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Abstract. The dynamic analysis of rotating machines involves an elevated degree of complexity. In the analysis, the 
dynamic behavior of the rotor should be analyzed considering its interaction with other components of the same 
system. In a rotor-bearing-foundation system, the vibration applied by the rotor is transferred through the bearings to 
the supporting structure, in which interacts with the bearings retransmitting the vibration to the rotor. In this way, the 
bearings have an important role in this system, because this component is responsible to transmit forces between the 
rotor and the support structure. For this reason, the dynamic behavior of the bearings must be considered in the 
mathematical model of the complete system. This work aims to evaluate the tilting pad bearings’ stability condition, 
because the dynamics characteristics of these bearings allow its application on machines with high rotation speed and 
low load, which can lead to fluid-induced instability in journal bearings with fixed geometry. In face of that, the 
stiffness and damping coefficients of a tilting pad journal bearing are determined and applied in the dynamic analysis 
of rotating systems supported by these components to evaluate the stability condition of the complete system. The first 
analysis is accomplished to a cylindrical journal bearing with similar dimensions of the tilting-pad bearing. The 
second analysis uses the reduced equivalent coefficients, in which a reduction of the dynamic model of the bearing is 
accomplished in order to obtain equivalent coefficients represented only by the translational coordinates. In both 
approaches, the stability analysis aims to understand and evaluate the sensitivity degree of the design parameters 
involved in this phenomena. 
 

Keywords: tilting-pad journal bearings, rotordynamics, hydrodynamic lubrication, stability 

 

1. INTRODUCTION 

 
The dynamic analysis of rotating machinery involves an elevated number of variables, which require a careful 

treatment and great attention, in order to reach high accuracy and representative solution of the real behavior of the 
machine. This is more evident when the analysis has to represent the interaction with others components and elements, 
for instance, a rotor-bearing system. The bearings play an important role in the dynamic analysis of rotating systems, in 
which they can be represented by dynamic coefficients that must be accurately determined and carefully added to the 
rotor model. 

There are numerous kinds of bearings, but one of the most commonly used in rotating machines is the 
hydrodynamic, due its high life cycle and load capacity. Among the lubricated bearings, the tilting-pad journal bearings 
stands out, because it can be used in critical operation conditions, i.e. high rotational speed and low load, without to 
become susceptible to fluid-induced instabilities (oil-whirl and oil-whip). Prior to the development of tilting-pads, due 
to critical operational conditions, design engineers used to focus on geometry changes applied to cylindrical bearings, 
resulting in multilobe and elliptical designs. Still, even those bearings configurations are likely to present the whirl-
whip phenomenon, which partially explains the development of tilting-pad journal bearings. 

The development of the theory for hydrodynamic bearings started with Reynolds (1886), who first created the 
mathematical model for the hydrodynamic lubrication. The Reynolds’ Equation relates the pressure field caused by two 
surfaces separated by a fluid film. Along with the analytical solution for long bearings, as proposed by Sommerfeld 
(1904), these two events initiated the theoretical development of the hydrodynamic bearings. In the years that 
succeeded, it can be highlighted the works of Stodola (1925) and Hummel (1926), that proposed the equivalent stiffness 
and damping coefficients in order to represent the effects caused by the fluid film.  

Another important observation was made by Newkirk and Taylor (1925), who published that the vibration on a 
hydrodynamic bearing could not be due by unbalancing forces or internal friction, but induced by the fluid itself. These 
fluid-induced instabilities were, and still are, widely studied to predict the behavior of the shaft, to improve the 
machine’s and bearings’ designs, and to prevent serious operational failures. Presently, it is well established that oil-
whirl is related to the lubricant fluid characteristics, and oil-whip is relative to the system’s natural frequencies. 

Theretofore, most of the bearings used in the real applications were short bearing and there was not an analytical 
solution to describe the behavior of this kind of bearing. Thus, Ocvirk (1952) accomplished a highlighted work in which 
presented a solution to the problem for a short bearing.  
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The development of computational systems had great influence on the evolution of bearings’ theory. From that 
period, Pinkus (1956, 1958, 1959) used the finite differences method to model the pressure inside a bearing, resulting 
on great advances on the research’s field. 

