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Abstract: The Generalized Integral Transform Technique (GITT) is applied to the problem of simultaneously 
developing flow of a Newtonian fluid in a circular tube. The effect of viscous dissipation is also considers to evaluate 
its influence in the temperature field. A streamfunction formulation is adopted in order to avoid the singularity of the 
auxiliary eigenvalue problem in terms of Bessel functions at the centerline of the duct when the GITT approach is 
applied. Results for the velocity and temperature fields, as well as quantities of practical interest such as Nusselt 
numbers are computed for different Brinkman and Prandtl numbers, which are tabulated and graphically presented as 
functions of the dimensionless coordinates. Critical comparisons with previous results in the literature are also 
performed, in order to validate the numerical codes developed in the present work and to demonstrate the consistency 
of the final results.  
 
Keywords: Generalized integral transform technique, Newtonian fluids, Brinkman numbers, simultaneously developing 
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1. INTRODUCTION 
 

The effect of viscous dissipation may become very important in various flow settings occurring in engineering 
practice, for example, in micro channel flows considered for the design of Micro Electro Mechanical Systems (MEMS). 
The viscous dissipation highly affects heat transfer processes whenever the fluid used has a low thermal conductivity 
and a high viscosity, as well as for fluid flow in small cross section ducts, and a small wall heat flux. In addition, the 
effect of viscous heating increases greatly with an increase in the mass flow rate; consequently, this effect becomes 
more important under forced convection heat transfer. To examine the thermal entrance regime in various duct 
geometries, prediction of the effect of viscous dissipation is a key point. One of the most important consequences of the 
effect of viscous dissipation is in the evaluation of the local Nusselt number that can theoretically be obtained by 
suitable mathematical modeling and subsequent solution of the problem addressed (Dehkordi, 2009; Dehkordi, 2010). 
The advancement of solution techniques has allowed the opening of new directions in search of fluid flow in ducts, 
considering that are modeled by complicated equations, and often nonlinear, which have analytical solutions only in 
specific cases. When it comes to obtain reliable results, the use of a solution technique that leads to accurate results for 
such flows is essential. 

Along the years, the literature reveals the progressive development of hybrid schemes based on eigenfunction 
expansions, which recently, due to the development of symbolic computation platforms, have became more attractive 
due to the reduction on the analytical development effort (Cotta, 1990; Cotta, 1998; Santos et al., 2001; Cotta and 
Mikhailov, 2006). In this class, the Integral Transform Method (Cotta, 1993) was gradually expanded in its 
applicability, under the label of the Generalized Integral Transform Technique (GITT), and extensively employed in 
heat/mass transfer and fluid flow problems (Silva and Cotta, 1992; Perez-Guerrero and Cotta, 1992; Machado and 
Cotta, 1995; Perez-Guerrero et al., 2000; Pereira et al., 2000), including fluid flow problems under either the boundary 
layer or the full Navier–Stokes formulations (Silva and Cotta, 1992; Perez-Guerrero and Cotta, 1992; Machado and 
Cotta, 1995; Perez-Guerrero et al., 2000; Pereira et al., 2000; Paz et al., 2007). In such contributions, the preference for 
the streamfunction-only formulation in two-dimensional situations is notorious, in light of the elimination of the 
pressure field and automatic satisfaction of the continuity equation. In the case of the streamfunction-only formulation, 
the appropriate eigenfunction expansion for the velocity problem is in general proposed based on a fourth-order 
eigenvalue problem related to the analytical solution of the linear biharmonic equation for vanishing Reynolds number 
(Pereira et al., 2000). Problems related to the Cartesian coordinates system were more frequently studied in comparison 
to those propositions of eigenfunction expansions in the cylindrical coordinates system (Pereira et al., 2000; Paz et al., 
2007), possibly due to the inherent difficulties in avoiding the singularities of the fourth-order eigenvalue problem at the 
circular duct centerline for a full cylindrical region. These difficulties were circumvented in a recent work dealing with 
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the boundary layer equations (Paz et al., 2007), by adopting an also recently introduced eigenvalue problem (Paz et al., 
2007), which accounts for the singularities at the central radial position. 

