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Abstract. One of the limitations of low regularity approximation space constructed using the Finite Element Method 

(FEM) is the accuracy in the determination of modes and natural frequencies relatively high. In this paper, we present 

an alternative to approach to the problem of natural frequencies of Mindlin thick plate model using the high regularity 

Generalized Finite Element Method (GFEM). In this work the approximation space is obtained from explicit 

enrichment of partition of unity (PU) of high regularity, with polynomials   functions. In this work the PU´s in 2D, are 

obtained from tonsorial product of rational polynomials PU´s of high regularity in 1D. In the examples are analyzed: 
the problem of locking for the first natural frequency; the problem   of convergence with “p” version    for a target 

frequency, for regular and distorted mesh; and influence of the regularity of approaching spaces in obtaining relatively 

high frequencies (up to ten percent of frequencies approximated numerically). The analysis is performed for simply 

supported rectangular plate, comparing the results with those obtained with GFEM and the high order FEM. 

 

Keywords: Natural frequencies, Mindlin plate, GFEM 

 
1. INTRODUCTION  

 

The problem of propagation of mechanical waves in solid media has gained significant importance in recent decades in 

the automotive and aeronautical sectors. The simulation of the propagation phenomena of mechanical waves produced 

by impulsive forces is critical in the design of components that are impacted. On the other hand in elliptic problems 

eigenvalues/eigenvectors the possibility of obtaining a high percentage of eigenvalues approximate numerically with 

satisfactory accuracy is still an open research topic for which should arise numerous proposals for its approach. 

In Finite Element Method (FEM) one of the factors with the highest incidence in the low efficiency in approximating 

eigenvalues/eigenvectors of elliptic problems is directly related to low regularity and high order of approximation 

spaces. This fact can be verified by a priori estimator for the Euclidean norm of the error in the eigenvalues for version 

"h" MEF (see: Hughes (1987) and Givoli (2008)). The use of the unconventional numerical methods as: Finite Element 

Method p-Fourier proposed by Leung and Chan (1998); Recently the Generalized Finite Element Method (GFEM) 

shown in the work of “Arndt et ali. (2009)” in addressing the problem of free vibrations in Benoulli-Euler frames 

showed excellent results with respect to FEM. Still the use of non conventional numerical methods in approach the 

problem of the undamped free vibration in thin plates and shells has been the work of: “Ferreira et al. 2005”, approach 

the problem of free vibrations in laminated composite plates modeled by FSDT and using Multi-quadric radial basis 

functions (MQRBF); “Liew K. M. et al. 2003”,  addresses the problem of free vibrations in composite plates with 

kinematics defined by first shear deformation theory (FSDT) and the moving least squares differential quadrature 

method; “Chen J. T., et ali. (2004)” approach the problem of free vibration and rectangular and circular plates using 

radial basis functions (RBF); “Liu G. R., et ali. (2001)” approach the static and free vibration of thin plates of 

complicated shape using the moving least square method (MLSM); “Liu L., et ali. (2002)”, approach the static and free 

vibration problem of the spatial shell structures using the Element Free-Galerkin Method (EFGM). In the works cited 

above the authors show initial results of performance of the approximations spaces, built according to different 

methodologies, in addressing the problem of free vibrations in different structural components. However there was no 

attention in exploring the potential of these methods for greater accuracy in numerical approximation of problems 

eigenvalues / eigenvectors. 
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In this sense, recently there has been some research with surprisingly results as: "Cottrell et al. 2007a-2007b "using k-

method to builds approximation spaces of regularity and order desired to approach the free vibration problem in road 

bars and aluminum conical shell. The results showed very similar results to the analytical solution to the problem of the 

bar. In this instance there arisen the acoustic and optics branch's characteristic of the approaches made by FEM. Other 

approaches by using high regularity and high order approximation spaces can be seen in Garcia and Rossi (2012), here 

the authors use spaces built by the Generalized Finite Element Method (GFEM) to obtain the natural frequency 

associated with axis symmetric modes for thick plates and shells of revolution.  

In the present work high order and high regularity approximation spaces are build by the GFEM to approach the 

free vibration problem to Mindlin thick plate model. The high regularity and high order approximation spaces are build 

by explicit enrichment by polynomial functions of partition of unity´s (PU´s) with regularity 
0

C , 
2

C and 
4

C .  The 2D 

high regularity (PU´s) is build by tensor product of 1D high regularity (PU´s) obtained by rational polynomial 

functions.  This work is presented in six sections as follow: introduction, approximation space by GFEM, Free vibration 

problem; numerical result; conclusions, bibliographic reference.  

