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TURBULENT BOUNDARY-LAYER MORPHOLOGY OF PURELY
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Abstract. The asymptotic structure of turbulent boundary layers of purely viscous non-Newtonian systems is investigated
through the intermediate variable technique. The cases of power-law and Carreau fluids are discussed in detail. Results
show that a classical two-layered structure persists, with a viscous layer thickness that is dependent on the power-law
index, n, and a logarithmic solution in the fully turbulent region. Experimental data from other authors are used to
determine the functional behaviour of the linear coefficient of the log-law with n
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1. INTRODUCTION

The present work discusses the asymptotic structure of the turbulent boundary layer of purely viscous non-Newtonian
fluids. In this context, we discuss the flow structure for fluids whose relation between viscosity and flow shear rate can
be expressed in terms of simple equations. The special cases of power-law and Carreau fluids are detailed. The general
conclusion is that for a power-law fluid the two-layered structure of the turbulent boundary layer is not altered by changes
in the viscosity model. Modifications result just from local changes in the thickness and solution of the viscous region.
In particular, a logarithmic solution is always observed in the fully turbulent region. For Carreau fluids, in general a
three-layered structure emerges, with two nested viscous sub-layers. This result is reported here for the first time. For
some particular limiting cases, however, different structures may result.

A comparison between the present results and the data of other authors is made to determine the functional dependence
of the log-law linear coefficient on the power-law index, n. The angular coefficient is suggested to be independent on n and
equal to 2.5 (= κ−1, the inverse of von Kármán’s constant), whereas the linear coefficient is suggested to vary accordingly
to a power-law expression, the reciprocal of n.

Some authors have used pressure drop measurements to investigate the form of the velocity profile. Bogue and Metzner
(1963), however, have pointed out that the use of friction data is an insensitive way to find information on the velocity
profiles, since only an integrated effect is revealed. For this reason, a direct analysis is preferred in the present work.
Data furnished by the experiments of Bogue and Metzner (1963), Escudier and Presti (1996), Pereira and Pinho (2002)
and Japper-Jaafar et al. (2009) and the DNS data of Rudman et al. (2004) are used to develop local analysis of the mean
velocity profiles.

2. PREVIOUS DEVELOPMENTS

In Metzner and Reed (1955) global conservation principles are used to develop expressions for the rate of shear of a
fluid that are independent of the fluid properties provided the fluids are purely viscous and time-dependent. The analysis
introduces the generalized Reynolds number defined by

NR =
DnU2−nρ

K
(1)

where D = pipe diameter, U = mean flow velocity, ρ = fluid density, and K and n are defined through

τ = K

∣∣∣∣dudy
∣∣∣∣n−1(dudy

)
= µ

(
du

dy

)
. (2)

The analysis of Dodge and Metzner (1959) is devoted to the study of turbulent flows. Dimensional arguments similar
to those first employed by Millikan (1939) were used to find a local solution for the mean velocity profile that is supposed
to be valid in the turbulent core of pipe flows.

In the laminar sublayer, the local solution of a power-law fluid was written as

u

u∗
= f2(Zξn, n) (3)
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where

Z = Rnρ(u∗)
2−n/K, ξ = y/R, (4)

and u∗ is the friction velocity (=
√
τw/ρ).

Considerations regarding the overlap of the turbulent solution with the purely viscous solution led to

u

u∗
= An lnZξn +Bn − g1(ξ, n) (5)

where g1 is a function that must accommodate the external flow behaviour and An and Bn must be determined experi-
mentally.

Measurements of frictional pressure-loss were then used to determine the coefficients in Eq. (5), yielding

u

u∗
=

5.66

n0.75
log y+ − 0.40

n1.2
+

2.458

n0.75

[
1.960 + 1.255n− 1.628n log

(
3 +

1

n

)]
, (6)

with u+ = u/u∗, y+ = Zξn.
Some coefficients in Eq. (6) were subsequently corrected in an errata and in Skelland (1967). Subsequent work by

Bogue and Metzner (1963) and Clapp (1961) showed this dependence to be on n−1 (in relation to their definition of y+).
Therefore, the expressions presented in Dodge and Metzner (1959) and Skelland (1967) should not be used.