In this context, the GITT approach with its intrinsic characteristic of finding solutions with automatic global error 
control, opened up an alternative perspective in benchmarking and covalidation for such classical test problems. The 
GITT methodology was already successfully employed in the solution of the boundary-layer formulation version of this 
same problem, by adopting an appropriate fourth-order eigenvalue problem in the cylindrical coordinates system that 
could exactly deal with the singularities of the Bessel functions at the tube centerline (Paz et al., 2007). The present 
work is thus aimed at utilizing the ideas in the GITT approach to construct a hybrid analytical-numerical solution of the 
continuity, momentum and energy equations for a Newtonian fluid flowing in the entrance region of circular tubes  
taking into account the effect of viscous dissipation, and for this purpose, the boundary-layer formulation in terms of 
streamfunction formulation is adopted in order to avoid singularities in the auxiliary eigenvalue problem expressed as 
Bessel functions at the centerline of the duct. Comparisons with previous work in the literature are also made for typical 
situations in order to validate the numerical code developed here and to demonstrate the consistency of results 
produced. 
 
2. MATHEMATICAL FORMULATION  
 

Laminar forced convection in simultaneously developing flow of a Newtonian fluid in a circular tube is considered 
as show in Figure 1. The flow is assumed to be incompressible and the effect of viscous dissipation is also considered to 
evaluate its influence in the temperature field and physical properties are taken as constants. The steady two-
dimensional continuity, Navier-Stokes and energy equations in cylindrical coordinates are used to model the flow. 
Within the range of validity of the boundary layer hypothesis, such equations are written in dimensionless form as: 
 

 
 

Figure 1. Geometry and coordinates system for simultaneously developing flow in circular duct. 
 

Continuity equation: 
 

( )1 0r zrv v
r r z
∂ ∂+ =
∂ ∂

  (1) 

 
Momentum equations: 
 

2 1
Re

z z z
r z

v v vpv v r
r z z r r r

∂ ∂ ∂∂ ∂ ⎛ ⎞+ = − + ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
  (2) 

 

0p
r

∂− =
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 (3) 

 
Energy equation: 
 

22 1 2 z
r z

vT T T Brv v r
r z Pe r r r Pe r

∂∂ ∂ ∂ ∂ ⎛ ⎞⎛ ⎞+ = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
  (4) 
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Equations (1)-(4) are subjected to following boundary conditions: 
 

( ,0) 1zv r =   ;  ( ,0) 1T r =   (5,6) 
 

(0, ) 0rv z =   ;  (0, ) 0zv z
r

∂ =
∂

 ;  (0, ) 0T z
r

∂ =
∂

  (7-9) 

 
(1, ) 0zv z =   ;  (1, ) 0v zr =   ;  (1, ) 0T z =   (10-12) 

 
The dimensionless groups in the above equations are defined as: 
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Now, Eqs. (1)-(13) equations are expressed in terms of the streamfunction-only formulation in order to 

automatically satisfy the continuity equation and eliminate the pressure field, in the form: 
 

3 2 3 2 2

3 2 2 3 2 2 2 2

1 1 3 3 1 1 1 2 1 1 1
Re

r
r z r r r r r r z r r r r rr r r r r z r r r

ψ ψ ψ ψ ψ ψ ψ ψ ψ⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪− + − − = −⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
 (14) 
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 (15) 

 
The streamfunction is defined in terms of the dimensionless velocity components in the longitudinal (r) and 

transversal (z) directions, respectively, as 
 

1
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r z
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r r
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= −
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 (16,17) 

 
The boundary conditions expressed in terms of the streamfunction are given by: 
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0
z

r

ψ∂
=

∂
  ;  2(1, )z Cψ =   ;  (1, ) 0T z =  (23-25)

 
 

where C1 and C2 are constants that specify the streamfunction values at the channel centerline and wall. The constant q 
warrants the global mass conservation. Such constants as relates by using the boundary conditions, to yield 

 

2 1 2

q
C C= −  (26) 

 
One may arbitrarily specify C1=0, so that C2= -1/2 and q=1. 
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To improve the computational performance is convenient define a filter that reproduces the fully developed flow 
solution in order to homogenize the boundary conditions. Therefore, the simple filter adopted is written as 

 

( , ) ( ) ( , )r z r r zψ ψ φ∞= + ;    
2

2( ) 1
2
rr rψ∞

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (27,28) 