 

2. APROXIMATION SPACE (GFEM) 
 

Enrichment of approximation spaces with PU properties has been studied by several authors over the last fifteen 

years. The methods have been given different names; for instance, one can find the names the Generalized Finite 

Element Method (GFEM) proposed by “Duarte et al. 2000”; eXtended Finite Element Method (XFEM) proposed   by 

Merle and Dolbow, (2002), Element Free Galerkin Method (EFGM) proposed by “Belytschko et al. 1994” all this 

methods build the approximation space with extrinsic enrichment of the PU´s functions. The enrichment procedure used 

in this work consists of the multiplication of a rational polynomial based PU shape function, defined on a nodal position 

of the element of the integration mesh, by a set of complete monomials of p order. The nodes to be enriched can be 

either selectively selected, by means of an error estimator, or simply homogeneously selected.  

The enriched approximation space is composed of all possible linear combinations of a finite dimension space 

generated by the product of functions αφ , which defines the PU, by a set of functions
p

α
Q . Here, α  is the node number. 

Some important definitions are presented in order to aid in the presentation of the global approximation space. 

 

2.1 Partition of Unity of regularity ( ) ,  0, 2, 4,...kC kΩ =  
 

In this work, for construction of the approximation space are used the set functions  { }α α
φ

∈ϒ  
with ϒ  a set 

index functions, which represent a partition of unity (PU) subordinate to an open cover 
αωΩ ⊆ ∪

 
such that 

{ }  card  | M x M
α

α ω∃ ∈ ∀ ∈ Ω ∈ ≤ℕ x , thus a partition of unity, of the type Lipschitz, has the following properties 

according  Melenk and Babuska (1996): 

 

( )supp ,   α αφ ω α⊂ ∀ ; (1)         

( ) 1,  x
α

α

φ
∈ϒ

= ∀ ∈ Ω∑ x ; (2)         

( ) ;n C
Lαφ ∞ ∞

≤
ℝ

(3)
         

 

( ) ( )
G

n

C

L diam
α

α

φ ∞∇ ≤
Ωℝ

; (4) 

       

 

where ( )nL∞⋅
ℝ

 is the infinite norm and C
∞

e 
G

C
 
are constants.  

In this work the High regularity ( ( ) ,  0, 2, 4,...k
C kΩ = ) PU´s functions, are builds by tensor product, defined in Eq. (5) ,  

of PU´s builds in 1D domain shown in Garcia and Rossi (2012) as follows,  

 

ξ η= ⊗Ρ Φ ΦΡ Φ ΦΡ Φ ΦΡ Φ Φ ; (5) 

                                                 

In the Eq. (5) has; 

 

( ) ( )1 2ξ
ϕ ξ ϕ ξ=   ΦΦΦΦ ; (6)                                                                                                                                  
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( ) ( )1 2η
ϕ η ϕ η=   ΦΦΦΦ ; (7)         

                                                                                                                         

In the Eq. (6)-(7), ( ){ }
2

1i i
ϕ ξ

=
 and ( ){ }

2

1i i
ϕ η

=
are the PU´s function on 1D domain defined in Garcia and Rossi (2012).  

In Eq. (8) ΡΡΡΡ is a matrix defined as; 

 

( ) ( )
( ) ( )

, ,

, ,

ϕ ξ η ϕ ξ η

ϕ ξ η ϕ ξ η

1 2

4 3

 
 
 

Ρ =Ρ =Ρ =Ρ = ; (8) 

 

In the Eq. (8) for the PU´s ( )2

e
C Ω functions are defined by de Eq. (9)-(12); 

 

( ) 2 2 2 2 4 2 4 2

1
-, = ((  - 1) (  + 3) (  - 1) (  + 3) )/(4(  2  + 9)(  - 2  + 9)) ϕ ξ η ξ ξ η η ξ ξ η η ; (9) 

 

 ( ) 2 2 2 2 4 2 4 2

2
, ((  + 1) (  - 3) (  - 1) (  + 3) )/(4(  - 2  + 9)(  - 2  + 9))ϕ ξ η ξ ξ η η ξ ξ η η= ; (10) 

 

( ) 2 2 2 2 4 2 4 2

3
, = ((  + 1) ( - 3) (  + 1) ( - 3) )/(4( - 2  + 9)( - 2  + 9))ϕ ξ η ξ ξ ξ ξ ξ ξ η η ; (11) 

 

( ) 2 2 2 2 4 2 4 2

4
, = (( 1) (  + 3) (  + 1) ( 3) )/(4( - 2 + 9)( - 2  + 9))ϕ ξ η ξ ξ η η ξ ξ η η− − ; (12) 

 

The function of Eq. (9)-(12) over the natural domain 
e

Ω of finite element, are shown in the Fig.1c.  