The tilting-pad journal bearings only became relevant in the industry when the cylindrical bearings were not able to 
operate safely with the growing needs of rotational speeds. The groundbreaking work on the subject was published by 
Lund (1964), where a methodology was presented to obtain the dynamic coefficients of a tilting-pad journal bearing. 
It’s important to highlight that Lund’s method compress the influence of the pads’ tilting motion into shaft translation 
degrees of freedom, by assuming that the frequency of the pads’ motions are synchronous with the shaft rotation speed. 
Lund’s work opened a new path in bearings’ research, allowing a large expansion in the usage of tilting-pad journal 
bearings. 

Another advance was made by Allaire, et al. (1981), which were able to obtain coefficients that explicitly 
represented the tilt motion, through a pad-perturbation method, resulting in full dynamic coefficients. Afterwards, those 
coefficients could be synchronously reduced, if necessary, in order to obtain equivalent coefficients related only with 
the translational degrees of freedom. Through the 1980’s and 1990’s more effects were investigated in analyses made 
by several authors, such as pivot elasticity, pad deformation, oil temperature; all aiming to a more precise representation 
of the bearing and system behavior. 

This work goal is to compare the stability margin of a Laval rotor supported by two different kinds of bearings: a 
cylindrical bearing, and a 5-pad tilting-pad journal bearing, in order to evaluate the stability region of both rotors 
configurations. 
 
2. METHODOLOGY 

 
The dynamic analysis of a rotating system has to join different kinds of analyses, such as the determination of 

damping and stiffness coefficients or modeling of the shaft. Moreover, one must know that these distinct analyses 
depend on each other; for instance, to obtain the coefficients it’s necessary to know the static load that the shaft exerts 
on the bearings. 

An analysis starts with the obtaining of the static load of the bearing. After that, bearing’s stiffness and damping 
coefficients were obtained and finally the finite element modeling of the shaft is made. The shaft’s global matrixes 
(Mass, Damping, Stiffness, and Gyroscopic Effect) are assembled, altogether with the bearings’ and discs’ 
representations being added into their corresponding nodes’ positions, in the matrixes. 

Finally, there are many ways to observe and analyze the system’s dynamic behavior: applying the concept of 
mechanical impedance into the equation of motion, one can obtain the frequency response of the system and, therefore, 
to verify the amplitude and phase of the shaft’s circular motion. Also, the system’s equation of motion can be written in 
state-space representation, which allows the integration of the equation in time domain; in this way, one can observe the 
orbits of the shaft inside the bearing. The state-space representation also permits the obtaining of the Campbell’s 
diagram and the free vibrational modes, through the solution of an eigenvalue and eigenvector problem. 

 
2.1 Determination of Dynamic Coefficients 

 
The determination of the dynamic coefficients of a bearing is a procedure that has to combine knowledge from fluid 

mechanics, when evaluating the Reynolds’ Equation, and solid mechanics, when using the concept of equivalent 
dynamic coefficients.  

The stiffness and damping coefficients of a journal bearing are obtained through the solution of the Reynolds’ 
Equation, shown in Eq. (1). Equation (1) relates the pressure field, which arises from the relative motion inside the 
bearing, with the bearing’s internal oil-film thickness and velocity of the relative motion. Therefore, it’s possible to 
determine the pressure field and, hence, the hydrodynamic forces and dynamic coefficients. However, Reynolds’s 
Equation has limited analytical solutions available; so its solution tends to be obtained through mathematical methods, 
such as the finite volume method. 
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Where P(x,z) is the pressure distribution in the oil film, x and z are the rectangular coordinates,   is the absolute 

viscosity, R is the radius of the shaft, h is the thickness of the oil film,   is the rotational speed and t is the time. 
 
