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Abstract. In recent decades the great interest in Evolutionary Algorithms (EAs) has boosted their development leading to a
significant improvement in their efficiency and applicability. Thus, EAs have been applied to solve optimization problems
in different areas of knowledge. A promising optimization method known as Differential Evolution (DE), which belongs to
the class of AEs, has attracted the attention of researchers. The DE algorithm is simple, robust and efficient. However, by
testing with classical optimization problems noticed that sometimes the results obtained with DE are not as satisfactory
as expected or that in many cases the algorithm ends the search for the optimal solution prematurely. Recently, with
the advancement and greater availability of computer technology, the scientific community has been thinking about the
implementation of optimization algorithms in parallel in order to reduce the processing time. The main objective of this
paper is to present an improvement of the Differential Evolution optimization method, proposing modifications to the basic
algorithm by using shuffled complex and making it able to work with parallel computing. The proposed methodology
is applied to the optimal design of an orthogonal 3R robot manipulator that takes into account the characteristics of
its workspace. For this purpose, a multi-objective optimization problem is formulated to obtain the optimal geometric
parameters for the robot. The maximum workspace volume, the maximum system stiffness and the optimum dexterity are
considered as the multi-objective functions. The results show that the procedure represents a promising alternative for the
type of problem presented above.
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1. INTRODUCTION

Optimization is an important tool for decision-making during the analysis and design of physical systems. After the
formulation of the model, an optimization algorithm is used to obtain the solution of the problem, usually with the help
of computer codes. There is no universal algorithm, but a set of methods, some of which are more suitable for specific
applications. The choice of the optimization method depends on the user and can determine the effectiveness or failure to
solve the problem.

The Evolutionary Algorithms (EAs) are general methods for stochastic search optimization which have the theory
of evolution as their basis for formulation. In recent decades, the great interest in these algorithms has driven their
development which has led to a significant improvement in the efficiency and applicability of EAs to solve optimization
problems in different areas of knowledge.

An algorithm belonging to the class of AEs that has emerged is the optimization method known as Differential Evo-
lution (DE). The DE algorithm is simple, easy, robust and efficient. But since it is a relatively new technique, emerged
in the mid-90s, many researchers have proposed modifications to the original algorithm of DE aiming to improve its
convergence. By testing with classical optimization problems, we noticed that sometimes the results obtained with the
DE are not as good as expected. Furthermore, in many cases the algorithm terminates the search for the optimal solution
prematurely.

The DE algorithm starts by creating an initial population of Np individuals, randomly chosen, which should cover
the entire search space. It is usually created by a uniform probability distribution, when there is no knowledge about the
problem.

Each individual, called vector, has n components represented by real values that are the number of design variables.
Thus, a natural population shows that the number of individuals is generally constant for all generations.

The main idea of differential evolution is to generate new individuals, denoted vectors modified or donors, by adding
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the weighted difference between two random individuals from the population to a third individual. This operation is called
mutation.

The components of the individual donor are mixed with the components of a randomly chosen individual denoted
target vector, to yield the so-called trial vector, or experimental vector. This process is referred to as crossover. If the
experimental vector result in an objective function value is less than the target vector, then the trial vector replaces the
target vector in the next generation. This operation is called selection. The procedure is terminated when a stopping
criterion is reached.

Although several positives aspects, it has been observed that DE sometimes does not have as good a performance
as expected. The empirical analysis of DE has shown that the algorithm may fail to proceed towards a global optimum
tending to a state of stagnation, in which individuals are very similar to each other, that is, the population is homogeneous
and the algorithm shows no improvement despite accepting new individuals in the population. In addition, DE also suffers
from the problem of premature convergence. This situation arises when there is a loss of population diversity. As a result,
the population converges to a point which can not be a global optimum solution. This usually occurs when the objective
function is multimodal.

As in other evolutionary algorithms, the performance of DE decreases with the increase of the size of the objective
function. Many other authors have suggested several modifications in the structure of this algorithm to improve its
performance.

Raupp et al. (2010) presented a new metaheuristic based on Differential Evolution for the general problem of nonlinear
programming called Perfected Differential Evolution (PDA). Counting on innovations in the use of crossover, mutation
and selection operators, PDA works starting from a reformulation of the original problem into of a box-constrained bi-
objective optimization problem. Additionally, PDA introduces an additional stopping criterion that allows the detection
of convergence of the population, which avoids unnecessary computational operations and, consequently, increases its
efficiency.

