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Abstract. Numerical simulations of unstable free shear layers require accurate initial and boundary conditions in order
to allow an efficient calculation of complex frequencies and wavenumbers. A steady-state solver, capable of yielding
steady states for highly unstable flows, is developed. This reference solution is then employed as initial and boundary
(buffer) conditions for the simulation of spatially developing mixing layers at arbitrary Mach numbers, velocity ratios and
momentum thicknesses.
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1. INTRODUCTION

The knowledge of an accurate reference solution for any given system of equations is of great importance in many
research areas. Heat transfer and fluid dynamics are such examples, where reference solutions are required for thermal and
hydrodynamic stability analysis as well as flow control (Theofilis, 2003). Typical studies in the former field are interested
in the reaction of these reference solutions to perturbations of different amplitudes and functional forms. In the latter
field, on the other hand, they are interested in restricting the deviation of dynamical systems away from these reference
solutions. Even unsteady simulations require reference solutions to be used as initial conditions and also in some types of
boundary conditions (Colonius, 2004), such as radiation and buffer zones. In all these cases, steady-states usually provide
the most accurate reference solutions.

Whenever accurate reference solutions such as steady-states are not known, one is required to use approximations. In
Sandham and Reynolds (1989), the temporal growth of perturbations imposed on a two-dimensional, compressible and
spatially periodic mixing-layer was analyzed using linear stability theory as well as direct numerical simulations. The
reference profile utilized by the former came from the classical boundary-layer solution, which generated perturbations
that were superposed to a hyperbolic function in order to generate initial conditions for the latter. Nevertheless, only a
qualitative comparison was performed between the results obtained from both approaches. Initial conditions based on
both boundary-layer and hyperbolic tangent profiles were employed in the numerical simulations of a similar problem by
Lardjane et al. (2004). Both initial conditions introduce unwanted oscillations. Although their amplitude is much smaller
in the former case, their shape is more complex as well. Such a discovery indicates that approximate reference solutions
can introduce dissipative and dispersive errors in unsteady simulations. Recent studies (Germanos et al., 2009) were able
to calculate temporal growth rates for this same problem using a hyperbolic tangent function as initial condition. Even
though the authors employed ad hoc disturbances that satisfy only mass conservation for an incompressible flow, relative
errors were smaller than 18%, but higher than 3%. They had to impose very small perturbation amplitudes in order to
guarantee that early simulation times were within the regime governed by linear theory. This issue is also present in tem-
porally periodic two and three-dimensional mixing-layers (Li and Fu, 2003; Fu and Li, 2006), where reference solutions
are required for initial and inlet conditions. Calculated spatial growth rates agree well with available experimental data,
but there is a significant amount of scattering in these results due to the extreme flow sensitivity to different experimental
conditions. This experimental problem is analogous to the introduction of inaccurate reference solutions and perturba-
tions in numerical simulations. A similar issue occurs in the numerical simulation of the flow around two-dimensional
bodies (Bijl et al., 2002; Wang and Mavriplis, 2007). Since inviscid initial conditions were employed in these two studies,
large perturbations are present at early times. However, all errors introduced by inaccurate reference solutions must be
eliminated from the simulated domain before any results can be extracted and analyzed, leading to large simulation times.
In this particular case, this is enough time for the flow to become globally unstable. Hence, only characteristic frequencies
are calculated, but not growth rates. Such a problem is due to the fact that linear growth rates can only be calculated within
the linear regime whereas linear frequencies remain unaltered within the nonlinear stages of the flow.

All these problems created by inaccurate reference solutions have a significantly larger impact in areas such as aeroa-
coustics (Colonius and Lele, 2004) and receptivity (Sarica et al., 2003), since the perturbations of interest are much
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smaller in magnitude than vorticity waves and must be accurately tracked. One example is the numerical simulation of
sound generation in a two-dimensional mixing-layer performed by Colonius et al. (1997), where the reference solution,
utilized as initial condition and buffer zone, was obtained from the boundary-layer equations with a modified centerline
condition to allow entrainment from both artificial side boundaries. Perturbations obtained from an inviscid and linear
stability analysis of the same reference solution were imposed at the inlet to control flow excitation, but simulated distur-
bance wavelengths and growth rates were not presented. A similar study was published afterwards (Babucke et al., 2008),
but using a viscous and linear stability analysis to generate the inlet perturbations for two and three-dimensional simula-
tions. They were able to obtain a good qualitative agreement between linear stability and numerical simulation growth
rates, but with large scattering. These problems were significantly minimized in the simulation of acoustic fields over
airfoils with the use of steady-states as reference solutions (Collis and Lele, 1999; Barone and Lele, 2002). They were
obtained using an implicit Euler method to march the governing equations towards steady-state, since it introduces the
necessary dissipation to damp disturbances in time without affecting spatial gradients. A similar procedure was adopted
in receptivity studies of compressible mixing-layers (Barone and Lele, 2005), although a time-accurate marching scheme
was employed instead to reach steady-state. This was possible because the splitter plate edge was rounded to eliminate
numerical discontinuities that would otherwise stop convergence.