The solution starts with the search for the equilibrium position of the shaft inside the bearing through a Newton-

Raphson method, for each rotational speed. Afterwards, a small perturbation around the equilibrium is applied 
separately to every degree of freedom, which induces a perturbed pressure profile; then the pressure can be integrated to 
give the perturbed forces, as described by Lund (1964, 1979, and 1987). The perturbed forces can be represented 
through a first order Taylor series expansion, as showed in Eq. (2).  
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Equation (2) relates the perturbed forces, indicated by Fx and Fy, with the perturbations applied on each degree of 

freedom (Δ , Δy, Δ ̇ , Δẏ ). Therefore, the coefficients can be evaluated as partial derivatives at the equilibrium position 
(Lund, 1987), as showed exemplified in Eq. (3). The remaining coefficients are similarly obtained. 
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This paper compares the dynamic behavior of a rotating shaft, under the same operational conditions, but firstly 

supported by cylindrical bearings and secondly by tilting-pad journal bearings. It must be highlighted that in the 
cylindrical case, the perturbations are applied in the displacement and velocity of the shaft, exactly as shown in Eqs. (2) 
and (3). This procedure results in four stiffness and four damping coefficients (Machado, 2009). 

However, in the tilting-pad journal bearing, in addition to the perturbations applied to the shaft’s translational 
degrees of freedom, the perturbations in displacement and velocity must be done to every pad’s tilting degree of 
freedom (α1, α2 to αN, in a tilting-pad bearing with N pads). The presence of extra degrees of freedom results in more 
coefficients than the eight previously mentioned; in a journal bearing with 5 pads, for instance, 18 coefficients are 
obtained (Daniel, 2012). 

To overcome this excess of coefficients, it is usual to reduce the equivalents coefficients related to pads’ motions, 
leading to the coefficients with translational coordinates only, giving, like the cylindrical ones, eight coefficients. 
However, the coefficient’s reduction procedure depends on the vibration frequency that must be assumed to the pads’ 
vibration. In this paper, the frequency of the pad’s motion is assumed to be synchronized with the shaft rotational speed, 
giving “synchronously reduced” coefficients. 

 
2.2 Finite Element Representation 

 
The mathematical model of the shaft is obtained by the finite element method, which turn possible the representation 

of a continuum object into discrete elements. Regarding the rotordynamics, a discretization based on a two-node finite 
element is adequate to represent the shaft’s dynamic behavior. The matrixes used in this work were presented in Nelson 
and McVaugh (1976) and Nelson (1980), where the Timoshenko’s beam theory is employed, as implemented by 
Tuckmantel (2010). Each element’s matrixes are combined together to form global matrixes, containing all the degrees 
of freedom of the shaft’s model. These global mass ([M]), stiffness ([K]), damping ([C]), and gyroscopic ([G]) 
matrixes are used in the equation of motion of the rotating system, as showed by Eq. (4), where the vector {F} contains 
the external forces and Ω is the shaft’s rotational speed. 

 
[ ]{ ̈ }  ([ ]  Ω[ ]){ ̇ }  [ ]{ }  { } (4) 
 
The damping matrix, which represents the structural damping of the rotor, is considered proportional with the mass 

and stiffness matrixes, as indicated by Eq. (5). 
 
[ ]  α[ ]   [ ] (5) 
 
In this work, the damping matrix is considered to be proportional only with the stiffness matrix; hence,   = 0.0002. 
After the assembly of the global shaft’s matrixes, the shaft’s external elements, such as rigid discs and the bearings, 

must be added on their corresponding nodes. The disc presents effects that must be added into the mass and gyroscopic 
effect matrixes; the bearings have stiffness and damping terms, as described in section 2.1. 

 
2.3 Dynamic Analyses 

 
The dynamic analyses of a rotating system have to observe several effects and phenomena, resulting from the shaft’s 

motion, in order to correctly characterize the rotor behavior. In particular, there are some interactions that are only 
detected through studying the free vibration of the system, which is the homogeneous solution of the equation of 
motion. For this reason, it is possible to sort the different analyses into two types: the free response, or free vibration of 
the system, and the forced response, or vibration, of the system (Mendes, 2011). 

 
2.3.1 Free Response 
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The free response analysis is useful to observe and estimate the natural frequencies of the system, and the free 
vibrational modes. This analysis is accomplished by rewriting Eq. (4) in a state-space form, as showed by Eq. (6). Since 
is a free response analysis, only the system’s dynamic matrix, defined by Eq. (7), is accounted in the solution. Then, an 
eigenvalue and eigenvector problem is applied to the dynamic matrix to determine the natural frequencies of the system.  

