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Abstract. This paper shows how the force capability of a 3RRR symmetric parallel manipulator can be maximized from the
optimization of its topology. The objective function of the optimization problem of force capability is defined by employing
the Screws Theory and Davies’s method as a primary mathematical tool. In order to solve the problem regarding the
global optimization, an evolutionary algorithm known as Differential Evolution (DE) is used. The proposed method is
analysed through specific case studies and evaluated by comparing results versus theoretical methodologies. The key
difference from other studies, is that the proposed method allows to optimize the force capability and the topological
characteristics of the manipulator at the same time.
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1. INTRODUCTION

The increased complexity of the tasks of industrial robots requires further studies on robots interaction with the envi-
ronment. This interaction can be static, in case there is no relative movement of the robot in relation to the environment, or
dynamic, whenever there is this kind of motion, but the contact is maintained during the movement. When movement is
slow, it is possible to consider the interaction as quasi-static, because the dynamic effects can be disregarded (Weihmann,
2011), as is the case in the present study .

The task space capabilities of a manipulator to perform motion and/or to exert forces and moments are of fundamental
importance in robotics. In the design phase, their evaluation can be useful to determine the structure and the size of
a manipulator that best fits the designer’s requirements. In the operational phase, they can be used to find a better
configuration or a better operation point for a manipulator to perform a given task (Chiacchio et al., 1996).

Industrial robots can be lead to their force capability limit, once are given some specific condition tasks. When
performing a task, the force required to accomplish it could exceed the force capability of the robot, and there may be
damage or injury (Weihmann, 2011). The main objective of this study is to develop a method to maximize the force
capability of a 3RRR symmetrical planar parallel manipulator in static or quasi-static conditions.

In robotics, the force capability of a manipulator is defined as the maximum wrench that can be applied (or sustained)
by a manipulator for a given pose based on the limits of the actuators. By considering all possible directions of the applied
wrench or by considering specific directions along spatial trajectories, a force capability plot can be generated for the
given pose (Nokleby et al., 2004).

The force capability of a manipulator depends on its design, posture and actuation limits(Weihmann et al., 2011).
The maximum force with a prescribed moment (Fapp)(Firmani et al., 2008) and the maximum available value (MAV )
(Finotello et al., 1998) are similar force capabilities performance indices and can be defined as the maximum force that
can be applied (or sustained) by a manipulator with a prescribed moment. If this prescribed moment is zero, it yields a
pure force analysis. For a given direction, the maximum force that can be applied with zero moment will be denoted as
Fm. The scaling factor method and the explicit method to evaluate the force capabilities of parallel manipulators have
been presented in (Zibil et al., 2007). Nokleby et al. (2007) used those methods to show some results for 3-RRR, 3-RPR
and 3-PRR parallel architectures with redundant and non-redundant actuation. Other wrench performance indices for
planar parallel manipulators were presented in (Firmani et al., 2008).

The presence of geometric variable parameters in a force optimization problem generates non-linear and non-convex
functions over the search space and therefore a global optimization method should be used (Weihmann et al., 2011).

The global optimization problem is not easy to solve and it is still an open challenge for researchers since an ana-
lytical optimal solution is difficult to obtain, even for relatively simple application problems. Conventional deterministic
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numerical algorithms tend to stop the search in the nearest local minimum to the input starting point, mainly when the opti-
mization problem presents non-linear, non-convex and non-differential functions, multi-modal and non-linear (Weihmann
et al., 2011).

Evolutionary algorithms (EAs) are a class of stochastic search and optimization methods, based on the principles
of natural biological evolution. In this context, a new EA paradigm, called differential evolution (DE) algorithm, was
proposed in (Storn and Price, 2005) and (Storn and Price, 1997). Starting from a population of randomly initialized
solutions using uniform distribution, the DE algorithm employs simple mutation and crossover operators to generate new
candidate solutions, and utilizes a one-to-one competition scheme to deterministically decide whether the offspring will
replace their parents in the next generation. Due to the features of fast convergence and to a few number of control
parameters, the DE algorithm, nowadays has emerged as a new and attractive optimizer and applied in different robotic
fields (Wang et al., 2008),(Zha, 2002), (Gonzalez et al., 2009).

