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Abstract. In this problem a hybrid numerical-analytical solution based on the Generalized Integral Transform 

Technique (GITT) is obtained for the hydrodynamically fully developed and thermally developing flows in annular 

ducts for non-Newtonian fluids that follow the power-law rheological model. In this paper, it is employed the bipolar 

coordinate system to map the eccentric annular duct. It is analyzed the velocity field, the numerical results for the 

velocity field and the product of the Fanning friction factor-Reynolds number are produced for different values of the 

governing parameters, eccentricity, radii ratio and power-law indices. These values will be shown in convergences 

table. Such results will be compared with those of a previous contribution providing critical comparisons in order to 

illustrate the adequacy of the employed integral transform approach.  
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1. INTRODUCTION 

 
Industrial applications in which processing of materials behaving as non-Newtonian fluids are those commonly 

encountered in the chemical, cosmetics, food processing, polymer and petrochemical industries. The petrochemical 
industries are in search of solutions for the velocity and temperature field of the fluid flow with characteristics typically 
non-Newtonian. In these applications, the power-law model can described adequately the rheology of such fluids. 

The Generalized Integral Transform Technique (GITT), present in this work is known as a powerful method in 
solving and manipulation of certain classes of problems of heat and mass diffusion. The GITT allows solution of 
problems of hybrid form to problems with the Newtonian complexity involved that can not be treated by usual 
analytical techniques. The basic idea is to transform a system of partial differential equations on an infinite system of 
ordinary equations, by eliminating spatial dependencies, where these can be solved more simply, with the advantage of 
producing a more accurate and more economical than to allow for control over the relative error results. 

There are several works in which the flow of Newtonian fluids and non-Newtonian fluids are studied, in this work 
ducts of different geometries and different methods of solving partial differential equations are used. In Chaves et al. 
(2001) studied the thermally developed laminar flow of non-Newtonian fluids that follow the rheological model of the 
power law in rectangular ducts using as a method of solution GITT, in Chandrupatla et al. (1977) study was performed 
in heat transfer by forced convection non-Newtonian fluid in a square duct. 

The developing laminar flow and heat transfer in the annular passages have been investigated by Heaton et al. 
(1964), Feldman et al. (1982), in this latter, it is solved laminar developing flow in eccentric annular ducts using the 
bipolar coordinate system. Others problems were also solved numerically using bipolar coordinates, such as those in the 
work of Heyda (1959). The author determined the Green’s function in bipolar coordinates for a potential flow and 
obtained a solution for the momentum equation. El-Shaarawi et al. (1998) use the bipolar coordinate system for 
determined developing laminar forced convection in eccentric annuli, the author has based the analysis on the work of 
El-Saden (1961), where it was studied heat conduction in an eccentrically hollow, infinitely long cylinder. 

The objective of the present paper is to obtain a hybrid solution through the GITT approach for the fully developed 
flow of non-Newtonian fluids in eccentric annular ducts by using a bipolar coordinate system to map the region of such 
annular duct. Also, it is intend to develop a numerical algorithm to solve the transformed equation. Therefore, the 
numerical results will be confronted with results from the literature (Monteiro et al., 2010). 
 
2. MATHEMATICAL FORMULATION 

 
We consider fully developed laminar flow in the eccentric doubly connected duct geometry. The transformation 

equation from the cylinder coordinate system to this bipolar coordinate system is used to map the duct walls. It was 
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considered that the two-dimensional flow is laminar and incompressible and stationary, the fluid follows the rheological 
power-law model, the properties of the fluid are constant and that the duct walls are impermeable and non-slip. 

 

 
 

  Figure 1 - Type geometry doubly connected ducts with angular symmetry eccentric. 
 

