas específicas da norma IEEE

Clique aqui para editar as entradas específicas da norma Morgan

ICIGRÉ = 705,1 [A]

IIEEE = 700,6 [A]

IMorgan = 545,8 [A]

Entradas específicas de cada norma

Cálculo de Ampacidade para o cabo Grosbeak

24,65 [W/m]

47,76 [W/m]

47,36 [W/m] 24,5 [W/m]

24,49 [W/m]

24,49 [W/m]

12,97 [W/m]

12,58 [W/m]

12,85 [W/m]

RESULTADOS
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Figure 2. Ampacities calculated by the 3 methods versus wind speed normal to the conductor with surface temperature 

of 100°C. 
The maximum deviation of 52 amperes was found for wind speed of 0.2 m/s and the reduction in the temperature of 

the conductor that would equate the Morgan ampacity to the CIGRE, operating at 100°C, would be 7°C.For wind 
normal to the conductor, the conductor's inclination to the horizontal has no influence on ampacities calculated in IEEE 
and CIGRÉ, but changes the values calculated by the Morgan method. In this case, the solar radiation incident on the 
conductor is a function of this inclination, and in addition, Morgan [7] proposes to replace D by D/cos (ζ), in which ζ is 
the angle between the conductor and the horizontal in the calculation  of the Nusselt and Grashoff numbers in the 
thermal convection. For angles up to 20° between the conductor axis and the horizontal, the maximum deviation was 
4% in wind speed equal to 0 m/s.   

Figure 3 shows the results of the ampacities calculated by the three methods versus wind speed with an angle of 10 ° 
relative to the axis of the conductor that has zero angles to the horizontal. It is noticed that in this case, the methods 
CIGRÉ and Morgan overestimate the mixed convection for speeds up to   0.5 m/s relative to the method IEEE, 
recovering nearest values above this speed. This occurs because of two basic aspects: a) the IEEE method does not 
establish a transition speed between the mixed convection and forced convection as the methods CIGRÉ and Morgan 
and b) the IEEE method considers smooth conductor while CIGRÉ and Morgan methods include coefficients in the 
equations for calculation of forced and mixed convection defined by ranges of roughness, the angle of attack of the 
wind and of the Reynolds number. Schmidt [4] found deviations up to 10% between CIGRE and IEEE for angles of 
attack up to 10°, while the results of this study point to maximum deviation of 16%. Between Morgan and IEEE the 
maximum deviation was 19%. Above 0.5 m/s, the maximum deviations dropped to 2.3% and 11%, respectively. 

 
Figure 3. Ampacities calculated versus wind speed with angle of attack of 10° for a conductor with surface temperature 

of 100°C. 
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Figure 4 shows the results of the ampacities calculated by the three methods for wind speed with an angle of 45° to 
the axis of the conductor that has zero angles to the horizontal. Note, in this case a large attenuation of the deviations 
from the previous case with angle of attack of 10 °. There is a good agreement between IEEE and CIGRE throughout 
the range of speeds with maximum deviation of 2.4%. The ampacities obtained from Morgan outweigh up to 52 
amperes or 7.4% those calculated in CIGRÉ and up to 62 amperes or 8.9% those calculated in IEEE in the range of 
speeds from 0 to 0.4 m/s. Above this speed the results of the three methods converge with maximum deviation of about 
2%. The maximum deviation of 62 amperes was found for wind speed of 0.2 m/s and the reduction in the temperature 
of the conductor that would match the Morgan ampacity to the IEEE ampacity with the conductor at 100°C was 8.5°C, 
to this wind speed. 

 
Figure 4. Ampacities calculated versus wind speed with angle of attack of 45° for a conductor with surface temperature 

of 100°C. 
Considering only speeds above 0.5 m/s, the results of the ampacity for the IEEE method as a reference and defining 

a cooling efficiency percentage of the conductor given by ߟ௖ ൌ ቀ1 െ
୼஺

஺೙
ቁ 100, being An the ampacity for wind direction 

normal to the conductor and A the difference between this ampacity and that calculated for wind oblique to the 
conductor, it is concluded ߟ௖ is between 70 and 75% for angle of attack equal to 10° and the order of 93% for 45° angle 
of attack. These results are in perfect agreement with the experimental results obtained in wind tunnel by Hall et al. 
[12]. 

Finally, it should be emphasized that the thermal solar radiation calculated with IEEE and CIGRÉ are almost equal 
with deviation of 0.14 W/m, with a greater difference between Morgan and IEEE of 1.8 W/m. However, these 
differences have little influence on the results obtained considering that the magnitude of the total thermal power 
dissipated by convection and radiation is 60 W/m. 

 
4. CONCLUSIONS 

A program developed in EES allowed the simultaneous calculation of ampacities in a ACSR Grosbeak conductor by 
three different methods: CIGRE, IEEE and Morgan. Meteorological parameters were fixed and the influences of speed, 
angle of attack of the wind and inclination of the conductor were analyzed. For wind speeds between 0 and 1 m/s and 
angles of attack of 10°, 45° and 90° the main conclusions are: 

 For wind normal to the conductor axis, angle of attack of 90° the maximum deviation between the ampacities 
CIGRÉ and IEEE or IEEE and Morgan was 5%. Between Morgan and CIGRÉ a maximum deviation of 7.4% 
occurred at a speed of 0.2 m/s. 

 To wind with angle of attack of 10°, the ampacities CIGRÉ and Morgan showed large fluctuations between 0 
and 0.5 m/s. In this range, the maximum deviation between IEEE and CIGRÉ was 16% and 19% between 
Morgan and IEEE and also occurred at the speed of 0.2 m/s. Above 0.5 m/s, the maximum deviations fell 
respectively to 2.3% and 11%. 

 To wind with angle of attack of 45°, the ampacities CIGRÉ and IEEE showed good agreement with maximum 
deviation of 2.4%. For speeds between 0 and 0.4 m/s, the maximum deviation between Morgan and CIGRE was 
7.4% and 8.9% between Morgan and IEEE. Above 0.4 m/s, the maximum deviation between the ampacities of 
the three methods was approximately 2%. 
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 For inclinations of the cable up to 20° relative to the horizontal, the maximum deviation of the ampacities 
calculated by the Morgan method was 4% and occurred at wind speed condition equal to zero. 

 The results indicate that differences in ampacity project of the transmission line in the range from 7% to 9% 
could cause differences in the surface temperature of the cable between 7°C to 8.5°C relative the surface 
temperature expected in the project. 

 For speeds greater than or equal to 0.5 m/s, the cooling efficiency of the conductor is 70% to 75% for the angle 
of attack of 10 and 93% for the angle angle of attack of 45°. 

Finally, the results of the study point to the need to continue researching methods more accurate and efficient for 
the calculation of ampacity for wind speeds between 0 and m 0.5 m/s, where the mixed convection prevails. 
Nevertheless, it is interesting to develop new solutions of thermally efficient conductors for transmission lines. 
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