 

{
{ ̇ }
{ ̈ }}  [

[ ] [ ]
 [ ]  [ ]  [ ]  ([ ]  Ω[ ])

] {
{ }
{ ̇ }}  [

[ ] [ ]
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The resulting eigenvalues of the dynamic matrix are complex numbers, where the real part is related to the 

amplitude’s decaying of the response, and the imaginary term gives the oscillatory feature of the response. The absolute 
value of the eigenvalue is the natural frequency of the system, and the damping ratio is the ratio between the real part of 
the eigenvalue and its modulus. 

For the purpose of stability analysis, the real part must be observed: if the signal is negative, the function decays 
with time, giving a stable system. However, if the real part of the eigenvalue is positive, the function increases 
continuously with time, leading the system to instability condition. 

With the solution of the eigenvalue problem, it is possible to elaborate the Campbell’s diagram and observe the 
damping ratio of the system. The Campbell’s diagram shows the variation of the natural frequencies of the system, 
versus the rotational speed of the shaft. The same can be done to the damping ratio. From the variation of the real 
portion of the eigenvalue, it is possible to observe the onset of instabilities, by observing the signal of the real part of the 
eigenvalue. 

 
2.3.2 Forced Response 

 
The forced response analysis is required for the dynamic analysis of a rotating system because a rotor is not 

perfectly balanced, having a residual mass located offset to the shaft’s geometric center. This residual mass excites the 
rotor in the same frequency as its rotational speed, so, to observe the full system response, it is necessary to evaluate the 
particular solution of the equation of motion, given by the forced vibration of the shaft. 

When the shaft is excited by a harmonic force, the system vibrates in the same frequency, but with different 
amplitude and phase. The frequency response function (FRF) provides a complex result, which can be graphically 
represented by module and phase, giving an overview of the system’s response with the excitation frequency. 

Since the force’s and the response’s frequencies are the same, the FRF can be evaluated using the mechanical 
impedance concept. The resulting equation, after manipulating Eq. (4), is shown in Eq. (8), where {F} is the vector of 
unbalancing forces, {Q} is the vector of amplitudes, and the mechanical impedance matrix is represented by Eq. (9). 

 

{ }  [ Ω [ ]   Ω([ ]  Ω[ ])  [ ]]
  
{ } (8) 

 
[ ]  [ Ω [ ]   Ω([ ]  Ω[ ])  [ ]] (9) 
 
The second approach that is usually used is the evaluation of operational modes, or forced modes, of the shaft. The 

forced mode is a linear combination between all the natural modes existing within the shaft. This procedure allows the 
visualization of the displacement of the shaft and deformed shape of the mechanical system, under an external force.  

 
3. RESULTS 

 
The dynamic analysis is based on the Laval rotor, shown in Fig. 1.  
 

 
 

Figure 1. Schematic representation of the Laval rotor. 
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Table 1 presents the dimensions considered for the rotor, where the disc’s data has to account for the inner and outer 
diameters. Excitation is considered as unbalanced mass, and is positioned at node 11, on the disc, with a magnitude of 
5.10-5 kg.m. The dynamic coefficients of the bearings are calculated from 600 RPM to 24000 RPM. The parameters for 
both bearings are in Tab. 2 and Tab. 3. 

 
Table 1. Dimensions of the shaft 

 

Element 
Element 

Type 

Length 

(10
3
 m) 

Radius 

(10
3 
m) 

Element 
Element 

Type 

Length 

(10
3
 m) 

Radius 

(10
3
 m) 

1 Beam 25.0 15.0 11 Disc 47.0 outer = 95.0 
inner = 25.0 

2 Beam 12.5 50.0 12 Beam 23.5 25.0 
3 Beam 12.5 50.0 13 Beam 40.0 15.0 
4 Beam 40.0 15.0 14 Beam 40.0 15.0 
5 Beam 40.0 15.0 15 Beam 40.0 15.0 
6 Beam 40.0 15.0 16 Beam 40.0 15.0 
7 Beam 40.0 15.0 17 Beam 40.0 15.0 
8 Beam 40.0 15.0 18 Beam 40.0 15.0 
9 Beam 40.0 15.0 19 Beam 12.5 50.0 

10 Beam 23.5 25.0 20 Beam 12.5 50.0 
 21 Beam 25.0 15.0 

 
Table 2. Parameters for the cylindrical bearing 

 
Diameter of the Shaft 0.050 m 
Width of the Bearing 0.025 m 
Radial Clearance 70 μm 
Lubricant Viscosity 5,01.10-2 Pa.s (ISO-VG 32) 