In the article of Das et al. (2005), they proposed two modifications to the basic scheme of Differential Evolution: (1)
the introduction of the concept of scale factor by which time-varying vector difference will be multiplied, and (2) the
variation of the scale factor in a random mode. The goal of these modifications is to try to prevent or slow the premature
convergence in the early stages of the search and facilitate convergence to a global optimal solution during later stages of
the research.

According to Li et al. (2011), in Differential Evolution algorithm the vector mutation is generated starting from a
suboptimal vector and two other individuals in the population. The purpose of this change is to accelerate the convergence
speed of the method without the occurrence of a premature convergence.

Other suggestions for modification of the algorithm of DE can be found in the articles: Coelho et al. (2009), Mehablia
(2010) and Chong et al. (2012). These are just some examples of the academic community’s efforts to improve the global
convergence of Differential Evolution. Many proposed changes involve the same principle, to change some aspect of the
mutation, crossover and selection operations of DE.

Although EAs are algorithms that can solve a wide variety of optimization problems, real problems of design op-
timization require much computational effort and the response of the algorithm can take weeks or months. With the
advancement and availability of computer technology, the scientific community has considered the implementation of
optimization algorithms in parallel in order to shorten the processing time.

In work shown by Kwedlo and Bandurski (2006), they proposed a new parallelization scheme for the calculation of
the value of the objective function. This scheme is based on the decomposition of data; both the learning set and the
population of the evolutionary algorithm are distributed among processors. The processors form a pipeline using the ring
topology. In a single step each processor computes the objective function value of a subpopulation while sending the
previous subpopulation to the subsequent processor and receives the next subpopulation from the preceding processor.
According to the authors, in this way it is possible to overlap communication and computation, and the first experimental
results show that, for large datasets, the algorithm obtains very good, almost linear, speedup values.

In the paper of Tasoulis et al. (2004) DE is parallelized on a parallel virtual environment in order to improve the speed
and performance of the method. The authors report experimental results indicating that the exchange of information
between subpopulations assigned to different processors has a significant impact on the algorithm performance.

Bujok (2011) argues that the main optimization problem is the time and complexity to find the global optimum and a
way to solve this problem is the use of parallel models of the DE algorithm. Furthermore, according Bujok (2011), there
are several approaches in parallelism that can lead to a faster search for a global minimum. The parallel models most
used are the master-slave model, the island or migration model, the diffusion model and the combination of these results
in hybrid models. In his article, the migration model is used to parallelize DE as follows: the population is divided into
several sub-populations (islands) and individuals migrate between them.

In this study, we propose a modification to the basic layout of the DE, adding to its algorithm the concept of evolution
shuffled sets, in which the central idea is to divide the population into multiple sets or subpopulations and let each set
evolve separately. This technique increases the diversity of the population helping to avoid premature convergence. After
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evolving, the sets are grouped to form a new population, which is then shuffled and divided again into subpopulations.
This procedure continues until it satisfies some stopping criterion.

Furthermore, since the algorithm showed a highly parallelizable aspect, since each set can evolve in different pro-
cessors, the modified DE algorithm is implemented in parallel with the objective of reducing the processing time during
program execution, for their application in complex problems.

Industrial robots and computer-aided systems are the latest trend in fabrication process automation, since the advances
in the sensors field allow the development of more sophisticated tasks. The use of robots in the industry is wide since they
accomplish tasks that are dangerous or monotonous for humans, according to Vargas et al. (1992). This is the case of an
industrial robot used for cleaning in electrical substations, which are high voltage areas. According to Bergamaschi et al.
(2006) and Bergamaschi et al. (2008) in robotic manipulators, a fundamental characteristic that must be taken into account
in the dimensional design is the volume of their workspace. It is crucial to calculate the workspace and its boundaries with
perfect precision, because they influence the dimensional design, the manipulator’s positioning in the work environment,
and its dexterity to execute tasks.