The viscous layer solution for a power-law fluid can be found from a simple integration of

∂τ

∂y
=

∂

∂y

(
K

(
du

dy

)n)
= 0, (7)

resulting in the linear expression,

u

u∗
=

y(
Kun−2∗ /ρ

)1/n , (8)

or else, using the usual Newtonian notation,

u+ = y+. (9)

Thus, it is apparent from Eq. (8) that the wall layer relevant length scale is

` =
(
Kun−2∗ /ρ

)1/n
(10)

and that the apparent viscosity used in the definition of y+ is the wall viscosity.
Dodge and Metzner (1959) instead defined in their work u+ = (y+)1/n, implying that y+ = Zξn = yn(u∗)

2−nρ/K.
In the present work, we stick to the definition of Eq. (8).

If there is to be a logarithmic solution in the inner regions of a flow and if this region is to comply to similarity
conditions then it is clear that the similarity length and velocity scales must be ` and u∗ as implied by Eq. (8).

Therefore, a log-solution should be written as

u

u∗
= An ln

(y
`

)
+Bn − g1(ξ, n) (11)

and not as Eq. (5).
There is, thus, cause to believe that the slope of the log-term in Eq. (6) should vary with the reciprocal of n and not

with the inverse of n0.75.
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3. ASYMPTOTIC STRUCTURE

Consider as a starting point the x-boundary layer equation for a power-law fluid, that is,

ρu
∂u

∂x
+ ρv

∂u

∂y
= −∂p

∂x
+

∂

∂y

(
K

(
∂u

∂y

)n)
. (12)

Consider next that all variables can be decomposed into mean and fluctuating parts, e.g.,

u = u+ u′, (13)

and that the binomial expansion can be used with |u′/u| << 1, that is,

(u+ u′)n = un + nu(n−1)u′ +
n(n− 1)

2
u(n−2)u′2 + est. (14)

Substitution of Eqs. (13) and (14) in Eq. (12), results

ρu
∂u

∂x
+ ρv

∂u

∂y
= −∂p

∂x
− ρ∂u

′v′

∂y
+

∂

∂y

(
K

(
∂u

∂y

)n
+K

n(n− 1)

2

(
∂u

∂y

)n−2(
∂u′

∂y

)2
)
. (15)

To find the asymptotic structure of the turbulent boundary layer of a non-Newtonian power-law fluid, consider Eq.
(15). Consider further that all lengths are non-dimensionalized by a typical body dimension, L, velocities by U∞ and
kinematic pressure by U2

∞, so that Eq. (15) can be cast in a non-dimensional form through

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
− ε2 ∂u

′v′

∂y
+ ε2ε̂n

∂

∂y

((
∂u

∂y

)n
+
n(n− 1)

2

(
∂u

∂y

)n−2(
∂u′

∂y

)2
)

(16)

where

ε =
u∗
U∞

, ε2ε̂n =
1

Re
, Re =

ρU2−n
∞ Ln

K
. (17)

and the leading order velocity fluctuations are considered to be of the order of the friction velocity.
The asymptotic structure of the flow will be determined through the single limit concept of Kaplun (1967), Lagerstrom

and Casten (1972) and Lagerstrom (1988). More recent contributions can be found in Cruz and Silva Freire (1998) and
Loureiro and Silva Freire (2011). In particular, the article of Loureiro and Silva Freire (2011) discusses in detail most of
the relevant definitions and results.

The topology on the collection of order classes introduced by Meyer (1967) is used. For positive, continuous functions
of a single variable ε defined on (0, 1], ord η denotes the class of equivalence introduced in Meyer.

Definition (Lagerstrom, 1988). We say that f(x, ε) is an approximation to g(x, ε) uniformly valid to order δ(ε) in a
convex set D (f is a δ-approximation to g), if

lim (f(x, ε)− g(x, ε))/δ(ε) = 0, ε→ 0, uniformly forx inD. (18)

Consider

xη = x/η(ε), G(xη; ε) = F (x; ε), (19)

with η(ε) defined in Ξ (= space of all positive continuous functions on (0,1]).