 
This is a commonly used strategy in the integral transform approach that is equivalent to the separation of the steady 

state solution in a transient problem, which acts by filtering the equation source terms responsible for the slower 
convergence rates in non-homogeneous problems. Then, after the substitution of Eq. (27), the problem formulation is 
rewritten as: 
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2.1 Solution methodology 
 

In applying the GITT approach in the solution of the PDE system given by Eqs. (29) to (38), due to the 
homogeneous characteristics of the boundary conditions in the r direction, it is more appropriate to choose this direction 
for the process of integral transformation. Therefore, the auxiliary eigenvalue problems related to the velocity and 
temperature fields are taken as follows: 

- For the velocity field: 
 

4 2( ) ( )i i iE r E rλΧ = − Χ  (39) 
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where, 
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The eigenfunction and the transcendental expression to calculate the eigenvalues are given, respectively, by 
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1
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i
i

i

rJ rr r
J

λ
λ
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The eigenfunctions of this eigenvalue problem enjoy the following orthogonality property 
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The normalization integral Mi is then computed from 
 

( )
21 2'

0

1 ( )
2
i

i iM r dr
r

λ= Χ =∫  (49) 

 
- For temperature field: 
 

2( ) ( ) 0i
i i

d rd r r r
dr dr

µΓ⎛ ⎞ + Γ =⎜ ⎟⎝ ⎠
 (50) 

 
( )
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Similarly, problem (50) is solved analytically, to furnish the eigenfunctions, transcendental equation to compute the 

eigenvalues, orthogonality property and normalization integral, respectively, as 
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The eigenvalue problems defined by Eqs. (39) to (56) allow for the definition of the following integral transform 

pairs. 
- For the velocity field: 
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- For the temperature field; 
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We can now accomplish the integral transformation of the original partial differential system given by Eqs. (29)-

(38). For this purpose Eq. (29) is multiplied by [Xi(r)/r] and integrated over the domain [0,1] in r and the inverse 
formula given Eq. (58) is employed, similarly, the energy equation, Eq. (30), is multiplied by [Γi(r)/r] and also is 
integrates over the domain [0,1] in the r direction, and the inverse formula given by Eqs. (58) and (60) are employed. 
After the appropriate manipulations, the following coupled ordinary differential system results are utilized for the 
calculation of the transformed potentials: 

 

1

2       1,2,3,...
Re

j
ij i

j

d
A B i

dz
φ∞

=
= =∑  (61)

 
2

1 1

2 2( )       1,2,3,...j j
ij ij i i i i

j j
T

d dT BrC D z N E i
dz dz Pe Pe
φ

µ
∞ ∞

= =
+ = − + =∑ ∑   (62) 

 
(0)i ifφ = ;       (0)i iT g=  (63,64)
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where, 
 

1 2 3ij ij ij ijA A A A= + + ;   
3 23 21

2 3 2 2 3 2 20
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ij
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A dr
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∫  (69) 

1

0
( ) ( )ij i j

TC r r dr
r

∂= Γ Χ
∂∫  ;   

1

0
( ) ( )ij i j

dD r r dr
r dr

ψφ ∞∂⎛ ⎞= Γ Γ +⎜ ⎟∂⎝ ⎠∫  (70,71) 

2221

2 2 2 20

1 1 1 1( )i i
d dE r r dr

r r r drr r dr r
ψ ψφ φµ ∞ ∞⎛ ⎞∂ ∂= Γ − + −⎜ ⎟∂∂⎝ ⎠

∫  ;   
1 2 2

0

1 1 (1 )
2i i

i

f r r E dr
M

= − − Χ∫  (72,73) 

1

0

1 ( )i i
i

g r r dr
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In order to handle numerically the ordinary differential equation (ODE) system given by Eqs. (61) to (74) through 

the subroutine DIVPAG of IMSL Library (1991), it is necessary to truncate the infinite series a sufficiently high number 
of terms (NV and NT for the velocity and temperature fields, respectively) so as to guarantee the requested relative 
error in obtaining the original potentials. This subroutine solves initial-value problems with stiff behavior, and provides 
the important feature of automatically controlling the relative error in the solution of the ODE system, allowing the user 
to establish error targets for the transformed potentials.  