In this study, DE was used to optimize the force capability and the topology of the 3RRR planar manipulator on a
given force trajectory in comparison to the approaches in literature.

The remainder of this paper is structured as follows: Section 2 provides a description about geometry, kinematic, and
static of the studied manipulator. Section 3 shows and explains the objective function to optimize. Section 4 discusses
and presents optimization results and finally, section 5, outlines a brief conclusion about this study.

2. GEOMETRY, KINEMATICS AND STATICS OF THE MANIPULATOR

According to their movement characteristics and mechanical structure, parallel manipulators can be classified into
planar, spatial, and spherical (Tsai, 1999). Parallel manipulators usually consist in a mobile platform connected to a fixed
platform by several legs in order to transmit the movement. Generally, the number of legs of parallel manipulators is
equals to their degree of freedom (DoF), and the motors are usually located near the fixed base (Tsai, 1999).

A parallel manipulators is called symmetrical if it satisfies the following conditions (Mohamed and Duffy, 1985):

1. The number of limbs is equal to the number of DoF of the moving platform.

2. The type and number of joints in all the limbs are arranged in an identical pattern.

3. The number and location of actuated joints in all the limbs are the same.

2.1 Geometry of the manipulator

In this study case, the analysed manipulators are specifically “3RRR symmetrical planar parallel manipulators”, that
are parallel manipulators which fixed and mobile platforms are joined by using three legs. Each leg has three rotational
joints which axes are perpendicular to the (x− y) plane, and the first of the three joints in each leg is actuated. A “3RRR
symmetrical planar parallel manipulator (SPPM)” is represented schematically in Fig. 1.
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Figure 1. Schematic representation of a SPPM type 3RRR.

As shown in Fig. 1 the mobile and fixed platforms are formed by equilateral triangles with sides lm and lf respectively.
The legs are formed by two links with longitudes l1 and l2 respectively, and the distance between one of the mobile
platform vertices and its centroid is called l3. This distance can be calculated in terms of the distance lm using Eq. (1).
The angle φ represents the orientation of the mobile platform.
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l3 =
lm

2 cos(30◦)
(1)

Altogether this manipulator is a mechanism with eight links and nine joints, and its mobility can be calculated using
the mobility general criterion, as shown in Eq. (2).

M = λ(n− j − 1) +

j∑
i=1

fi = 3(8− 9− 1) + 9 = 3 (2)

In this mechanism of 3 DoF, the mobile platform is determined as the final effector link, and the l1 links in the three
legs are the inputs links. In this case, the primary actuation is applied to the joints A1 , A2 and A3 of the fixed platform.

2.2 Kinematics of the manipulator

Given the pose (position and orientation) of the mobile platform, the inverse kinematic problem (IKP) consists in
finding the corresponding rotation angle or displacement of all joints (active and passive) to achieve this pose. In the
absence of kinematics redundancy, each possible solution is known as a different working mode. For instance, the parallel
3-RRR manipulator can operate in eight different working modes (Alba-Gomez et al., 2007).

The inverse kinematic of the manipulator is defined in Eq. (3), Eq. (4) and Eq. (5), and the components C1, C2 and C3

of these equations can be calculated in function of φ, lm and Om using Eq. (6), Eq. (7) and Eq. (8).