Definition (of Kaplun limit)(Meyer, 1967). If the function G(xη; +0) = lim G(xη; ε), ε → 0, exists uniformly on
{xη/|xη| > 0}; then we define limη F (x; ε) = G(xη; +0).

The definition of η-limit of a function and of domains of validity were given an analogous concept for equations by
Lagerstrom and Casten (1972). They made the following definitions.
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Definition (Lagerstrom and Casten, 1972). If E is an equation and limη1E = E1, limη2E = E2 and also limη2E1 =
E2, we say that E1 contains E2 (relative to E).

Definition (Lagerstrom and Casten, 1972). The formal domain of validity of an equation F , relative to the “full”
equation E, is the ord η such that limηE is either F or an equation contained in F .

The above definitions naturally imply the existence of distinguished equations, obtained from specific choices of η.
These equations are, in the sense of Kaplun (1967), “rich” equations. A more elaborate statement is given by

Definition. An equation P that contains other limit equations but is not contained by any other is said to be a principal
equation.

An equation which is not principal is said to be an intermediate equation.
The previous definitions are complemented by the following statement,

Principle (Kaplun, 1967). If y is a solution of an equation E and E∗ is an approximate equation, then there exists a
solution y∗ of E∗ whose actual domain of validity (as an approximation to y) includes the formal domain of validity of
E∗ (as an approximation to E).

To analyze the turbulent boundary layer, make

yη = y/η(ε, ε̂), ûi(yη; ε, ε̂) = ui(y; ε, ε̂), (20)

with η(ε, ε̂) a function defined in Ξ (= space of all positive continuous functions on (0,1]).

Upon substitution of Eq. (20) into Eq.(16) and considering that close to the wall O(u) = O(u′), the following formal
limits are found depending on the order class of η:

ord η = ord 1 : û
∂û

∂x
+ v̂

∂û

∂yη
= −∂p̂

∂x
(21)

ord ε2 < ord η < ord 1 : û
∂û

∂x
+ v̂

∂û

∂yη
= −∂p̂

∂x
(22)

ord ε2 = ord η : û
∂û

∂x
+ v̂

∂û

∂yη
= −∂p̂

∂x
− ∂û′v̂′

∂yη
(23)

ord (εε̂) < ord η < ord ε2 :
∂û′v̂′

∂yη
= 0 (24)

ord (εε̂) = ord η : −∂û
′v̂′

∂yη
+

∂

∂yη

((
∂û

∂yη

)n
+
n(n− 1)

2

(
∂û

∂yη

)n−2(
∂û′

∂yη

)2
)

= 0 (25)

ord η < ord (εε̂) :
∂

∂yη

((
∂û

∂yη

)n
+
n(n− 1)

2

(
∂û

∂yη

)n−2(
∂û′

∂yη

)2
)

= 0 (26)

The above results show that the turbulent boundary layer of a power-law fluid exhibits a canonical two-deck structure
defined by the principal equations, Eqs. (23) and (25). The viscosity of the fluid defines the thickness of the viscous
region through εε̂ = (εn−2/Re)

1/n.
The influence of the non-Newtonian turbulence term, Eq. (25), is shown to be restrict to domain ord(η) ≤ ord(εε̂).

The turbulence dominated region (defined by ord(εε̂) < ord(η) < ord(ε2)) is governed by turbulence originated from the
inertial terms in the equations of motion. No contribution arises from the averaging of the non-linear viscous terms.

The two relevant length scales of the flow are then:

• Turbulent layer thickness, δ̃ = (u2∗/U
2
∞)L

• Viscous sub-layer thickness, δ̂ = (Kun−2∗ /ρ)1/n

The obvious conclusion is that for n < 1 the viscous sub-layer thickness increases (in relation to that of a Newtonian
fluid, n = 1), whereas for n > 1, δ̂ decreases.
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4. Law of the wall: power-law fluid

The linear coefficient of Eq. (11) with be discussed next accordingly with the experimental data of Escudier and Presti
(9196), Pereira and Pinho (2002), Bogue and Metzner (1963) and the DNS data of Rudman et al. (2004).