Once the transformed potentials are available, the velocity field is obtained from the definition of the streamfunction 
given by Eqs. (16) and (17), after introducing the inverse formula (58), to yield 
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The dimensionless average temperature is defined in the form 
 

( ) ( ) ( )1

0
2 , ,av rT z rv r z T r z dr= ∫  (77) 

 
And after introducing the inverse formulas (58) and (60), it results 
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The local Nusselt number can be calculated from its usual definition as 
 

( ) ( )
( )

( )
( )

( )*

1

2 1, 12 2 ( )w i
i

iav av

h z r T z d
Nu z T z

k T z r T z dr

∞

=

∂ Γ
= = − = −

∂ ∑  (82) 

 
3. RESULTS AND DISCUSSION 
 

Numerical results for the Nusselt numbers were produced along the entrance region of a circular tube. The 
computational code was developed in FORTRAN 90/95 programming language. The routine DIVPAG from the IMSL 
Library (1991) was used to handle numerically the truncated version of the system of ordinary differential equations 
[Eqs. (61) – (74)], with a relative error target of 10-8 prescribed by the user, for the transformed potentials. For the 
velocity field, the results were produced with different truncation orders (NV ≤ 140) and for Re = 2000, but it should be 
noted that the dimensionless axial coordinate X+ = z/(2Re) makes the flow results independent of the Reynolds number 
for the boundary-layer formulation. Similarly, for the temperature field, the related results were constructed with  
NV = NT ≤ 140, Re = 2000, Pr = 0.7 and 2 and Br = 0.0, 0.1 and 0.01, along the dimensionless axial coordinate X+ = 
z/(2 Re). 
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The convergence behavior of local Nusselt numbers is analyzed in Tables 1 to 3 for different Prandtl and Brinkman 
numbers. One verifies excellent convergence rates for all cases analyzed, which is fully reached with four significant 
digits with N<140 terms in the summations. 

 
 

Table 1: Convergence behavior of the local Nusselt numbers for Pr = 0.7 and 2.0 and Br = 0.0. 

 Pr = 0.7  Pr = 2.0 

X* N = 80 N = 100 N = 120 N = 140  N = 80 N = 100 N = 120 N = 140 

1.000 x10-3 13.82 13.81 13.79 13.79  11.99 11.98 11.97 11.97 
1.071 x10-3 13.37 13.36 13.35 13.34  11.62 11.61 11.60 11.59 
1.429 x10-3 11.64 11.63 11.62 11.62  10.20 10.19 10.18 10.18 
1.500 x10-3 11.38 11.37 11.36 11.36  9.984 9.974 9.968 9.963 
1.786 x10-3 10.49 10.48 10.47 10.47  9.250 9.241 9.236 9.232 
2.000 x10-3 9.954 9.946 9.940 9.936  8.811 8.804 8.799 8.795 
2.143 x10-3 9.645 9.637 9.631 9.628  8.557 8.550 8.545 8.542 
2.857 x10-3 8.483 8.477 8.473 8.469  7.599 7.594 7.591 7.588 
3.000 x10-3 8.304 8.298 8.294 8.291  7.452 7.447 7.444 7.441 
3.571 x10-3 7.706 7.701 7.698 7.695  6.957 6.953 6.951 6.949 
4.000 x10-3 7.348 7.344 7.341 7.339  6.661 6.658 6.655 6.654 
5.000 x10-3 6.712 6.708 6.706 6.704  6.133 6.130 6.129 6.127 
6.000 x10-3 6.252 6.249 6.246 6.245  5.751 5.749 5.747 5.746 
7.143 x10-3 5.857 5.854 5.853 5.851  5.424 5.422 5.421 5.420 
8.000 x10-3 5.622 5.602 5.619 5.618  5.229 5.228 5.227 5.227 
1.000 x10-2 5.208 5.206 5.205 5.204  4.888 4.887 4.886 4.886 
1.071 x10-2 5.092 5.091 5.089 5.089  4.793 4.792 4.791 4.791 
1.429 x10-2 4.663 4.662 4.661 4.661  4.442 4.441 4.441 4.441 
1.500 x10-2 4.599 4.599 4.598 4.597  4.390 4.389 4.389 4.389 
1.786 x10-2 4.391 4.391 4.390 4.389  4.220 4.219 4.219 4.219 
2.000 x10-2 4.273 4.272 4.272 4.271  4.124 4.123 4.123 4.123 
2.143 x10-2 4.206 4.206 4.205 4.205  4.069 4.069 4.069 4.069 
2.857 x10-2 3.979 3.978 3.978 3.978  3.886 3.886 3.886 3.886 
3.571 x10-2 3.853 3.852 3.852 3.852  3.787 3.787 3.787 3.787 
7.143 x10-2 3.679 3.679 3.679 3.679  3.665 3.665 3.665 3.665 
7.661 x10-2 3.673 3.673 3.673 3.673  3.663 3.662 3.663 3.663 
1.071 x10-1 3.660 3.660 3.660 3.660  3.657 3.657 3.657 3.657 
2.000 x10-1 3.657 3.657 3.657 3.657  3.657 3.657 3.657 3.657 