θ1 = arctan
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Where

C1 = (C1x, C1y) =

(
Omx −

lm
3

(cos(φ) + cos(φ+
π

3
)), Omy −

lm
3
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π

3
))

)
(6)

C2 = (C2x, C2y) = (C1 + lm cos(φ), C1 + lm sin(φ)) (7)

C3 = (C3x, C3y) =
(
C1 + lm cos(φ+

π

3
), C1 + lm sin(φ+

π

3
)
)

(8)

2.3 Statics of the manipulator

In static analysis of manipulators, the goal is to determine the force and moment requirements in the joints. It is
possible to apply forces and moments in the mechanism joints to analyse the efforts obtained in the final actuator, or to
apply external forces and calculate the necessary forces and moments in the joints to balance these external forces.

The wrenches (force and moments) applied (or sustained) can be represented by the vector F = [FxFyMz]
T , where

Fx and Fy denotes the force in the directions x and y respectively, and Mz denotes the moment around the z axis. The
actuator torques of joints A1, A2 and A3 are respectively τA1, τA2 and τA3, denoted by the vector τ .

Using graph theory and the cut-set law (Cazangi, 2008), it is possible to prove that the net degree of constraint in a
3RRR manipulator is CN = 3. The manipulator does not have actuation redundancy and knowing the three independent
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variables the manipulator is statically solved. The independent and dependent variables used in the optimization problem
are respectively the actuator torques and the efforts obtained in the final actuator.

Using the formalism presented in (Davies, 1983), the primary variables are known, and the secondary variables are
the unknown variables. Considering the actuation torques as the primary variables, the ÂN matrix can be obtained using
graph theory, screw theory and Kirchhoff-Davies cutset law (Cazangi, 2008), where ÂN is the diagonalized unitary action
matrix and V is a vector comprising all the unknown wrenches in the manipulator, as shown in Eq. (9).

[ÂN ]21×21τ21×1 = V21×1 (9)

The complete manipulators action graph is shown in Fig. 2, where the vertex are the manipulator links and the edges
are the joints. Existing wrenches in each joint are represented by the symbol $.
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Figure 2. Manipulator action graph of a SPPM type 3RRR

The cutset law states that: when a manipulator is in static equilibrium, the sum of wrenches acting in a single cut must
be zero. Each k cut divides the manipulator in subsets of links of joints, where in each subset, the static equilibrium must
be preserved (Weihmann et al., 2011).

Since the manipulator is planar, the space dimension λ is three and only the Fx, Fy , and Mz wrench components are
considered, while Fz , Mx, and My are always equal to zero (Weihmann et al., 2011) and will not be represented in this
paper. For revolute joints, the wrench can be written as shown in Eq. (10), where x and y are the location of the joint axis
given in Cartesian coordinates, Fx and Fy are respectively the forces in directions x and y, and τ is the actuation torque.
If the joint is passive, τ is zero and the last term of equation Eq. (10) vanishes (Weihmann et al., 2011).

$ =

−y0
1

Fx +

x0
1

Fy +

1
0
0

 τ (10)

For each cutset there are three independent equations that can be written in the matrix as shown in Eq. (11).

Σ$ = [AD]λ×C = [ÂN ]λ×C{Ψ}C×1 = {0}λ×1 (11)
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In in Eq. (11), AD is the cut action matrix, ÂN is the unitary cut action matrix, and Ψ is the vector comprising the
wrenches magnitudes. Each column in the AD matrix represents one wrench that can be separated in a sum of three
components. To build the AD matrix, the following rules must be observed for each cut (Weihmann et al., 2011):

• if a joint is not cut, the columns representing the wrench in this joint are zero.

• if a joint is cut, the wrench is positive or negative regarding the direction assumed for the edge.

Choosing the CN primary variables, Equation (11) can be manipulated, separating the vector Ψp of the primary
variables magnitudes from the vector Ψs of the secondary variables magnitudes, and the unitary action matrix of the
secondary variables ÂNs from the unitary action matrix of the primary variables ÂNp, thereby obtaining the Eq. (12),
where all wrenches must be written in the same reference frame (Weihmann et al., 2011).

