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Abstract. An automotive air conditioning system fully equipped with a compressor, condenser, evaporator, a box type 
thermostatic expansion valve and a filter drier receiver is investigated experimentally, using R-134a as refrigerant. 
The evaporator cooling capacity, coefficient of performance, compressor power consumption, mass flow rate, 
pressures and temperatures at condenser and evaporator, evaporator refrigerant inlet quality and evaporator pressure 
drop are measured and analyzed to quantify the influence of the refrigerant charge and compressor speed on the 
steady-state operation, simulating realistic conditions for off-road vehicles. The compressor speed proved to be the 
most important parameter on system performance. The influence of the refrigerant charge in the system, in the range 
used on the experiments, not showed conclusive results. Anyway, the charge of 1450 g refrigerant currently used in 
actual systems might be considered appropriate for this application. 
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1. INTRODUCTION 
 

Automotive air conditioning presents some particular characteristics when compared with others stationary a/c 
systems: adjustable air velocity and temperature over a wide range of conditions; relatively high cooling capacity to 
meet high thermal loads and provide a rapid cool down of the passenger compartment; operates under highly transient 
climatic conditions; the compressor duty cycle is directly related to the vehicle speed; operates in an environment 
subject to severe vibration and the connection between the parts of the system is performed through hoses. These 
operating conditions are even more severe for air conditioning systems in off-road agricultural machinery, like tractors 
and combine harvesters. 

The refrigerant charge in an automotive air conditioning can change during its time of operation. This can happen 
due to small leaks in permeable seals and hoses in the refrigerant lines. A study by Clodic et al. (2007) demonstrated 
that refrigerant leakage in automotive a/c systems might be on the order of 10 g/year. These leaks, in addition to the 
associated environmental problems, negatively affect the system performance, its stability and durability. A study 
realized by Tanino et al. (1988) showed that a reduction in refrigerant charge will cause the following changes in a/c 
systems performance: reduced cooling capacity, reduced liquid line subcooling, increased suction line superheat, 
increased compressor inlet temperature, increased compressor outlet temperature and decreased compressor outlet 
pressure.  

Apart from the problems caused by refrigerant leakage during operation of the system, the optimal charge setting 
can vary from one manufacturer to another. Accordingly to Collins and Miller (1996), a typical automotive a/c test 
specification defines the optimum charge as the charge for which the refrigerant temperatures at the inlet and the outlet 
of the evaporator first “cross over”. This method provides an indication that the refrigerant is in a saturated state for the 
entire length of the evaporator and heat is being transferred from the airflow, according to the specific heat of 
vaporization of the refrigerant. Other methods of refrigerant charge have been described by Houcek and Thedford 
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(1984), like: weighing the refrigerant during the charge, controlling the superheating in the evaporator outlet, 
controlling the subcooling in the condenser exit, etc. The charge determination based on refrigerant weight can be 
applied to any system, through equipment manufacturer information but must be adjusted for different refrigerant line 
lengths. Superheating method is particularly recommended for systems with expansion devices with fixed orifice and 
the subcooling method for systems with expansion valves. Anyway, the system charge is always defined from a set of 
fixed operating conditions, internal and external and, particularly for automotive air conditioning systems, a given 
compressor speed (Temple, 2004). 

Optimum refrigerant charge and its effects on the performance of the refrigerating system had receiving a 
considerable interest in the last ten years mainly caused by the charge minimization studies to develop refrigeration 
systems with low environmental impact and the effects of refrigerant leakage in both system performance and the 
environment. 

Farzad and O´Neal (1991) reported the effect of various refrigerant charges on the performance of residential air 
conditioner systems with capillary tube expansion showing that the degradation of performance is larger for 
undercharging than for overcharging. Ratts and Brown (2000) quantified thermodynamic losses in an automotive 
refrigeration system as function of refrigerant charge level. This study showed that the system is more efficient as the 
refrigerant charge level decreases at the expense of increased refrigeration temperature and decreased refrigeration 
capacity. Experimentally was also observed that the compressor cycling increases, the condenser exit temperature 
decreases and the superheat increases as the refrigerant charge level decreases. 

Kaynakli and Horuz (2003) experimentally investigated the performance of an automotive a/c summited to different 
condenser and evaporator inlet temperatures and compressor speed. It was verified that the cooling capacity increases 
with increasing inlet temperature of the air in the condenser and the compressor speed. However, with the increasing 
speed of the compressor also increases their power consumption, decreasing the COP of the system. 

Huyghe (2011) tested an automotive a/c using R134a in a range of 25 to 100 % of nominal system charge, 
accordingly to SAE J2765 for fixed displacement and external variable displacement compressors on a modern light-
duty MAC system with a cross charge thermostatic expansion valve. The main findings of the experiments are: the 
cooling capacity increases, the outlet air temperature of the panel decreases and the compressor power consumption 
increases from the condition of low charge to the rated charge. It should be mentioned that since 75 % to the nominal 
charge, its effect on the system performance is negligible for both compressors.  