1.000 3.657 6.657 3.657 3.657  3.657 3.657 3.657 3.657 
N = NV = NT. 
 

Table 2: Convergence behavior of the local Nusselt numbers for Pr = 0.7 and 2.0 and Br = 0.1. 

 Pr = 0.7  Pr = 2.0 

X* N = 80 N = 100 N = 120 N = 140  N = 80 N = 100 N = 120 N = 
140 

1.000 x10-3 13.75 13.74 13.73 14.73  11.95 11.94 11.93 11.93 
1.071 x10-3 13.30 13.29 13.28 13.27  11.58 11.57 11.56 11.56 
1.429 x10-3 11.57 11.56 11.55 11.55  10.16 10.15 10.14 10.14 
1.500 x10-3 11.30 11.29 11.29 11.28  9.946 9.936 9.929 9.925 
1.786 x10-3 10.41 10.40 10.39 10.39  9.213 9.205 9.199 9.196 
2.000 x10-3 9.878 9.870 9.865 9.861  8.776 8.768 8.763 8.760 
2.143 x10-3 9.569 9.561 9.557 9.553  8.522 8.515 8.511 8.508 
2.857 x10-3 8.409 8.403 8.399 8.396  7.568 7.563 7.559 7.557 
3.000 x10-3 8.230 8.225 8.221 8.218  7.421 7.416 7.413 7.411 
3.571 x10-3 7.634 7.629 7.626 7.624  6.929 6.925 6.922 6.921 
4.000 x10-3 7.279 7.274 7.271 7.269  6.634 6.631 6.628 6.627 
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Table 2: Continued. 
 Pr = 0.7  Pr = 2.0 

X* N = 80 N = 100 N = 120 N = 140  N = 80 N = 100 N = 120 N = 140 
5.000 x10-3 6.646 6.642 6.639 6.638  6.109 6.106 6.105 6.103 
6.000 x10-3 6.189 6.186 6.184 6.182  5.729 5.727 5.726 5.725 
7.143 x10-3 5.798 5.795 5.794 5.792  5.404 5.403 5.402 5.401 
8.000 x10-3 5.566 5.564 5.562 5.561  5.212 5.211 5.209 5.209 
1.000 x10-2 5.157 5.155 5.154 5.153  4.874 4.872 4.871 4.871 
1.071 x10-2 5.043 5.041 5.040 5.039  4.779 4.778 4.778 4.777 
1.429 x10-2 4.621 4.620 4.619 4.619  4.432 4.431 4.431 4.430 
1.500 x10-2 4.559 4.558 4.557 4.557  4.381 4.379 4.379 4.379 
1.786 x10-2 4.355 4.354 4.354 4.353  4.212 4.212 4.212 4.211 
2.000 x10-2 4.239 4.239 4.238 4.238  4.117 4.117 4.116 4.116 
2.143 x10-2 4.175 4.174 4.174 4.174  4.064 4.063 4.063 4.063 
2.857 x10-2 3.955 3.954 3.954 3.954  3.883 3.882 3.882 3.882 
3.571 x10-2 3.834 3.834 3.834 3.834  3.785 3.785 3.785 3.785 
7.143 x10-2 3.673 3.673 3.673 3.673  3.665 3.665 3.665 3.665 
7.661 x10-2 3.668 3.668 3.668 3.668  3.662 3.662 3.662 3.662 
1.071 x10-1 3.658 3.658 3.658 3.658  3.657 3.657 3.657 3.657 
2.000 x10-1 3.657 3.657 3.657 3.657  3.657 3.657 3.657 3.657 

1.000 3.657 3.657 3.657 3.657  3.657 3.657 3.657 3.657 
N = NV = NT. 