 
Table 3. Parameters for the tilting-pad bearing 

 
Diameter of the Shaft 0.050 m 
Width of the Bearing 0.025 m 
Radial Clearance 70 μm 
Lubricant Viscosity 5,01.10-2 Pa.s (ISO-VG 32) 
Pad Radius 0.0254575 m 
Pad Thickness 0.0135 m 
Pad Angle 63.5 ° 
Angle Between Pads 8.5 ° 
Pre-Load 0.847 
Load Characteristic On Pad 

 
There are two analyses being considered: in the first, the shaft is assembled with cylindrical bearings; and in the 

second, the same simulation is made with a 5-pad tilting-pad journal bearing.  
For the cylindrical case, the Campbell’s diagram and damping ratio graphic are shown in Fig. 2. 
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(a) 
 

 
 

(b) 
Figure 2. Free response for cylindrical bearing case: (a) Campbell’s diagram; (b) Damping ratio. 

 
Figure 2(a) shows the shaft’s natural frequencies curves, the bearings’ frequencies curve, and the dashed line is the 

rotation line (1/60 line), that indicates where the shaft rotational speed is equal to the natural frequencies. When the 1/60 
line crosses one of the shaft’s natural frequencies curves, the rotational speed is equal to a natural frequency. Thus, this 
crossing point is called critical speed, and in this case, it is close to 2400 RPM as in Fig. 2(a). 

Another information is where the bearings’ frequencies line crosses the shaft’s frequencies. From the literature, this 
crossing point indicates the onset of fluid-induced instabilities (oil whip) and, for the cylindrical bearings case, is about 
to 2 times the shaft’s first critical speed. This point is located on the rotational speed of 4800 RPM. For this reason, it is 
expected that instabilities occur, starting from this rotational speed. 

Figure 2(b) shows the damping ratios related to the natural frequencies presented in Fig. 2(a). As discussed on the 
methodology, the damping ratio gives information about the threshold of instability, observing the point where the 
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damping ratio becomes negative. As a result, it is possible to observe that around 4800 RPM the damping ratio is 
negative, indicating the imminence of an instable operational condition. 

As expected, both graphics of Fig. 2 show consistent and coherent results, in agreement with the instable operation 
of the shaft observed around 4800 RPM. 

Fig. 3 shows the orbits found through the response in time domain at a rotational speed of 4320 RPM, i.e. before the 
evaluated threshold of instability. A decreasing behavior for the orbits can be noticed over the time, for both Fig. 3(a) 
and (b), which indicates that the shaft have a stable operation in this rotational speed. 

 

  
(a) (b) 

 
Figure 3. Orbits at 4320 RPM for cylindrical bearing case: (a) First bearing’s node; (b) Disc’s node 

 
However, when simulating a rotational speed after the instability threshold, the system presents a different behavior, 

as in Fig. 4. At the speed of 5220 RPM, the orbits amplitude increases over time, for both bearing and disc nodes, 
characterizing an unstable operation. 

 

  
(a) (b) 

 
Figure 4. Orbits at 5220 RPM for cylindrical bearing case: (a) First bearing’s node; (b) Disc’s node 

 
Figure 5 presents the frequency response function (FRF) of the first bearing and disc nodes. The range of the 

rotational speeds is limited to a maximum of 7500 RPM, to help the graphic’s visualization. 
Figure 5(a) indicates the amplitudes for both X and Y directions, described by the shaft inside the bearing. It can be 

seen that the amplitude in the X direction is greater than in the Y direction, which is characteristic of a cylindrical 
bearings that have anisotropic coefficients. From the phase graphic, it can be seen that there is a variation of 180° 
(around 2400 RPM), indicating the critical speed of the mechanical system. 