Wang and Gu (2004) experimentally investigated the performance of an automotive air conditioning system through 
measurements of two-phase flow. The main results were: the total mass flow rate increases with increased refrigerant 
charge and the rise of the temperatures on the air side in the evaporator and condenser. The cooling capacity does not 
vary with change in refrigerant charge but increases with the evaporator air side temperature and decreases with 
increasing temperature in the condenser. The coefficient of performance decreases with increased refrigerant charge. 

Some researchers have proposed analytical methods to evaluate the influence of the refrigerant charge in the system, 
mainly in refrigeration and heat pumps working with constant speed compressor, especially the works of Vjacheslav et 
al. (2001) and Corberán et al. (2011). According to these researchers, the results showed good agreement with 
experimental data. 

The purpose of this work was to investigate the influence of the refrigerant charge and the compressor duty cycle on 
the steady-state operation of an automotive air conditioning. An automotive a/c of 6.4 kW nominal capacity, using 
R134a, was installed in an experimental setup and the main parameters of operation were measured. The refrigerant 
charge was varied in the range of -45 % to + 28 % of the manufacturer charge and the compressor velocity varied 
between 1500 to 3500 rpm in steps of 500 rpm. The effects of varying these two parameters on the evaporator capacity, 
mass flow rate, evaporator superheating, condenser subcooling, compressor power, COP, condenser and evaporator 
pressure and evaporator e condenser air side temperatures were determined.  
 
2. METHODOLOGY AND EXPERIMENTAL SETUP 
 

The schematic diagram of the experimental setup utilized for the measurements of the automotive a/c performance is 
showed in Fig. 1. The test setup consisted of a belt driven compressor, a thermostatic, box type, expansion valve, a 
finned coil evaporator and condenser and a filter drier receiver in the liquid line, operating with R134a. The belt driven 
compressor was coupled to a three phase electrical traction motor, with nominal power of 11 kW and nominal speed of 
1750 rpm, controlled by a Siemens Midimaster Vector frequency inverter, to simulate compressor speeds between 1500 
to 3500 rpm. The motor input power was measured by a Fluke 43B Power Quality Analyzer, controlled by the Fluke 
View proprietary software and the experiments data were stored on a personal computer. 

The two heat exchangers were placed into two tunnel-type calorimeters, which provide precontrolled ambient 
temperature, relative humidity and air flow rate. The air blower in the evaporator side was controlled by a DC Kepco 
BOP 20-20M Power Supply and in the condenser side by a Danfoss frequency inverter. 

All the temperatures measurements were made by sensors type PT 100, located as described in Fig. 1. The absolute 
pressure in the inlet of the evaporator and the condenser was made by two Keller pressure transmitters, model PA 33X 
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and the measures the pressure difference between the inlet and outlet of these two heat exchangers were made with two 
differential pressure transmitter ABB 600T. 

The refrigerant mass flow rate was measured by an Emerson Micro Motion Coriolis type mass transmitter, located 
in the liquid line, after the filter drier receiver. 

The air side volumetric flow rate, and consequently the air velocity, was measured using two plate nozzles and two 
pressure transmitters: an Omega differential pressure transmitter in the evaporator side and a Dwyer pressure transmitter 
in the condenser side. The constants for the correlation equation between pressure drop on the nozzle plates and 
volumetric flow rate were adjusted from measurements of air velocity before the nozzles plates with a hot wire 
anemometer. The two recirculation calorimeters tunnels were constructed according to ANSI/ASHRAE 41.2 (1992) and 
the temperatures in the air side are made accordingly ANSI/ASHRAE 41.1-1986 (2006) and fully described in Souza 
(2011). 

The refrigerant mass charge, for each experiment, was measured by a Lax Lx36575 digital electronic scale. 
During the experiments, the major operating parameters were monitored graphically and numerically in real time by 

an Agilent 34980A data acquisition system, controlled by a personal computer. All data were stored for later analysis 
and graphical representation. 

 

 
 

Figure 1. Schematic diagram of the experimental setup 
 
2.1 Methodology 
 

In order to reflect the driving conditions in summer season, the evaporator air side inlet temperature and relative 
humidity were set to 28 °C and 50 %, respectively (Benouali and Clodic, 2003). In the condenser air side, the 
temperature was set to 38 °C, accordingly SAE J1503 that outlines the tests procedures for off-road self-propelled work 
machines, like general purpose industrial, agricultural and forestry machines.  