 
Table 3: Convergence behavior of the local Nusselt numbers for Pr = 0.7 and 2.0 and Br = 0.01. 

 Pr = 0.7  Pr = 2.0 

X* N = 80 N = 100 N = 120 N = 140  N = 80 N = 100 N = 120 N = 140 

1.000 x10-3 13.81 13.80 13.79 13.78  11.99 11.98 11.97 11.96 
1.071 x10-3 13.37 13.35 13.34 13.33  11.63 11.61 11.59 11.58 
1.429 x10-3 11.63 11.62 11.62 11.61  10.21 10.19 10.18 10.17 
1.500 x10-3 11.37 11.36 11.35 11.35  9.975 9.970 9.964 9.963 
1.786 x10-3 10.49 10.47 10.46 10.46  9.245 9.238 9.232 9.230 
2.000 x10-3 9.943 9.938 9.932 9.929  8.806 8.800 8.795 8.792 
2.143 x10-3 9.632 9.629 9.624 9.921  8.549 8.547 8.542 8.538 
2.857 x10-3 8.470 8.469 8.465 8.462  7.595 7.591 7.588 7.585 
3.000 x10-3 8.295 8.291 8.287 8.284  7.447 7.444 7.441 7.437 
3.571 x10-3 7.698 7.694 7.691 7.688  6.953 6.951 6.948 6.945 
4.000 x10-3 7.339 7.337 7.334 7.332  6.658 6.655 6.652 6.650 
5.000 x10-3 6.707 6.702 6.699 6.697  6.131 6.128 6.126 6.124 
6.000 x10-3 6.244 6.242 6.240 6.239  5.749 5.747 5.745 5.743 
7.143 x10-3 5.850 5.848 5.847 5.846  5.423 5.420 5.419 5.417 
8.000 x10-3 5.618 5.615 5.613 5.612  5.229 5.227 5.226 5.225 
1.000 x10-2 5.205 5.201 5.199 5.199  4.888 4.886 4.885 4.884 
1.071 x10-2 5.087 5.086 5.085 5.084  4.794 4.791 4.790 4.789 
1.429 x10-2 4.660 4.658 4.657 4.657  4.443 4.440 4.440 4.439 
1.500 x10-2 4.596 4.595 4.594 4.594  4.391 4.389 4.388 4.388 
1.786 x10-2 4.388 4.387 4.387 4.386  4.220 4.219 4.219 4.218 
2.000 x10-2 4.269 4.269 4.268 4.268  4.124 4.123 4.122 4.121 
2.143 x10-2 4.204 4.203 4.202 4202  4.070 4.069 4.069 4.067 
2.857 x10-2 3.977 3.976 3.976 3.976  3.887 3.886 3.886 3.885 
3.571 x10-2 3.853 3.851 3.851 3.850  3.788 3.787 3.787 3.786 
7.143 x10-2 3.679 3.678 3.678 3.678  3.665 3.665 3.665 3.665 
7.661 x10-2 3.673 3.672 3.672 3.672  3.663 3.663 3.662 3.662 
1.071 x10-1 3.661 3.660 3.659 3.659  3.657 3.657 3.657 3.657 
2.000 x10-1 3.657 3.657 3.657 3.657  3.657 3.657 3.657 3.657 

1.000 3.657 3.657 3.657 3.657  3.657 3.657 3.657 3.657 
N = NV = NT. 

ISSN 2176-5480

5880



22nd International Congress of Mechanical Engineering (COBEM 2013) 
November 3-7, 2013, Ribeirão Preto, SP, Brazil 

In order to demonstrate the consistency of the final results, Table 4 shows a set of benchmark results for the local 
Nusselt numbers along the tube length for Pr = 0.7 and 2.0 and Br = 0.0. It is possible to realize that the results have a 
good agreement when compared with the numerical results presented in the literature. At some positions near the 
entrance, a more marked difference among the sets of results is verified between the present work and those of Paz et al. 
(2007), which have employed the same solution methodology. This difference can be explained due to the present work 
have used semi-analytical integration to calculate the integral coefficients and Paz et al. (2007) have used analytical 
integrations that certainly affected the final results. 