In literature, several investigations have focused on the properties of the workspace of open chain robotics with the
purpose of emphasizing its geometric and kinematic characteristics. Ceccarelli (1996) presented an algebraic formulation
to determine the workspace of revolution manipulators. Lanni et al. (2002) investigated and solved the design of manip-
ulators in the form of an optimization problem that takes into account the characteristics of the workspace. They applied
two different numerical techniques: the first using sequential quadratic programming (SQP) and simulated annealing.
Abdel-Malek et al. (2000) proposed a generic formulation to determine voids in the workspace of serial manipulators.
Other researches have focused on determining the workspace boundary and on detecting the presence of voids and singu-
larities in the workspace. Saramago et al. (2002) proposed a form of characterizing the workspace boundary, formulating
a general analytic condition to deduce the existence of cusp points in the interior and exterior boundaries of the workspace.
Ceccarelli and Lanni (2004) presented a suitable formulation for the workspace that can be used in the design of manipula-
tors, which was formulated as a multi-objective optimization problem using the workspace volume and robot dimensions
as objective functions. Bergamaschi et al. (2006) and Bergamaschi et al. (2008) studied the design of manipulators with
three-revolute joints (3R) using an optimization problem that takes into account the characteristics of the workspace. The
optimization problem is formulated considering the workspace volume as the objective function. Constraints are added to
guarantee the regularity of the envelope and force the workspace to occupy a pre-established area.

In this paper, the developed methodology is applied to the optimal design of a 3-revolute (3R) robot manipulator with
orthogonal axes taking into account the characteristics of its workspace. For this purpose, a multi-objective optimization
problem is formulated to obtaining the optimal geometric parameters for the robot. The maximum workspace volume,
the maximum system stiffness and the optimum dexterity are considered as the multi-objective functions. This work is
organized as follows. A review dedicated to the DE technique is presented in Section 2. Section 3 present a brief review
about the multi-objective problems. Section 4 present the general aspects regarding the mathematical modeling of the
manipulator. The results and discussion are presented in Section 5. Finally, the conclusions are outlined in Section 6.

2. Improved Differential Evolution

The Shuffled Complex Evolution algorithm, SCE, (Duan et al. (1993)) deals with the search for the global optimum
as a process of natural evolution. The Np sampling points constitute a population which is divided into multiple sets, or
subsets, such that each set has the same number of individuals. Each of the sets is allowed to evolve independently, or
exploring the search space in different directions. After a certain number of generations, the sets are grouped together and
mixed again, so new sets are obtained by a shuffling process.

An algorithm for the SCE optimization method could be seen in the work of Duan et al. (1993) and in some applica-
tions in Brandão et al. (2011).

The basic algorithm of Differential Evolution modified using the concept of evolution with scrambled sets is called
Improved Differential Evolution, or IDE. The IDE starts as a usual DE algorithm for creating a population of individ-
uals randomly sampled from the feasible region using uniform probability distribution. The population is then sorted
in ascending order of values of the objective function and partitioned into multiple sets. Each set executes the DE in-
dependently. In the evolution stage, the sets are forced to mix and the points are reassigned to ensure the exchange of
information. The process of the proposed IDE algorithm is described in the flowchart shown in Fig. 1.

The idea of dividing program tasks across multiple processors is old but has only recently become feasible due to
rapid advancement of hardware and software. Machines have evolved greatly in speed and multiprocessor capability,
and programs that utilize these resources are showing a great increase in efficiency. Thus, the objective is to reduce the
processing time during the execution of the improved algorithm to enable its application in complex problems.

In the master processor, an initial population is randomly created which is divided into k subsets (k ∈ Z is less than
or equal to the number of processors) and distributed among a maximum of k processors. Then the DE code continues
processing sequentially on each processor until some stopping criterion is reached. Subpopulations are then grouped in the
master processor, scrambled and divided again into subpopulations. The flowchart of the Improved Differential Evolution
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Figure 1: Flowchart of Improved Differential Evolution Method

Optimization Method implemented in parallel can be seen in Fig. 2.
Then the IDE method implemented in parallel (IDEP) will be used to obtain the optimal design of 3R orthogonal

manipulators through modeling developed by Oliveira and Saramago (2010).

3. Multiobjective Optimization

Several problems of engineering and other areas have multiple objectives to be achieved and in these cases the math-
ematical models are no longer represented by a single function, but rather by various objective functions simultaneously.
These problems are known as multi-objective optimization problems.