Mean velocity profiles obtained by Escudier and Presti (1996) and Pereira and Pinho (2002) are shown in Fig. 1 for
different types of shear-thinning fluids. Provided they are plotted in terms of y+ = y/` they all present the same slope (=
κ−1) and different levels. A decrease in the value of n pushes the level up as expected.

Figure 1. Mean velocity profiles in wall coordinates according to the data of Pereira and Pinho (2002) and Escudier and
Presti (1996).

To estimate the value of Bn in Eq. (11) the procedure adopted in Loureiro et al. (2008) and Loureiro et al. (2009)
was repeated here. Global optimization algorithms based on direct search methods were used. Despite their tendency to
converge more slowly, direct search methods are more tolerant to the presence of noise in the function and to constraints.
Four different methods were used for the solution search: nelder mead, differential evolution, simulated annealing and
random search. Only when all four methods furnished consistent results, with accuracy down to the sixth decimal place,
was the search stopped.

The results are shown in Fig. 2. Clapp (1961) was possibly the first to have used the velocity distribution to determine
Bn. Using six velocity profiles for fluids with n varying between 0.698-0.7 (four profiles) and 0.765 (two profiles),
he proposed the correlation, Bn = 3.8/n. To analyze the data in Fig.2 we have included the point (n, Bn) = (1, 5)
corresponding to Newtonian fluids and disregarded the two lowest points where Bn is about 4.

Three curve fittings were made: two power-law fits, Bn = 4.56/n0.755, Bn = 2.68/n1.626, and a reciprocal fit, Bn =
4.02/n. In the first power-law fit, the Newtonian point was considered, resulting in a decay with the power 0.755. Exclu-
sion of this single point increased the decay power to 1.626. Consideration of the reciprocal fit, yielded the correlation
Bn = 4.02/n, very close to that of Clapp (1961).

Figure 2 also shows the low Reynolds number DNS results of Rudman et al. (2004) for Bn. A curve fit to the DNS
data furnishes Bn = 4.92/n. Overall, the numerical data are shifted vertically by about ∆(Bn) = 1/n; they do suggest,
however, that Bn varies with the reciprocal of n.

Bogue and Metzner (1963) discussed the viscoelastic properties of alginate and Carbopol aqueous solutions, clay
suspensions (Attagel), carboxymethyl cellulose (CMC) solutions and polyisobutylene in cyclohexane solutions. The
conclusion was that Carbopol solutions (in low concentrations) and clays suspensions can be considered, for practical
purposes, purely viscous fluids. Problems resulting from some degradation of the Carbopol between experimental runs
and from the time-dependent properties of the clay suspensions until they were completely mixed were minimized through
permanent rheological measurements.

The behavior of Bn according to the data of Bogue and Metzner (1963) is shown in Fig. 3. In Bogue and Metzner
(1963), the function Bn was presented in tabular form. The results show a strong dependence on the Reynolds number.
In fact, for low Reynolds numbers (= 5,000 and 10,000; shown in Fig. 3) changes in Bn are as high as 54%. For high
Reynolds numbers (= 50,000 and 100,000; not shown in Fig. 3), changes are much less significant, almost unnoticed at
100,000.

Two curve fits are shown in Fig. 3. For the reciprocal fit, Bn = 3.91/n, a results that compares well with the data
of Clapp (1961) (Bn = 3.8/n), Escudier and Presti (1996) and Pereira and Pinho (2002). For the power-law fit, Bn =
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Figure 2. Functional behaviour of the linear coefficient of the log-law with n according to the data of Pereira and Pinho
(16) and Escudier and Presti (1996).

5.49/n0.45, implying a result quite different from other authors.
Figures 2 and 3 illustrate how difficult it is to disclose definite evidence from the available experimental data for purely

viscous flows. The intrinsic difficulties associated with the unavoidable presence of viscoelastic effects in experiments
complicates the analysis considerably.

Figure 3. Behaviour of Bn according to the data of Bogue and Metzner (1963).