 
Table 4: Reference results for the local Nusselt numbers for Pr = 0.7 and 2.0 and Br = 0.0. 

 Pr = 0.7  Pr = 2.0 

X* Present Paz et al. 
(2007) Shah and London  Present Paz et al. 

(2007) Shah and London 

1.000 x10-3 13.79 12.83 12.6 a  11.97 11.61 11.4a 
1.071 x10-3 13.34 12.45 12.4 b /11.94 c  11.59 11.28 - 
1.429 x10-3 11.62 11.00 11.0 b /10.65 c  10.18 10.00 - 
1.500 x10-3 11.36 10.77 10.8 a  9.963 9.807 9.8a 
1.786 x10-3 10.47 10.01 9.99 b /9.757 c  9.232 9.137 - 
2.000 x10-3 9.936 9.546 9.6 a  8.795 8.733 8.8a 
2.143 x10-3 9.628 9.277 9.26 b /9.086 c  8.542 8.497 - 
2.857 x10-3 8.469 8.253 8.24 b /8.129 c  7.588 7.598 - 
3.000 x10-3 8.291 8.094 8.2 a  7.441 7.457 7.5a 
3.571 x10-3 7.695 7.556 7.54 b /7.469 c  6.949 6.985 - 
4.000 x10-3 7.339 7.232 7.3 a  6.654 6.699 6.8a 
5.000 x10-3 6.704 6.647 6.7 a  6.127 6.184 6.2a 
6.000 x10-3 6.245 6.218 6.25 a  5.746 5.806 5.8a 
7.143 x10-3 5.851 5.846 5.84 b /5.793 c  5.420 5.479 - 
8.000 x10-3 5.618 5.624 5.60 a  5.227 5.284 5.3a 
1.000 x10-2 5.204 5.226 5.25 a  4.886 4.935 4.93a 
1.071 x10-2 5.089 5.114 5.11 b /5.081 c  4.791 4.837 - 
1.429 x10-2 4.661 4.695 4.69 b /4.671 c  4.441 4.474 - 
1.500 x10-2 4.597 4.632 4.60 a  4.389 4.420 4.44a 
1.786 x10-2 4.389 4.425 4.42 b /4.409 c  4.219 4.243 - 
2.000 x10-2 4.271 4.305 4.28 a  4.123 4.142 4.17a 
2.143 x10-2 4.205 4.238 4.23 b /4.224 c  4.069 4.086 - 
2.857 x10-2 3.978 4.002 3.998 b /3.993 c  3.886 3.896 - 
3.571 x10-2 3.852 3.869 3.846 b /3.862 c  3.787 3.793 - 
7.143 x10-2 3.679 3.681 3.641 b /3.674 c  3.665 3.666 - 
7.661 x10-2 3.673 3.675 3.632 b  3.663 3.663 - 
1.071 x10-1 3.660 3.660 3.655 c  3.657 3.657 - 
2.000 x10-1 3.657 3.657 3.66 a  3.657 3.657 3.66a 
1.000 3.657 3.657 3.66 a  3.657 3.567 3.66a 

aGraphical results of Honbeck (Hornbeck, 1965);  bManohar (Shah and London, 1978);  
cHwang (Shah and London, 1978). 
 

 

4. CONCLUSIONS 
 

The GITT was successfully employed in the solution of the boundary layer equations in the simultaneously 
developing flow of Newtonian fluids in circular tubes to study the effect of viscous dissipation in the temperature field. 
The streamfunction formulation was preferred aimed at dealing with the singularity at the channel centerline. 
Benchmark results for the local Nusselt numbers in the entrance region were then tabulated for different Prandtl and 
Brinkman numbers. The numerical results obtained showed that the local Nusselt number is a monotonically decreasing 
function of the dimensionless axial coordinate and that tends to be uniform independently of the Prandtl or Brinkman 
number. The good agreement of the present results with previously reported ones demonstrates the consistency of this 
approach and adequacy for benchmarking this class of problems. 
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