 

 

Figure 1. PU global function ( ),x yαφ  obtained by geometric mapping 
e αωΩ → . Fig. 1(a) and (b): Mapping defined 

by Eq.(13)-(14). Fig. 2(c) and (d) PU functions defined by Eq. (9)-(12). 

 

The ( ),x yαφ   is the global function of PU obtained by geometric mapping to 
e αωΩ → (see Fig.1a-b) defined by 

Eq.(13)-(14) of the PU´s functions defined by Eq. (9)-(12).  

 

( ) ( )
4

1

, ,
i i

i

x x Nξ η ξ η
=

= ∑ ;   (13) 

( ) ( )
4

1

, ,
i i

i

y y Nξ η ξ η
=

= ∑ ;   (14) 

 

In the Eq. (13)-(14) ( ),
i

N ξ η are the shape functions of the bilinear element.  
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2.2 Local Approximation Space  p

α
Q  

 

The local approximation space of order p associated with the α  PU is defined by 

 

{ }
pp

k k=1
Q spanα αρ =  

; (15)            

 

where kαρ  are the complete monomials (defined in the Pascal triangle) of order k with origin set at the 
thα  node of the 

mesh (central coordinates of α th
clouds). The local approximation space Qα

p
 is constructed based on a monomials 

basis. 

 

2.3 Enriched approximation space p

N
ℑ  

 

Let { }
N

i i=1
φ  be a Partition of Unity subordinated to an open covering{ }

N

α=1αω , then, the global approximation space 

of order p is defined as, 

 

 { }
N

p p

N
span Qα α α

φ
=

ℑ =  
 1

; (16)  

 

where   for 2p =  has 

 

  { }2 2 2
1, , , , ,

p
Q x y x xy yα

=
= ; (17) 

 

In the Eq. (17) , , ...x y are the normalized coordinates value defined by, 

 

x x
x

h

y y
y

h

α

α

α

α

−
=

−
=








;   (18) 

 

The ( ),x y  is the point overlapped for α th
 cloud ( ),x yα α , with hα radius (see: Fig. 1b).  

For the uniform local enrichment of PU functions with 
2p

Qα

=
 the global space is defined as, 

 

{ } { }p=2 2 2
x y x xy y

α α α α α α
α α α α α αα ψ ψ ψ ψ ψ ψ φ φ φ φ φ φℑ = =

1 2 3 4 5 6
; (19) 

 

      One feature of the spaces 
p

N
ℑ  constructed with the PU's above is that the functions of the local approximation 

spaces are not linearly dependent. This feature result in the mass and stiffness matrix, although ill-conditioned, for high 

“p” enrichment, are not singular (see: Garcia and Rossi (2012)). 

  
3. FREE VIBRATION PROBLEM 

 

The formulation of the problem of undamped free vibrations to thick plate, is obtained from the elliptic eigenvalue / 

eigenvectors problem whose weak formulation is defined as: find ( ), w δ∈θθθθ such that 0 0w, ≠ ≠θθθθ  and ,ω ∈ℝ 0ω >  

such that, 

 

( )
3

2ˆ ˆ ˆ ˆˆ ˆ ˆ0,  ,
12

h
d w d d hw wd w Var

ρ
ω ρ

Ω Ω Ω Ω

⋅ ∇ Ω + ⋅ ∇ − Ω − ⋅ Ω + ⋅ Ω = ∀ ∈∫ ∫ ∫ ∫
 
 
 

M Qθ θ θ θ θθ θ θ θ θθ θ θ θ θθ θ θ θ θ ; (20) 
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In the Eq. (20), M is the flexural moment tensor, Q is the shear vector, θθθθ is the rotation vector, w is the transverse 

displacement, h  and ρ are the thick and density respectively.  

The set of the test functions is defined by, 

 

( ) ( ){ }1
, ,

D
w H w w x yδ , , = ∈ Ω = ∀ ∈ Γθ θ = θθ θ = θθ θ = θθ θ = θ ; (21) 

 

For this example is adopted θ = 0θ = 0θ = 0θ = 0  and 0w = . 

 

In Eq. (20) Var is the set of weight functions defined by, 

 

( ) ( ){ }1ˆ ˆˆ ˆ 0, ,
D

Var w H w x y, , = ∈ Ω = ∀ ∈ Γθ θ = 0θ θ = 0θ θ = 0θ θ = 0 ; (22) 

 

The discretized formulation for the problem defined by Eq. (20) using Bubnov-Galerkin method is defined by Eq. 