The nominal refrigerant charge of the air conditioning system was 1450 g, slightly modified by the presence of the 
mass flow meter in the experimental setup and the additional length of the hoses in the liquid line. The initial refrigerant 
charge was 950 g with increments of 100 g in each experiment, rising until 1850 g. This means a range from about 65 % 
to about 128 % of the rated refrigerant charge. The compressor speed, measured by an optical tachometer, was varied 
from 1500 rpm to 3500 rpm, at intervals of 500 rpm. The above tests conditions reflect the actual operating conditions 
for off-road vehicles, particularly agricultural and forestry machines. 

For each experiment, the air loops were started up and the evaporator air loop was warmed up, but the condenser air 
loop was not warmed until de refrigeration system was in operation and the compressor clutch engaged. The operating 
conditions of the air conditioning were considered in steady state when, during 20 minutes, the air side temperatures on 
the condenser and in the evaporator inlet remained between ± 0.5 °C 
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The evaporator heat capacity, Q , and the condenser capacity were calculated by the refrigerant enthalpy method, 
described in Eq. (1) and (2): 

 
( )ieoer hhmQ ,, −=   (1) 

 
( )ocicrc hhmQ ,, −=   (2) 

 
where rm  is the refrigerant mass flow rate, he,i and he,o are the inlet and outlet evaporator enthalpies and hc,i and hc,o are 
the inlet and outlet condenser enthalpies. The thermodynamic properties of R134a were obtained from REFPROP 
software (Lemmon and McLinden, 2007).  

The refrigeration system COP was calculated accordingly Eq. (3): 
 

mP
QCOP


=  (3) 

 
where Pm is the electric motor power consumption. There was no correction applied to the measured power at the 
compressor inlet due to its efficiency. Subcooling, evaluated at the condenser outlet and superheat, evaluated at the 
compressor inlet are defined accordingly Eq. (4) and (5): 
 

liqcsatsc TTT −=Δ ,  (4) 
 

esatvapsh TTT ,−=Δ  (5) 
 
where Tsat,c is the saturated liquid temperature at condensing pressure, Tliq is the refrigerant temperature in the liquid 
line, Tsat,e is the saturated vapor temperature at the evaporator pressure and Tvap is the refrigerant temperature in the 
suction line. 

 
3. RESULTS 

 
The experiments were carried out at different refrigerant charges and compressor speed. During the experiments, the 

evaporator and condenser inlet air-side temperatures were maintained constant at 28 °C and 38 °C, respectively. Figure 
2 shows the variation of the evaporator cooling capacity as function of the refrigerant charge and compressor speed. The 
average capacity of the evaporator was around 3.5 kW showing little influence due to the refrigerant charge and a slight 
increment for each charge due to the increase of compressor speed.  

 

 
Figure 2. Evaporator cooling capacity for different refrigerant charge and compressor speed 
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As shown by Kim and Braun (2010), the thermostatic expansion valve associated with the presence of the filter drier 
receiver, adjust the mass flow rate in response to changes in refrigerant charge. Also, the evaporator cooling capacity is 
limited by the heat transfer on the air side, operating at constant volumetric flow rate and with a temperature difference 
between input and output relatively low, as shown in Fig 10. In these range of refrigerant charges was not verified the 
presence of two-phase refrigerant from condenser to the expansion valve. 

The compressor power consumption for each refrigerant charge and compressor speed is showed in Fig. 3. The 
power consumption of the compressor is significantly affected by its speed, increasing approximately 78% from lower 
to higher speed, but does not vary significantly as a function of refrigerant charge for the range of charges used in the 
experiments. 

 

 
Figure 3. Compressor power consumption for different refrigerant charge and compressor speed 

 
The behavior of the refrigerant mass rate as a function of system parameters is shown in Fig 4. It can be noted that 

the refrigerant mass flow rate increases with the speed of the compressor for each charge interval. Analyzing Fig. 4 is 
not evident the existence of a pattern of variation in the mass flow rate as a function of refrigerant charge. In the 
literature (for example: Kaynakli and Horuz, 2003; Choi and Kim, 2002), the effect of mass flow rate is usually 
represented as a function of the pressure in the condenser or in the evaporator, and not as a function of refrigerant 
charge. The mass flow rate in the evaporator is controlled by the superheat at the evaporator outlet, means that there is a 
cycling of this parameter in the operation of the system, accordingly to Fig 5, and the calculated average values as 
shown above, lead to misinterpretations. In the paper of Wang and Gu (2004), which were measured separately the 
liquid and vapor phases in the refrigerant flow, it was noted just a small increase in the mass flow rate for increasing the 
refrigerant charge for a constant speed compressor. 

 
Figure 4. System refrigerant mass flow rate for different refrigerant charge and compressor speed 
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Figure 5. Cycling of the refrigerant mass flow rate and exit temperature in the evaporator 

 
The compressor discharge temperatures, for each operational condition, are showed in Fig. 6. The refrigerant charge 

showed little influence to the compressor discharge temperature, showing a slight upward trend for larger charges, but 
that is essentially affected by the compressor velocity. This increase in temperature occurs by the increased work 
supplied to the compressor, as its speed increases, as shown in Fig 3.  