5. ASYMPTOTIC STRUCTURE: CARREAU FLUID

For a Carreau fluid the viscosity and local shear rate are related according to

µ = µ∞ + (µ0 − µ∞)

(
1 +

(
θ
∂u

∂y

)2
)n−1

2

, (27)

where µ∞ and µ0 are the limiting viscosity levels, θ is a model parameter and n the power law index with n < 1.
Considering the x-boundary layer equation, we can write,

ρu
∂u

∂x
+ ρv

∂u

∂y
= −∂p

∂x
+

∂

∂y

µ∞ + (µ0 − µ∞)

(
1 +

(
θ
∂u

∂y

)2
)n−1

2

 ∂u

∂y

 . (28)

We again consider that all variables can be decomposed into mean and fluctuating parts, that the binomial theorem can
be used and that the shear stress rate is high enough so that the unity can be neglected in Eq. (27).
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The result is

ρu
∂u

∂x
+ ρv

∂u

∂y
= −∂p

∂x
− ρ∂u

′v′

∂y

+
∂

∂y

(
µ∞

∂u

∂y
+ (µ0 − µ∞)θn−1

[(
∂u

∂y

)n
+
n(n− 1)

2

(
∂u

∂y

)n−2(
∂u′

∂y

)2
])

.

(29)

For a Carreau fluid, the asymptotic structure of the turbulent boundary layer of a non-Newtonian fluid can be assessed
from Eq. (30). This equation has been derived considering that all lengths are non-dimensionalized by, L, velocities by
U∞ and kinematic pressure by U2

∞, so that Eq. (29) can be written as

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
− ε2 ∂u

′v′

∂y
+

ε2ε̃n
∂

∂y

((
∂u

∂y

)n
+
n(n− 1)

2

(
∂u

∂y

)n−2(
∂u′

∂y

)2
)

+ ε2ε̂

(
∂2u

∂y2

) (30)

where

ε =
u∗
U∞

, ε2ε̃n =
αβ

Re
, Re =

ρU∞L

µ∞
, α = ((µ0/µ∞)− 1), β = ((U∞/L)θ)n−1, ε̃ = ε̂n, (31)

and the leading order velocity fluctuations are considered to be of the order of the friction velocity.
As before, the asymptotic structure of the flow can be found through the single limit concept of Kaplun. This can

be easily made through substitution of Eqs. (20) into Eq. (30) and passage of the formal limits as the order class of η
changes.

For the inner flow region the result is,

ord ε2 = ord η : û
∂û

∂x
+ v̂

∂û

∂yη
= −∂p̂

∂x
− ∂û′v̂′

∂yη
(32)

ord (εε̃) < ord η < ord ε2 :
∂û′v̂′

∂yη
= 0 (33)

ord (εε̃) = ord η : −∂û
′v̂′

∂yη
+

∂

∂yη

((
∂û

∂yη

)n
+
n(n− 1)

2

(
∂û

∂yη

)n−2(
∂û′

∂yη

)2
)

= 0 (34)

ord (εε̃ε̂) < ord η < ord (εε̃) :
∂

∂yη

((
∂û

∂yη

)n
+
n(n− 1)

2

(
∂û

∂yη

)n−2(
∂û′

∂yη

)2
)

= 0 (35)

ord (εε̃ε̂) = ord η :
∂

∂yη

((
∂û

∂yη

)n
+
n(n− 1)

2

(
∂û

∂yη

)n−2(
∂û′

∂yη

)2
)

+

(
∂2û

∂y2

)
= 0 (36)

ord η < ord (εε̃ε̂) :

(
∂2û

∂y2

)
= 0 (37)

The implication is that for a Carreau fluid, the morphological structure of the turbulent boundary layer is more com-
plex: three principal equations appear in the analysis, Eqs (32), (34) and (36), characterizing a three-layered structure.

The contribution of the viscous terms are of leading order in region ord εε̃ > ord η. The power-law viscosity contri-
bution prevails in domain ord εε̃ > ord η > ord εε̃ε̂. In the innermost sub-layer, ord εε̃ε̂ > ord η, the flow behavior is
exactly that of a Newtonian fluid.

Thus, for a Carreau fluid, the relevant characteristic lengths in the wall region are:

• Turbulent layer thickness, δ = (u2∗/U
2
∞)L

• Power-law sub-layer thickness, δ̃ = (Kun−2∗ /ρ)1/n, with K = (µ0 − µ∞)θn−1

• Newtonian sub-layer thickness, δ̂ = [((µ0 − µ∞)/µ∞)θn−1un−1∗ ]1/(n−1).