(23) as follow, 

 

( )
3

2

12

T T T T

b b b s s s w w

h
d d d h dθ θ

ρ
ω ρ

Ω Ω Ω Ω

Ω + Ω − Ω + Ω =∫ ∫ ∫ ∫
  
  

  
0B D B B D B N N N N U ; (23) 

 

In Eq. (23) one has to, 

 
1

1

1

1

0 0 0 0 0 0
,   1, .., ,   1, ..,

0 0 0 0 0 0

i p

N

i p

N

i p N
α

θ

α

ψ ψ ψ
α

ψ ψ ψ
= = =
 
 
 

⋯ ⋯

⋯ ⋯
N ; (24) 

 
1

1
0 0 0 0 0 0

i p

Nw α
ψ ψ ψ=   ⋯ ⋯N ; (25) 

 

  { }1 1 1

1 1 1

T i i i p p p

x y x y Nx Nx N
w w w

α α α
θ θ θ θ θ θ⋯ ⋯U = ; (26) 

 

For homogeneous “p” enrichment the dimension of U is 3n pN= , where, N is the number of nodes of the mesh.  

In Eq. (20), the curvature matrix 
b

B  and the shear deformation matrix
s

B , are defined in the natural domain of element.  

Therefore the partial derivatives must be mapped to the physical domain of the problem defining 
b

B  and 
s

B  as 

follows:  

 

θ θ θ=B HJ N∂∂∂∂ ; (27) 

1

w
Js s θ

−
= −B N N∂∂∂∂ ; (28) 

 

In the Eq. (27)-(28), H , J  and s∂∂∂∂ , θ∂∂∂∂ , are the Boolean operator, the Jacobean operator and the differential operator, 

respectively.  Theses operators are defined in Eq. (29)-(31) as follow, 

 

 

( ) ( )

( ) ( )

0 0

0 0

T

θ

ξ η

ξ η

∂ ⋅ ∂ ⋅

∂ ∂
=

∂ ⋅ ∂ ⋅

∂ ∂

 
 
 
 
  

∂∂∂∂ ; (29) 
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( )

( )s

ξ

η

∂ ⋅

∂
=

∂ ⋅

∂

 
 
 
 
  

∂∂∂∂ ; (30) 

1

1

0

0

J

J

−

−
=
 
 
 

J ; (31 

 

In the Eq. (31) J is the Jacobean matrix defined by, 

 

x y

J
x y

ξ ξ

η η

∂ ∂

∂ ∂
=

∂ ∂

∂ ∂

 
 
 
 
  

; (32) 

 

    

1 0 0 0

0 0 0 1

0 1 1 0

=

 
 
 
 

H ; (33) 

 

Equation (20) can be expressed in matrix form by, 

 

( )2
ω− = 0K M U ; (34) 

 

In Eq. (43) that has, 

 
T T

b b b s s s
d d

Ω Ω

= Ω + Ω∫ ∫K B D B B D B ; (35) 

3

12

T T

w w

h
d h dθ θ

ρ
ρ

Ω Ω

= Ω + Ω∫ ∫M N N N N ; (36) 

 

In Eq. (3) 
b

D and 
s

D are the constitutive matrix of bending and shear respectively shown bellow, 

 

( ) ( )

3

2

1 0

1 0
12 1

1

2

b

Eh

sym

ν

ν
ν

=
−

−

 
 
 
 
 
  

D ; (37) 

 

( )2

1
0

2

11
0

2

s
k hE

s

ν

νν

−

=
−−

 
 
 
 
 

D ; (38) 

 

In the Eq. (38) 4 5
s

k = is the shear correction factor. 

If the Eq. (34) defined the symmetric problem of eigenvalue/eigenvector, then, K is, at least, positive semi-definite 

and M is positive definite. In this case has: 
1 2

,   1, ...,0 , ... , ...
i n

i nω ω ω ω =< ≤ ≤ ≤ ≤  and for 
i j

ω ω≠ has mass 

orthogonal eigenvectors in other words, 
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,  , 1, ..,
T

i j ij ij
m i j nδ= =U MU ; (39) 

and, 

 
T

i j ij ij
kδ=U KU ; (40) 

 

In the next section we analyze the numerical results obtained with high order FEM and high order and high regularity 

GFEM to approach the undamped free vibrations problems for Mindlin thick plates.  