{Ψ}λk×1 = [−Â−1
Ns]λk×λk[ÂNp]λk×CN

{Ψp}CN×1 (12)

3. OPTIMIZATION PROBLEM

The main aim of the optimization problem studied in this paper, is to maximize a pure force Fm applied or sustained
for the manipulator in a given direction by the angle θ, while the moment is zero or close to zero.

Figure 3 shows the graphic representation of the method used in this paper, where there are two optimization processes
involved. The first one, is the optimization process in which the torque in the actuators MA1, MA2, and MA3 must
be optimized in order to maximize the pure force and minimize the moment in the manipulator’s final effector. This
optimization must be done in all possible directions given for the angle θ (interval comprehended between 0◦ and 360◦).
This process was denoted as “the internal optimization”, where were used 360 repetitions in order to represent the 360
different values of the angle θ (interval [0; 360]), and the results were saved in a vector called "Vector of Maximal Forces".

In the second case, the manipulator’s topology must be optimized in order to maximize the minimal force obtained
in the internal optimization, this was called “ the external optimization”, where the topological parameters l1, l2, and D2

must be optimized.
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Figure 3. Graphical representation of the proposed optimization

3.1 Objective function and constraints

It is possible to see in Fig. 3 that there are two objective functions. The first one is the "internal Objective Function",
that maximizes the force in a given angle and minimizes the moment in the manipulator’s final effector. The second one
is the "External Objective Function", that maximizes the minimum value saved in the "Vector of Maximal Forces". Thus,
the set of forces saved in the "Vector of Maximal Forces" is automatically optimized.

The internal objective function is shown in Eq. (13), where the terms Fx and Fy are the components of the force vector
obtained in each iteration of the internal optimization, αd is the desired angle, αo is the obtained angle in function of the
Fx and Fy components, Mz is the moment obtained in the manipulator’s final effector and finally the “PenI” term is the
penalization of the internal objective function.

In Eq. (13), the |αd − αo| term minimizes the error between the obtained and desired force direction, the
∣∣∣√F 2

x + F 2
y

∣∣∣−1

term maximizes the force obtained, and the |Mz| term minimizes the moment obtained in the manipulator’s final effector
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Fobj =

|αd − αo|+ 1∣∣∣√F 2
x + F 2

y

∣∣∣
+ (|Mz|) + PenI (13)

The external objetive function is shown in Eq. (14), where the term Vfm is the "Vector of Maximal Forces" and the
“PenE” term is the penalization of the external objective function, here the (min [Vfm])

−1 term maximizes the minimum
value obtained in the "Vector of Maximal Forces", obtained by the internal optimization for the interval between 0◦ and
360◦.

fobj2 =
1

(min [Vfm])
+ PenE (14)

The penalization term “PenI” included in Eq. (13) is activated when the condition shown in Eq. (15) is not satisfied
(the condition shown in Eq. (15) is imposed as the maximum admissible torque in the actuators), and the penalization
term “PenE” included in Eq. (14) is activated when the condition shown in Eq. (16) is not satisfied.

−4.2Nm < τAn < 4.2Nm (15)

l1 <= 0, or, l2 <= 0 (16)

As shown in equations Eq. (15) and Eq. (16), the constraints are written in terms of the torque in the actuators τAn and
the dimensions of the links l1 and l2.

3.2 Diferential Evolution (DE) algorithm

DE is a very simple population based, stochastic function minimizer and very powerful at the same time. This algo-
rithm is commonly accepted as one of the most successful algorithms for the global continuous optimization problem.
In fact, it was the best algorithm for the global continuous optimization problem in the first International Contest on
Evolutionary Optimization (ICEO).

DE optimizes a problem by maintaining a population of candidate solutions, and creating new candidate solutions by
combining existing ones, according to its simple formula, and then keeping whichever candidate solution has the best
score or fitness on the optimization problem at hand. In this way, the optimization problem is treated as a black box that
merely provides a measure of quality given a candidate solution, and therefore, the gradient is not needed.