ISSN 2176-5480

5789



J.B.R loureiro and A.P. Silva Freire
Boundary Layer Morphology, Non-Newtonian Fluids

The above prescribed order of magnitude between parameters resulted in a rich, three-layered structure. For different
limiting cases, different structures can result. For example, in the particular case ord(ε̃) = ord(ε̂), the power-law term is not
capable of playing a dominant role anywhere in the domain and the structure reduces to a classical two-deck Newtonian
structure.

The scarcity of data for purely viscous fluids, made it very difficult to find appropriate experiments to be used in the
validation of the boundary layer asymptotic structure for a Carreau fluid.

The work of Japper-Jaafar et al. (6) studies the dynamic behaviour of several water solutions of scleroglucan. Their
viscosities are modelled through a Carreau-Yasuda model with power-law indexes ranging from 0.3 to 0.9. In all, the
Carreau-Yasuda parameters for thirteen different solutions are presented. However, mean flow and turbulent statistics are
only given for the two lowest concentrations (0.005 and 0.01 c%(w/w)).

The data of Japper-Jaafar et al. (6) exhibit drag reduction of the order of 15 and 25% respectively for the two lowest
concentrations. These effects cannot be solely justified through changes in the shear-thinning behavior and are usually
considered to be affected by elasticity. However, in view of the shortage of available data, they are here used to illustrate
the contents of the previous section.

For large shear rates, (λγ̇)a >> 1, the Carreau-Yasuda model (as introduced in (6)) reduces to

τ = µ∞
∂u

∂y
+ (µ0 − µ∞)λ−n

′
(
∂u

∂y

)1−n′

(38)

This equation has a behavior similar to the Carreau model with parameters λ and 1−n′ playing the roles of parameters
θ and n (Eq. 27). Essentially, the asymptotic structure of the boundary layer for a Carreau model or a Carreau-Yasuda
model is the same.

Figure 4 shows mean velocity data of (6) plotted in terms of the inner flow variable y+w = yu∗/νw.

Figure 4. Mean velocity profiles in wall coordinates according to the data of Japper-Jaafar et al. (6).

The viscous region is clearly seen in Fig. 4; all velocity profiles tend to collapse onto a single curve. The existence
of a logarithmic region is also visible in Fig. 4. The level of the straight lines are relatively clustered around two values,
7 (0.005 %SG) and 8 (0.01 %SG). These values are not too removed from predictions furnisehd by equation Bn = 4/n
(= 5.71). In particular, if a relation based on the DNS data of Rudman et al. (17) is considered, predictions become very
good with Bn = 7.14.

6. Final remarks

The asymptotic structure of the turbulent boundary layer of purely viscous non-Newtonian fluids described by the
power-law and Carreau viscosity equations have been studied in detail. For power law fluids, the thickness of the viscous
sublayer has been shown to depend on the index of power-law models, n, through δ̂ = (Kun−2∗ /ρ)1/n. The existence
of a logarithmic region where the dominant effects are provided solely by turbulence fluctuating terms is also suggested.
Changes in δ̂ with n modify the near wall damping effects, altering the level of the logarithmic law, Bn. Dodge and
Metzner (1959) suggested Eq. (6) to represent the functional behaviour of Bn. Despite its complexity, we have shown
that predictions for the slope of the log-law do not correspond to evidence obtained from local experimental data. For
purely viscous non-Newtonian fluids, the slope of the log-law is constant and equal to 2.5.
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Following suggestions by Clapp (1961) and Bogue and Metzner (1963), a simple expression for Bn can be written in
terms of the reciprocal of n according to Bn = 4/n. Constant 4 is found to be a reasonably good fit to the data of Clapp
(2), Bogue and Metzner (1963), Escudier and Presti (1996) and Pereira and Pinho (2002).