The mathematical formulation of the flow problem is given by the momentum conservation equation in the axial 
direction, in dimensionless form, as follows: 
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The boundary condition for the present problem is V 0z  on the surface. Also, the velocity distribution must be 

symmetrical about the x-axis. 
Where, in Eqs. (1) and (2) above the following dimensionless groups were employed: 
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The related transformation equations from the Cartesian coordinate system to this bipolar coordinate system are 

given below: 
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Where a  is a positive constant give by: 

 
0sinh ( ) sinh ( )ia      (11) 

 
Making the transformation of coordinate systems by using Eqs. (9) to (11) above, we obtain the following equations: 
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2.1 Solution methodology 

 
In order to obtain the solution of Eq. (12), we rewritten such equation as: 
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Where: 
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Where the coefficients are defined by: 
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2.2 Eigenvalue problem 

 
The Generalized Integral Transform Technique (GITT) is then employed in the hybrid numerical-analytical solution 

of the problem (Cotta, 1993). For this purpose, the following auxiliary eigenvalue problem is chosen: 
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Equation above can be analytically solved, to yield the eigenfunctions and eigenvalues, respectively as: 
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It can be shown that the eigenfunction, i(), obey the following orthogonality property, where Ni is the 

normalization integral: 
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2.3 Inverse-transform pair 
 
Equations (30) to (32) together with the respective orthogonality properties allow the definition of the integral 

transform pair for the velocity field as: 
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2.4 Integral transformation 

 
To obtain the resulting system of differential equations for the transformed potentials, ,z iV , the partial differential 

equation, Eq. (18), is multiplied by ψ ( )i  , integrated over the domain  ,0  in the -direction, and the inverse formula 

is employed in place of the velocity distribution ( , )zV   , resulting in the following transformed ordinary differential 
system: 
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Where Gij() and Hi() are given by: 
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The coefficients Gij() and Hi() depend on the transformed potentials and vary along , the Eqs. (39-41) form an 

infinite nonlinear boundary value problem, which has to be truncated in a sufficiently high order NT, followed by 
computation of the transformed potentials of the velocity field, , ( )z iV  , to within a user prescribed precision goal. For 
the solution of such a system, due to the expected stiff characteristics, specialized subroutines have to be employed such 
as the DVPFD from the IMSL Library (1991). 

In order to compute the product of the friction factor by the Reynolds number, first it is necessary to calculate the 
average velocity, and then from the introduction of the inverse formula, Eq. (38), into its usual definition, one obtains: 
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The coefficients in Eq. (46) above are defined as follows: 
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From the definition of the friction factor and Reynolds number, it is concluded that the product fRe is given by: 
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3. RESULTS AND DISCUSSIONS 

 
To validate the method used is necessary to make a convergence analysis of the results obtained for comparison 

with the literature of the same. To solve this system has been developed a computer code of programming language 
FORTRAN 90/95 using the calculation routine DBVPFD of the IMSL Library (1991). 

A convergence analysis of the numerical results obtained for the product fRe, in fully developed laminar flow for 
Newtonian fluids, which flow through doubly connected ducts is made in this report. To perform of computer 
simulations was prescribed a relative error of 10-12 in the solution of the system of ordinary differential equations 
infinite and coupled. 

In Table 1 we show the convergence analysis of the results of the product fRe of non-Newtonian fluid in eccentric 
annular ducts for n = 0.5, the values were calculated for different values of aspect ratios ( = 0.2; 0.5 e 0.8) and for 
different values of eccentricity ( = 0.1; 0.5 e 0.9) depending on the number of terms NT. There is a good convergence 
of results still in low numbers of terms, with the gradual increase of the eccentricity there is the convergence in number 
values higher, it can be seen clearly in the amount  = 0.2, in which in  = 0.1 convergence occurs with 9 number of 
terms, in  = 0.5 the values converge with 15 number of terms, while in  = 0.9 is observed the convergence with 19 
number of terms, the most critical cases are those with  = 0.9, in which convergence is between 15 and 21 terms. In the 
convergence analysis was performed to validate the work that the comparison between the values obtained in the 
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present paper and the results of the work of Monteiro et al. (2010), there is a good agreement between both work 
concluding the validation of results. 
 