Intuition might lead one to believe that in order to maximize or minimize a multiobjective problem, it would suffice to
minimize or maximize each function separately. But the optimal solution of a function is not always the optimal point for
the other functions. Therefore, the expected solution to multiobjective optimization consists of a set of feasible solutions.

Thus, modeling in multiobjective optimization is formulated so as to find a vector of design variables, which is repre-
sented by a column vector of n variables x = [x1x2 · · ·xn]

T ∈ Rn, which satisfies both the constraints of the problem and
optimizes a vector of objective functions.

There are many methods which can be used to minimize a multiobjective function by obtaining the Pareto optimal
solution or a set of such solutions. Once you’ve found this set the user choose the best solution based on the information
we already have about the multi-objective function and its constraints. Some of these methods are shown below.

In the methods that will be studied in this work, the set of functions is replaced by a single scalar function that
represents all the objective functions. Thus, obtaining the optimum solution is reduced to minimize a single function. The
analysis of the solution vector is accomplished by modifying the main function according to the importance of each goal.
Therefore a set of solutions is selected according to the changes made in the main function, and it is up to the researcher
to analyze them to choose the best solution among them.
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Figure 2: Flowchart of Improved Differential Evolution Algorithm with Parallel Processing

3.1 Method of Weighting of Objectives

In this method, the multi objective optimization problems are reformulated and replaced by a single scalar optimization
problem. The main idea is to create a single primary function from the objective functions, giving them a degree of
importance, that is, considering their values according to their importance.

This manipulation of algebraic functions is given in the form:

f (x) =
n

∑
i=1

fi(x) (1)

where wi ≥ 0 are the weights representing the relative importance of each criterion. It must be assumed that:

n

∑
i=1

wi = 1 (2)

Taking into account that the results obtained in solving a problem using the modeling described in Eq.(1) can vary
significantly with the changing values of the weightings and that still little is known about how to choose these coefficients,
it becomes necessary to obtain different approaches varying the values of wi to solve the same problem. Once obtained,
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they are compared to choose the best among them. This choice is made by means of the user experience and knowledge
of the problem.

Note that the search for the optimal point using Eq.(1) does not depend only on the values of wi but also on the units
in which the functions are expressed.

Thus, for wi to express the importance of all the objective functions, they must all be expressed in dimensionless form.
This study will use the optimal solution values of each function f 0

i as follows:

f (x) =
n

∑
i=1

wi fi(x)ci (3)

ci being constant multipliers.
The method of weighting objectives is most appropriate when you want to prioritize an objective and for this reason

the result is strongly influenced by the choice of the most important objective.

3.2 Global Criteria Method

Global Criteria method uses a value established as ideal for each function as a basis of calculation to define the degree
of importance of each point x of the feasible region of parameters. Thus, the optimal solution is a vector of decision
variables which minimizes a global criterion. This method converts the multi-objective in a single objective expressed
mathematically by the following function:

f (x) =
n

∑
i=1

(
f 0
i − fi(x)

f 0
i

)s

(4)

which usually uses s = 1 or s = 2, but other values can be adopted.
It is clear that for each value of s, a solution obtained by minimizing the equation Eq.(4) will be different. Therefore,

the problem is to determine what value of s will result in the solution that is most suitable for the researcher. Also, we can
not guarantee the existence of satisfactory solutions because it can happen that for any value of s chosen, the method will
provide an unacceptable solution from the point of view of the user.

Equation (4) is not the only way to formulate the global multiobjective optimization criterion function. Another
possible way is through a family of metrics LP defined as:

Lp( f ) =

(
n

∑
i=1

∣∣ f 0
i − fi(x)

∣∣s)1/s

, 1≤ s≤ ∞ (5)

If s = 1 a metric comes down to L1( f ) =∑
n
i=1

∣∣ f 0
i − fi(x)

∣∣. On the other hand, if s=infinity, we have L∞( f ) =max| f 0
i −

fi(x)|. The metrics used are over L1( f ),L2( f ) and L3( f ). Note that the minimization of L2( f ) is equivalent to minimizing
the Euclidean distance between the function value and the ideal solution.