However, the DNS data of Rudman et al. (2004) suggest

u

u∗
= 2.5 ln

(
y(

Kun−2∗ /ρ
)1/n

)
+

5

n
. (39)

This expression has the advantage of naturally reducing to the Newtonian case as n tends to unity.
The dependence of Bn on n and the local Reynolds number is a problem that still deserves much consideration. From

the data that were available to the present authors, no conclusive judgment could really be made. The natural conclusion
is that many more data are still needed so that a irrefutable verdict can be drawn on the true behavior of Bn.

The integration of Eq.(39) over the cross-sectional area together with some algebraic manipulations yields the follow-
ing resistance law for the flow in a smooth pipe

2
√

2

f1/2
= 2.5 ln

(
2

n−6
2n f

2−n
2n N

1
n

D

)
+

5

n
− 3.75 (40)

where f is the friction coefficient (= 8u2∗/U
2).

In fact, the constant 3.75 must be adjusted experimentally; for a Newtonian flow, Nikuradse(? ) showed it to be 4.07.
Results provided by Eq. (40) will be discussed elsewhere.
The correct characterization of the two-layered structure of turbulent boundary layers of non-Newtonian systems has

an important impact on near wall turbulence modeling. Indeed, any near wall turbulence model should conform to the
correct scales, u∗ and `. That is to say that if low-Reynolds number approaches are considered, existing damping functions
should be regulated by u∗ and `.

7. ACKNOWLEDGEMENTS

In the course of this research, JBRL benefited from a CNPq Research Fellowship (Grant No 301172/2010-2) and
from further financial support through Grant 475759/2009-5. APSF is grateful to the Brazilian National Research Council
(CNPq) for the award of a Research Fellowship (Grant No 303982/2009-8). The work was financially supported by
CNPq through Grant No 477293/2011-5 and by the Rio de Janeiro Research Foundation (FAPERJ) through Grant E-
26/102.937/2011. Authors have benefited from many useful discussions with Drs. F. P. Duda, A. G. Sousa and L. Fialho.
Some of the experimental data have been kindly provided by Prof. F. T. Pinho. In the analysis of the Carreau model, Dr.
D. O. A. Cruz made valuable comments that ultimately led to results of Sections 9 and 10.

8. REFERENCES

D. C. Bogue, A. B. Metzner, Velocity profiles in turbulent pipe flow, Ind. Eng. Chern. (Fundamentals), 2 (1963) 143–149.
R. M. Clapp, Turbulent heat transfer in pseudoplastiv Non-newtonian fluids, International Developments in Heat Transfer,

Part III, A.S.M.E., New York (1961) 652-661.
D. O. A. Cruz, A. P. Silva Freire, On single limits and the asymptotic behaviour of separating turbulent boundary layers,

Int. J. Heat and Mass Transfer 41 (1998) 2097–2111.
D. W. Dodge, A. B. Metzner, Turbulent flow of non-Newtonian systems, A.I.Ch.E.J., 5 (1959) 189-204.
M. P. Escudier, F. Presti, Pipe flow of a thixotropic fluid, J. Non-Newt. Fluid Mech. 62 (1996), 291-306.
A. Japper-Jaafar, M. P. Escudier, R. J. Poole, Turbulent pipe flow of a drag-reducing rigid “rod-like” polymer solution, J.

Non-Newt. Fluid Mech. 161 (2009) 86-93.
S. Kaplun, Fluid mechanics and singular perturbations, Academic Press. 1967.
P. A. Lagerstrom, Matched asymptotic expansions, Springer Verlag, Heidelberg 1988.
P. A. Lagerstrom, R. G. Casten, Basic concepts underlying singular perturbation techniques, SIAM Review 14 (1972)

63–120.
J. B. R. Loureiro, A. S. Monteiro, F. T. Pinho, A. P. Silva Freire, Water tank studies of separating flow over rough hills,

Boundary-Layer Meteorol. 129 (2008) 289–308.
J. B. R. Loureiro, A. P. Silva Freire, Note on a parametric relation for separating flow over a rough hill, Boundary-Layer

Meteorol. 131 (2009) 309–318.
J. B. R. Loureiro, A. P. Silva Freire, Scaling of turbulent separating flows, Int. J. of Eng. Sci. 49 (2011) 397Ű410.
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