The performance of the DE algorithm is sensitive to the mutation strategy and respective control parameters, such
as the population size (NP), crossover rate (CR), and the mutation factor (MF). The best settings for control parameters
can be different for different optimization problems, and the same functions with different requirements, for consumption
time and accuracy (Weihmann et al., 2011).

In this study the parameters N = 30, F = 0.5, CR = 0.8 were used, as suggested in (Storn and Price, 2005), and the
maximum iteration number was established in 4000.

4. RESULTS

First of all, the internal optimization was executed using a preset constant topology in order to validate the results
obtained in (Nokleby et al., 2004) and (Weihmann et al., 2011). The values used for this optimization are shown below:
l1 = 0.2m, l2 = 0.2m, D2 = 0.2m, Omx = 0.25m, Omy = 0.144m, and φ = 0◦

Varying the θ angle in the interval between 0◦ and 360◦, and optimizing the internal objective function it is possible
to find the maximal force applied in each direction of the interval. The result is a force capability hexagon that is exactly
equal to the results obtained in (Nokleby et al., 2004). The force capability hexagon is shown in Fig. 4.

In this study, a change in the graphics representation with respect to (Nokleby et al., 2004) is used in order to facilitate
the interpretation. This change is shown in Fig. 5, where are plotted the direction of the obtained force (θ in degrees)
Vs the maximum force obtained in that direction, and the direction of the obtained force (θ in degrees) Vs the obtained
moment in that direction. (Fig. 4 and Fig. 5 represent basically the same thing).

The behavior of the motors in each optimized point is shown in Fig. 6. And as expected, the results are similar as
presented in (Nokleby et al., 2004). The maximal FM obtained in the interval between 0◦ and 360◦ was 46.52N .

The second case studied, where the whole method is applied, optimizes the topology of the manipulator using the
external objective function shown in equation Eq. (14) at the same time that is optimized the manipulator’s force capability
using the internal objective function shown in equation Eq. (13).
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Figure 5. Extended force capability map

Varying the theta angle in the interval between 0◦ and 360◦, and using the propose optimization, the plot shown in
Fig. 7 is obtained. The behavior of the motors in each optimized point is shown in the figure Fig. 8.

The results obtained in this last case are better than the results obtained in the first one. The FM observed is 131.83N ,
this implies that the optimized topology offers a maximal force 2.833 times greater than the topology used in the first
evaluated case. After the last iteration on the optimization process were obtained the topological values: l1 = 0.0621m
l2 = 0.21811m and D2 = 0.144338m.

In order to compare, the force capability hexagons obtained in both studied cases are shown on the same graphic, as
can be seen in figure Fig. 9, where the hexagon identified with the discontinuous line represents the results obtained in
(Nokleby et al., 2004) and (Weihmann et al., 2011), and the hexagon identified with the continuous line represents the
results obtained in this study.
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Figure 6. Motor behavior in the force capability
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Figure 7. Optimized extended force capability map

5. CONCLUSIONS

This paper presents a new method to optimize the force capabilities in a 3RRR parallel manipulator, optimizing
iteratively the torque in the actuators of the manipulator and the topology of the manipulator. The optimization problems
were solved using ED algorithms, and the optimization parameters (torque in the actuators and topology) were optimized
separately.

Two study cases were shown in order to illustrate the procedure. In the first one, the force capability was maximized by
optimization of the torque in the actuators of the manipulator, and in the second one, the force capability was maximized
by optimization of both the torque in the actuators of the manipulator and the topology of the manipulator.

As shown in the second study case in this paper, the optimization of the topology of the manipulator allows maximizing
the force capabilities using the same torque in the actuators of the manipulator.

Due to the quantity of variables in the topology of the manipulator, the present study may be extended in various ways
in order to achieve better force capabilities. In future researches the position and orientation of the mobile platform could
be optimized as well as the minimization of the force and the maximization of the moment may be obtained.
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Figure 8. Motor behavior in the optimized extended force capability
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