Figure 5(b) shows the same behavior regarding the natural frequency. However, the flexibility of the shaft 
overcomes the effects of anisotropy of the bearing, resulting in overlapping curves for the X and Y displacements. 
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(a) 
 

 
 

(b) 
Figure 5. FRF for cylindrical bearing case: (a) First bearing’s node; (b) Disc’s node 

 
The results obtained for the tilting-pad bearing are analogously analyzed. As done for the cylindrical bearing, 

initially the Campbell’s diagram and damping ratio graphic are discussed. After that, the orbits at the rotational speeds 
of 4320 and 5220 RPM are obtained and finally the FRF is showed. 
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(a) 
 

 
 

(b) 
Figure 6. Free response for tilting-pad bearing case: (a) Campbell’s diagram; (b) Damping ratio. 

 
Figure 6 shows the shaft’s natural frequencies curves, the bearings’ frequencies curve and the rotational curve. 

When comparing Fig. 6(a) with the Campbell’s diagram for the cylindrical bearing (Fig. 2), the curve of the bearings’ 
frequencies is differently positioned due to the kind of bearing, with different frequencies’ characteristics. The crossing 
points between the shaft’s curves and the bearings’ curves are also changed, which indicates that the rotational speed 
where instabilities occur with the use of cylindrical bearings is now stable. 

The remaining curves presented the same behavior as viewed in Fig. 2(a). This is consistent, as those curves are 
related to the shafts’ frequencies and present an indicative of the shaft’s characteristics, not suffering significant 
influence of the bearings. Therefore, the first critical speed is still at 2400 RPM. 
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Figure 6(b) shows the damping ratio for the tilting-pad bearing case. As discussed before, the damping ratio value 
must be negative in order to be characterized as an unstable behavior. Analyzing the graphic on Fig. 6, values of 
negative damping ratio cannot be observed, indicating that the shaft is stable for the shaft’s range of speed. This 
conclusion agrees with the analysis of the Campbell’s diagram where no instability can be observed in the frequency 
range. Above all, no indication of instabilities at the rotational speed of 4800 RPM was found. 

Nevertheless, Fig. 7 and 8 shows the orbits obtained in time domain, at the rotation speed of 4320 RPM (Figure 7) 
and 5220 RPM (Figure 8). Those orbits present a stable condition, not showing great variations in the displacements’ 
amplitudes, as opposed as those found for the cylindrical bearing. From the analyses of the Campbell’s diagram and 
damping ratio, it can be concluded that the Laval rotor supported by tilting-pad bearings does not present instabilities in 
the simulated frequency range. 

 

  
(a) (b) 

 
Figure 7. Orbits at 4320 RPM for tilting-pad bearing case: (a) First bearing’s node; (b) Disc’s node 

 

  
(a) (b) 

 
Figure 8. Orbits at 5220 RPM for tilting-pad bearing case: (a) First bearing’s node; (b) Disc’s node 

 
At last, the FRFs for the tilting-tad bearing case are shown in Fig. 9. Figure 9(a) shows that the displacements X and 

Y are overlapped in the bearing node, so a circular trajectory can be expected, as opposed as the cylindrical case. This is 
characteristic of tilting-pad bearings that present direct coefficients approximately isotropic.  

Both graphics on Fig. 9 present agreement regarding the critical velocity at 2400 RPM. This is a result that agrees 
with the previous analyses, as well. It can be observed that the graphic of Fig. 9(b), presents the same behavior as in 
Fig. 5(b), which means that the disc’s amplitude is practically insensitive to the kind of bearing, because the shaft is 
more flexible than the bearings. 
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(a) 
 

 
 

(b) 
Figure 9. FRF for tilting-pad bearing case: (a) First bearing’s node; (b) Disc’s node 

 
4. CONCLUSIONS 

 
The analyses accomplished in this paper verify the differences on the rotor’s dynamic behavior when it is supported 

by a cylindrical or a tilting-pad bearing. The cylindrical bearing presents an instable behavior on a specific rotational 
speed (about at double of the shaft’s natural frequency), in which a negative value of the damping ratio was observed 
from the crossing points in the Campbell’s diagram.  

In other hand, the tilting-pad bearing did not present any kind of instabilities on the simulated frequency range. The 
Campbell’s diagram showed a variation between the cylindrical and the tilting-pad bearings’ frequencies, which is 
consistent with the difference between the kind of bearings and, consequently, their coefficients. The damping ratio did 
not present any negative values within the frequency range. Also, at the velocities where the cylindrical bearing had an 
instable operation, the tilting-pad showed a stable behavior.  
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