 

4. NUMERICAL RESULT 
In this section are analyzed de performance of high regularity and high order approximation spaces build by GFEM 

in the approach undamped free vibrations problem for Mindlin thick plate model. For this example the numerical results 

are obtained for the thick plate with mechanical properties, boundary conditions and discretization of the domain shown 

in the Fig. 3 as follow, 

 
Figure 3: a) campled thick plate; b) mesh with 6x6 bilinear elements. 

 

The analysis of convergence is made for the first 150ω natural frequencies of the plate obtained through the relative 

error given in Eq. (41). In turn, the relative error is obtained from the analytical solution defined in Eq. (42).  

 

h mn

r

mn

E
ω ω

ω

−
= ; (41) 

 

In the Eq. (41), 
h

ω  are the approximated frequency and 
mn

ω  the analytical frequency. 

 

( ) ( )
( )

2 2

22 2

2 4 2 2

12
1 1

1 1
mn

D m n E
S m mn

L Lh kG

π π
ω π

ρ ν ν
= + − + Γ

− −

                         

; (42) 

 

Further details of Eq. (42) can be seen in Dym and Shames (1973). 

The case studies will be made for a discretization with uniform mesh shown in Fig.3b and a discretization made with 

distorted mesh shown in Fig.6. For both cases of the domain discretization in the construction of approximation space 

are used   "p" homogeneous enrichments as follow, 

 

A. The approximation space is build with 6x6 fourth order Lagrangian elements (25 nodes element). The problem 

is approximated with 1779 degrees of freedom; 

B. Approximation space built second GFEM by explicit enriched with complete polynomial “p=4”, of the 
0

C  PU 

functions; 
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C. Approximation space built second GFEM by explicit enriched with complete polynomial “p=4”, of the 
2

C  PU 

functions; 

D. Approximation space built second GFEM by explicit enriched with complete polynomial “p=4”, of the 
4

C  PU 

functions; 

For the cases B-C the problem is approximated with 2069 degree of freedom.  

The numerical results for the relative error are shown for the uniform and distorted mesh as follow. 

 

4.1 Result for umiforme mesh 
The results for uniform grid (see. Fig.3b) for the cases A-D are shown in the Fig. 5a-f as follow.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e)  

(f) 

Figure 5: Relative error in natural frequencies; a) for order [ ]1, 20N = ; b) for order [ ]50, 70N = ; 

c) for order [ ]70, 90N = ; d) for order [ ]90,110N = ; e) for order [ ]110,130N = ; for order [ ]130,150N = . 

 

 The results shown in the figures above show a good performance of the strategy A (high order FEM) about the 

strategies obtained with GFEM for the first N = 20 frequencies. However since N = 50, the relative error increases 

continuously reaching more than thirty percent.  

An opposite behavior is noticed in BD strategies. In these cases the loss of convergence is significantly less 

pronounced especially for strategy B and D. Note that the high regularity approximation spaces build   in accordance 

GFEM   present the flexural mode stiffer than those obtained using FEM, this can be concluded by value of the first 

frequency in Fig. 5a.  
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4.2 Result for distorted mesh 
The results for the distorted mesh shown it the Fig.6 for the cases A-D are shown in the Fig. 7a-f as follow.  

 

 
Figure 6: Distorted mesh for 6x6 bilinear elements. 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5: Relative error in natural frequencies; a) for order [ ]1, 20N = ; b) for order [ ]50, 70N = ; 

c) for order [ ]70, 90N = ; d) for order [ ]90,110N = ; e) for order [ ]110,130N = ; for order [ ]130,150N = . 
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The effects of mesh distortion in the relative error generally produces a loss of accuracy in all strategies used, 

however, this loss of convergence is significantly pronounced in strategy B. On the other hand the severe distortion of 

the mesh, observed in Fig.6, resulted in little loss of accuracy in the strategy D.  

It can be concluded that the loss of accuracy, produced by distortion mesh, to approximation spaces build 

according GFEM are sensitive to the same regularity. That is, the lower regularity of the approximation spaces build 

according GFEM increases the loss of precision produced by distortion of the mesh. 

 

5. CONCLUSION 
The results confirm the observations made in single and two-dimensional free vibrations and wave’s propagation 

problems in elastic medium. The better performance of approximation spaces of high regularity space build  according 

GFEM with respect to the approximation spaces obtained with MEF are evident also in the free vibrations problems of 

Mindlin thick plates model. On the other hand it was observed a decrease in sensitivity to distortion of the mesh with 

increasing regularity of the approximation space.  

The results, although preliminary, show the potential of smoothness spaces constructed second GFEM approach in 

addressing problems of undamped free vibrations in thick plates. The result observed for free vibrations, point to a 

possible good performance of the high regularity approximation spaces in problems of forced vibrations in thick plate’s 

model. 
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