It is clear from the above examples that a robust procedure for the generation of steady-states is necessary. The implicit
Euler method is a classical approach (Butcher, 2008), but it is not always successful. For this reason, the so-called selective
frequency damping (SFD) was created by Åkervik et al. (2006) to generate steady-states for originally unsteady problems
with characteristic frequencies. This methodology introduces a linear source term in the transient governing equations
that forces the flow towards a reference solution, chosen to be a low pass filtered version of the unknown solution. This
source term vanishes when the steady-state is reached, since reference and steady-states become identical in this limit.
SFD has been successfully applied to the study of globally unstable jets in cross flow by Bagheri et al. (2009). However,
its successful utilization in unstable flows with a broad band frequency spectrum has yet to be verified. An alternative
approach called Physical-Time Damping (PTD) was recently utilized in Teixeira and Alves (2012) that can be applied
to arbitrary codes originally designed for time-accurate simulations. It employs dual-time-stepping (Zeng et al., 2003)
to replace the original marching scheme by the implicit Euler method, removing the need to calculate implicit Jacobians
and use special solvers for implicit matrixes. However, it still relies on the dissipative properties of the implicit Euler
method, which may not be sufficient for very unstable flows simulated with high-order spatial resolution schemes. The
present paper proposes a new methodology to circumvent this problem, creating a robust approach for the generation of
steady-states.

2. MATHEMATIC MODEL

Actually numerical methods have been the principal investigation instrument of the partial differential equation (PDE).
Derivative approximations are used to discretize the original PDE (or system of PDEs). The method to approximate
derivatives applied in this paper was the finite-difference method (Tannehill et al., 1997). The mathematical model present
here is based on treatment of the temporal derivatives of a system of PDEs like as

∂Q

∂t
= f(Q) (1)

where Q is the variable vector.
The steady-state solver consist in establish temporal numerical scheme as source term that provides minimal gain.

Thus, it is easy to implement the methodology in any arbitrary code, such as equation below

∂Q

∂τ
= f(Q)− ∂Q

∂t
(2)

where it has two temporal derivatives. This procedure is knowledge as dual-time step method (DTS) (Merkle and Choi,
1988). The pseudo-time derivative (∂Q/∂τ ) is measured with any numerical schemes. The temporal source term is
calculated with steady-state solver. Once the steady-state solution is obtained in each physical time step the original
government Eq. (1) is recovered, since ∂Q̂/∂τ ' 0 in this limit.

Numerical stability analysis for explicit and implicit methods is developed in this research. The temporal derivative
were discretized with a linear combination between Leap Frog and Euler difference approximation. Hence, the temporal
derivative (∂Q/∂t) of Eq. (2) is written as

∂Q

∂t
= θ1

Qn+1 −Qn

∆t
+ (1− θ1)

Qn+1 −Qn−1

2∆t
, (3)

where θ1 is the dissipative control parameter, resulting in the following equation

∂Q

∂t
=

(1 + θ)Qn+1 − 2θQn − (1− θ)Qn−1

2∆t
. (4)
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In the rigth-hand side of Eq. (1) we applied the generalized Crank-Nicholson method (Anderson, 1995) with the a
control parameter θ2 can be observed in Eq. (5)

f(Q) = θ2f(Q
n+1) + (1− θ2)f(Qn). (5)

Furthermore, temporal methodology consist in choose a right combination parameters between θ1 and θ2 that provides
a steady-state solution. Hence, the scheme proposed is

(1 + θ1)Qn+1 − 2θ1Q
n − (1− θ1)Qn−1

2∆t
= θ2f(Q

n+1) + (1− θ2)f(Qn), (6)

where setting θ1 = 1 is obtained a implicit scheme or configuring θ2 = 0 the explicit method is generated.
Now we present the Eq. (2) with steady-state methodology in temporal source term. Initially, the implicit scheme is

applied in physical-time derivative. The Eq. (2) becomes

∂Q

∂τ
= θ2f(Q

p) + (1− θ2)f(Qn)− (1 + θ1)Qp − 2θ1Q
n − (1− θ1)Qn−1

2∆t
(7)