 

 
Figure 6. Compressor discharge temperature for different refrigerant charge and compressor speed 

 
The COP of the refrigeration system, for each operational condition, is showed in Fig. 7. The results show that there 

is a significant decrease in the COP of the system as the compressor speed increases. This is because the power 
consumption of the compressor increases with its speed while the cooling capacity is little affected by this parameter. If 
added a trend line on the data of Fig 7 may be seen that there is a slight increase in the COP by increasing the 
refrigerant charge. This observation would be consistent with the work of Atik and Aktas (2011), but contrary to the 
work of Wang and Gu (2004), both using a capillary tube as the expansion device and R134a as refrigerant. 

The absolute pressures at the condenser and evaporator inlet are shown in Fig 8 and 9. In the condenser the pressure 
increases with increasing speed of the compressor and in the evaporator case, the opposite effect. In the condenser there 
is a slight pressure increase with increased refrigerant charge and in the evaporator the inlet pressure decrease, agreeing 
with the data observed by Wang and Gu (2004). 

The effect of the compressor speed and refrigerant charge in the air-side evaporator outlet temperature is shown in 
Fig 10. As the compressor speed increases, the outlet evaporator air-side temperature decreases, increasing slightly the 
capacity of the evaporator, as shown in Figure 2.  
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Increasing the refrigerant charge gradually, the temperature of the air at the evaporator outlet increases, reaching a 
maximum value corresponding to the charge of 1350 g and then decrease to minimum values for larger charges. For a 
charge greater than 1850 g, ice formation on the external surface of the evaporator was verified. 

 

 
Figure 7. System COP for different refrigerant charge and compressor speed 

 

 
Figure 8. Condenser inlet absolute pressure for different refrigerant charge and compressor speed 

 
The pressure drop in the refrigerant side of the evaporator is showed in Fig. 11. As shown in Figure 4, increasing the 
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Figure 12 shows the degree of subcooling at condenser exit as a function of refrigerant charge and compressor 
velocity. The degree of subcooling increases with the speed of the compressor and the refrigerant charge. As the 
refrigerant charge increased, the condenser pressure increased, accordingly Fig. 8, due to an accumulation of refrigerant 
in the high pressure side, increasing the subcooling. This behavior was also observed by Choi and Kim (2002) for the 
case of a refrigerating system operating with electronic expansion valve and by Farzad and O’Neal (1988) for a system 
using capillary tube.  

Figure 12 also shows that there was no saturated vapor coming out the condenser outlet. This means there was no 
loss of capacity in the condenser for the overcharging. 

The degree of superheating in the evaporator exit as a function of refrigerant charge and compressor velocity is 
showed in Fig. 13. The superheat decreases with increasing compressor velocity, due to an increase in the mass flow 
rate of the refrigerant but increase with the refrigerant charge. This behavior contradicts the observation of Choi and 
Kim (2002) for a system with capillary tube. 
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The refrigerant quality at the evaporator inlet is calculated considering an expansion process with constant enthalpy 
and the pressure and temperature at the evaporator inlet. These values are shown in Fig 14. 

 
Figure 9. Evaporator inlet absolute pressure for different refrigerant charge and compressor speed 

 
 

 
Figure 10. Evaporator air-side outlet temperature for different refrigerant charge and compressor speed 
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accompanied by a decrease in the evaporator cooling capacity and an increase in refrigerant temperature. 
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Figure 11. Evaporator pressure drop for different refrigerant charge and compressor speed 

 
 

 
Figure 12. Liquid subcooling at condenser exit for different refrigerant charge and compressor speed 
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Figure 13. Vapor superheating at evaporator exit for different refrigerant charge and compressor speed 

 
 

 
Figure 14. Refrigerant quality at evaporator inlet for different refrigerant charge and compressor speed 

 
4. CONCLUSIONS 

 
In this work were investigated the performance characteristics of an automotive air conditioning system, using 

R134a, designed for off-road applications. Several tests were performed to determine the operating parameters using an 
experimental setup. Charges of refrigerant between 950 and 1850 g and compressor velocities between 1500 and 3500 
rpm were used. Below refrigerant charge of 950 g, bubbles were visible in the sight glass of the filter drier receiver. The 
main findings of this work were: 
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condensing pressure is hardly affected; 
- For this system particularly, the COP is little influenced by the refrigerant charge. In all cases analyzed, a clear 

maximum in COP could not be appreciated. This may have happened by the presence of the liquid receiver 
before the expansion valve. Anyway, as can be seen in the literature discussed, the sensitivity to charge 
variation is very different for each studied systems. 
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