Table 1 - Convergence analysis of the product fRe eccentric annular ducts for non- Newtonian fluids with n = 0, 5. b - 

Monteiro et al. (2010) 
 

NT  = 0,2  = 0,5  = 0,8 
  = 0,1  = 0,5  = 0,9  = 0,1  = 0,5  = 0,9  = 0,1   = 0,5  = 0,9 

fRe 
3 7.675 6.665 6.295 7.852 6.290 5.662 7.881 6.111 5.488 
5 7.677 6.637 5.608 7.852 6.257 4.876 7.881 6.051 4.635 
7 7.676 6.636 5.420 7.852 6.256 4.662 7.881 6.051 4.365 
9 7.675 6.636 5.372 7.852 6.256 4.615 7.881 6.051 4.362 
11 7.675 6.636 5.365 7.852 6.256 4.597 7.881 6.051 4.362 
15 7.675 6.637 5.334 7.852 6.256 4.595 7.881 6.051 4.278 
19 7.675 6.637 5.333 7.852 6.256 4.592 7.881 6.051 4.249 
21 7.675 6.637 5.333 7.852 6.256 4.592 7.881 6.051 4.249 
b 7.676 6.634 5.334 7.854 6.255 4.591 7.879 6.051 4.247 

 
In Table 2 we show the convergence analysis of the results of the product fRe of non-Newtonian fluid in eccentric 

annular ducts, the values were calculated for different values of aspect ratios ( = 0.2; 0.5 e 0.8) and for different values 
of eccentricity ( = 0.1; 0.5 e 0.9) depending on the number of terms NT. There is a good convergence of results still in 
low numbers of terms, with the gradual increase of the eccentricity there is the convergence in number values higher, it 
can be seen clearly in the amount  = 0.2, in which in  = 0.1 convergence occurs with 9 number of terms, in  = 0.5 the 
values converge with 11 number of terms, while in  = 0.9 is observed the convergence with 27 number of terms, the 
most critical cases are those with  = 0.9, in which convergence is between 13 and 27 terms. In the convergence 
analysis was performed to validate the work that the comparison between the values obtained in the present paper and 
the results of the work of Monteiro et al. (2010), there is a good agreement between both work concluding the 
validation of results. 

 
Table 2 - Convergence analysis of the product fRe eccentric annular ducts for non- Newtonian fluids with n = 1, 5. b - 

Monteiro et al. (2010) 
 

NT  = 0,2  = 0,5  = 0,8 
  = 0,1  = 0,5  = 0,9  = 0,1  = 0,5  = 0,9  = 0,1   = 0,5  = 0,9 

fRe 
3 66.056 49.949 57.249 68.024 48.931 42.906 68.476 48.6445 40.111 
5 66.059 49.299 37.904 68.024 48.557 30.585 68.476 48.325 29.092 
9 66.060 49.279 32.501 68.024 48.552 28.072 68.476 48.322 27.038 
11 66.060 49.279 32.056 68.024 48.552 27.964 68.476 48.322 26.968 
13 66.060 49.279 31.892 68.024 48.552 27.938 68.476 48.322 26.954 
17 66.060 49.279 31.805 68.024 48.552 27.938 68.476 48.322 26.951 
21 66.060 49.279 31.793 68.024 48.552 27.938 68.476 48.322 26.951 
27 66.060 49.279 31.790 68.024 48.552 27.938 68.476 48.322 26.951 
29 66.060 49.279 31.790 68.024 48.552 27.938 68.476 48.322 26.951 
b 66.063 49.280 31.788 68.025 48.553 27.929 68.477 48.323 26.952 

 
4. CONCLUSIONS 

 

A solution based on the Generalized Integral Transform Technique (GITT) was developed to predict fully developed 
laminar flow of non-Newtonian power-law fluids in eccentric annular ducts. The proposed integral transform approach 
provided reliable and cost effective simulations for the considered cases by employing a bipolar coordinate 
representation of the solution domain. Benchmark results for the product of the Fanning friction factor-Reynolds 
number were systematically tabulated for different values of the governing geometric parameters, demonstrating the 
usefulness and robustness of the GITT alternative solution procedure. 
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