2.1 Stability Analysis

Numerical Stability analysis is the study of error behavior in only marching numerical scheme. A stable numerical
method is one the error not grow in the numerical procedures (Tannehill et al., 1997). Particularly, in this current paper, we
are looking for which manner the error diminish efficiently. The study display the gain (amplification factor) for different
physical-time step ∆t and relax parameter θ are performed. The linear stability analysis was employed to understand the
error behavior of the proposed schemes. According to a Fourier stability analysis we assume the normal modes described
as

Qn
i = exp [λtn + Ikxi] (8)

The exact amplification factor, called gain G, is then

G =
Qn+1

i

Qn
i

=
exp [λ(t+ ∆t)] exp [Ikxi]

exp [λt] exp [Ikxi]
= exp [λ∆t] (9)

where λ is the eigenvalues of system and ∆t is the time step, i. e., if the G > 1 the error amplifies, but the propose is
G = 0 for the optimal convergence.

The complexity of this analysis imply to restrict ourselves in approximations problems. First of all, we focus the study
in linear problems with constant coefficients. Thus, we could consider the system of differential equations of the form,

∂Q

∂t
= βQn and

∂Q

∂t
= θβQn+1 + (1− θ)βQn (10)

for modified explicit and implicit schemes, respectively.
The discretized equation, respectively, for explicit schemes and implicit schemes, becomes

Qn+1 =
2 (∆tβ + θ)Qn + (1− θ)Qn−1

(1 + θ)
and Qn+1 =

(∆tβ − θ∆tβ + 1)Qn

1− θ∆tβ
. (11)

Applying normal modes of Fourier stability in Eq. (11) we have gain equation described as

|G| = β + θ ±
√
β2 + 2βθ + 1

θ + 1
and |G| = −θβ + β + 1

1− θβ
, (12)

for explicit scheme and for implicit scheme, respectively, where β = λ ·∆t is a complex frequency parameter. Normally,
the complex region of stability is showed. In current work, we study the error behavior in a plane of gain (|G|) per
frequency (λ ·∆t). Figure 1 illustrates the linear numerical stability analysis for both schemes

An alternative non-linear stability approach is investigated in current study. The Taylor series is used to approximate
the right-hand sides of Eq. (4) and Eq. (5) which

Qn+1 = Qn + ∆t
∂Q

∂t
+

∆t2

2

∂2Q

∂t2
+

∆t3

6

∂3Q

∂t3
+ . . .

Qn−1 = Qn −∆t
∂Q

∂t
+

∆t2

2

∂2Q

∂t2
− ∆t3

6

∂3Q

∂t3
+ . . .

(13)
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Figure 1. Linear stability analysis for modified explicit scheme (left) and implicit scheme (right).
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Figure 2. Non-linear stability analysis for modified explicit scheme (left) and implicit scheme (right).

substituting Taylor series from Eq. (13) in Eq. (4) and Eq. (5) we have an approximation for f(Q). Adopting Fourier
formula the non-linear approach was obtained. For showing the temporal amplifying factor the Fig. 2 was present.

Figure 1 and 2 show the stability analysis of the explicit Euler scheme (left) and implicit (right) in linear and non-linear
approach. In both figures each line color shows the stability analysis for different parameters θ. The region of minimal
gain is evidence in explicit scheme analysis. We can be observed in Fig. 1 (left) and Fig. 2 (left), for each θ parameter, the
existence of optimal physical-time step ∆t that generates a minimal gain region. However, the stability analysis for the
implicit method of Fig. 1 (right) and Fig. 2 (right) just has a optimal physical-time step ∆t for some specific parameters
θ. Hence, according to linear and non-linear numerical stability analysis the optimal convergence not occurs with the
growth of parameter θ. But, for each parameter, an optimal convergence must exist in explicit scheme. On the other
hand, for implicit method a maximum efficiency should exist for some parameters θ. This results are in contradiction with
truncation error study, which provides optimal convergence in large parameter or time step. This divergence should be
caused due to others terms of truncation error, which more relevant in numerical procedures, or non-linearities.

2.2 Test Case

A system of ordinary differential equations (ODE) will be employed to certificate the method behavior. This problem
was implemented to improve the readers comprehension. On the other hand, the ordinary differential equation Eq. (14)
represent a good nonlinear problem to test our methodology, due to their chaotic characteristic. This system of equations
was first formulated in 1963 by E. N. Lorenz and possesses what has come to known as a “strange attractor" (Hirsch et al.,
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2004). The Lorentz equation is defined as

dx

dt
= σ (y − x)

dy

dt
= ρx− y − xz

dz

dt
= −βz + xy

(14)

where x, y and z are the independent variables, σ is the Prandtl number, ρ is the Rayleigh number and β is related to the
physical size of the system.

For showing the Lorentz solution the Fig. 3 is presented with different time step ∆t. Figure 3 (right) show the
difference between Lorenz solution with more precision than sixteenth digits and numerical solutions for temporal step
(∆t) variation. The verification has a good agreement with deterministic chaos theory.
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Figure 3. Numerical Solution of Lorentz problem for different time step ∆t.

3. NUMERICAL RESULTS AND DISCUSSION

The Lorenz problem was solved with fourth-order Runge-Kutta scheme. However, the steady-state solution was just
obtained in stable case. According above theory a transient source term was included in set of equations to provide a
steady-state solution. Therefore, the code is implemented with fourth-order Runge-Kutta method in pseudo-time and
implicit scheme methodology in physical-time. The explicit method was not used due its efficiency in stable problems
only. The set of stable Lorentz problem constants are σ = 10, β = 8/3 and ρ = 18, in unstable case the parameters are
σ = 10, β = 8/3 and ρ = 40. The impact of steady-state methodology is shown in Fig. 4. This result was obtained

with θ =
1

2
. The methodology was implemented in different simulation stages, the parameter θ was changed. As can be

seen, the convergence is obtained for different steady-state solutions. This result suggest the possibility to obtain different
steady-state.
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Figure 4. Methodology Impact

The investigation for different parameters θ is presented in current paper. The Fig. 5 shows the number of physical-
time iterations for different physical-time steps ∆t in convergence process toward steady-state solution. The Fig. 5 (left)
shows the stable Lorentz problem and Fig. 5 (right) presents the process for unstable problem. The different kind of
line shows the convergence for different parameters θ. The physical-time iterations were performed until the maximum
absolute error of the residue’s L2 norm was below dx/dt ≤ 1.0× 10−08. Hence, this result is in agreement with stability
analysis theory developed above.
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Figure 5. Iteration number in physical-time for ∆t range for stable (left) and unstable problem (right).

A study about total iterations number for each physical-time step (∆t) is described in Fig. 6. Hence, here is provided
the summation of pseudo-time iterations number for each physical-time step throughout convergence process. In Fig. 6
(left) is the test case for stable Lorenz Problem and Fig. 6 (right) is unstable. As revealed by the graph, the behavior of
convergence process for both cases is according numerical stability analysis studies.

The study of fluctuate tolerance in pseudo-time is shown in Fig. 7. The Fig. 7 (left) shows the physical-time iterations
number and Fig. 7 (rigth) gives the total iterations number toward state-state solution. The stable problem is only investi-
gated. As can be seen, the results have good agreement with previous theory. Notice that physical-time iterations is bigger
than in fixed pseudo-time tolerance. However, total iterations number is much less that in the fluctuation pseudo-time
tolerance.

In order to demonstrate the agreement with numerical stability analysis theory a numerical gain study is developed for

a range of θ. Numerical gain is obtained each step time with |G| =
Qn+1

i

Qn
i

. Figure 8 the behavior of numerical gain in

convergence process for different physical-time step ∆t. This result provides the rate of temporal damping (λd). As can
be seen, when parameter θ increase the rate of damping also increase.
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Figure 7. Total pseudo-time iterations number convergence.
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Figure 8. Numerical Gain Study

After calculate the rate of damping (λd) for a range of physical-time step (∆t) the numerical gain (|G| = exp(λd ·∆t))
is given in Fig. 9. This result shows the agreement of the steady-state methodology with stability theory.
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Figure 9. Numerical Stability Analysis

4. CONCLUSIONS AND FUTURE WORKS

The current paper showed, in the present literature, that several of the most accurate compressible flow employed
today has the difficult to describe the initial and boundary conditions. The physical-time damping was described as a
good procedure to generate a steady-state solution (Teixeira and Alves, 2011). It can be easily applied to any existing
unsteady flow code. The modifications in physical marching schemes can accelerate the convergence and give a optimal
convergence process, based on linear stability analysis. Future work will test this procedure on more challenging problems
as well as utilize such steady-states as initial and boundary conditions which require reference solutions.
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