There is another technique in which instead of working with the distance in an absolute sense, it uses the value of the
relative distances. This technique is generally given by:

Lp( f ) =

(
n

∑
i=1

∣∣∣∣ f 0
i − fi(x)

f 0
i

∣∣∣∣s
)1/s

, 1≤ s≤ ∞ (6)

Because of the many formulations of global criteria, it is important that you apply some of these to make it possible to
compare the solutions and then choose the best among them.

Global methods are indicated for cases where you want to get a compromise that seeks to meet all objective functions.

4. Mathematical Modeling of the Robotic Manipulator

Manipulators are multifunctional machines capable of handling parts, tools and other specific devices and perform a
variety of tasks. Mathematical models have been created to describe the workspace of these robots and formulate math-
ematical equations to be used in the graphical representation of this workspace. The manipulators with three rotational
joints with orthogonal axes are described in Fig. 3(a).

The study of this type of manipulator is done according to the Denavit-Hartenberg parameters: d2, d3, d4, r2 and r3.
The joint variables are 1, 2 and 3 which represent the input angles of the actuators.

Considering the axes reference system R j−1 and R j shown in Fig. 3(b), the axes are related by the transformation
matrix written as:
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(a) 3R manipulator with orthogonal axes (b) Denavit-Hartenberg parameters - reference axes

Figure 3: Representation of Denavit-Hartenberg parameters to 3R manipulator

T j−1
j =


c j −s j 0 d j

cα js j cα jc j −sα j −r jsα j
sα js j sα jc j cα j r jcα j

0 0 0 1

 (7)

where c j = cos(θ j), s j = sin(θ j), cα j = cos(α j) e sα j = sin(α j), j = 1, · · · ,n+1.
Thus, the end-effector of a robot with n degrees of freedom is assigned a coordinate system T 0

n which is a homogeneous
transformation matrix.

For this type of manipulator, the direct kinematic model is given by Eqs. (8), (9) and (10):

x = [d2 +(r3sα3−d4cα3s3)s2 +(d3 +d4c3)c2]c1 +{sα2 (r2 + r3cα3 +d4sα3s3)+
cα2 [(r3sα3−d4cα3s3)c2− (d3 +d4c3)s2]}s1

(8)

y = [d2 +(r3sα3−d4cα3s3)s2 +(d3 +d4c3)c2]s1 +{sα2 (r2 + r3cα3 +d4sα3s3)+
cα2 [(r3sα3−d4cα3s3)c2− (d3 +d4c3)s2]}c1

(9)

z = cα2 (r2 + r3cα3 +d4sα3s3)− sα2 [(r3sα3−d4cα3s3)c2− (d3 +d4c3)s2] (10)

in which ci = cosθi and si = sinθi, for i = 1, 2, 3.
This research will consider 3R manipulators with orthogonal axes, in other words, α2 = −90 and α3 = 90. As

mentioned earlier, a multi-objective optimization problem will be formulated to obtain the optimal parameters for the
robot manipulator. The mathematical formulation for calculating the workspace volume, the system stiffness and the
robot dexterity will be presented below.

4.1 Workspace of 3R Manipulators

According to Bergamaschi et al. (2006), the workspace W is the set of all attainable points for a point P of the
end-effector when the joint variables sweep their entire definition interval. Point P is usually chosen as the center of
the end-effector, or the tip of a finger, or even the end of the manipulator itself. The first procedure to investigate the
workspace is to vary the angles θ1, θ2 and θ3 in their interval of definition and to estimate the coordinates of point P with
respect to the manipulator base frame. The workspace of this robot is a solid of revolution. Thus, it is natural to imagine
that the workspace is the result of rotation around the z axis of a radial plane section.

The workspace of a three-revolute open chain manipulator can be given in the form of the radial reach r and axial reach
z with respect to the base frame, according to Bergamaschi et al. (2006). For this representation, r is the radial distance of
a generic workspace point from the z-axis, and z is the distance of this same point at the XY-plane (see, Fig. 4(b)). Thus,
using Eqs. (8),(9) and (10) the parametric equations (of parameters θ2 and θ3) of the geometrical locus described by point
P on a radial plane are:

r2 = x2 + y2 (11)
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(a) Workspace volume. (b) Discretization of cross section.

Figure 4: A scheme for evaluating the workspace volume of 3R manipulators and discretization of the cross section area
by using a rectangular mesh.

where x, y and z are given in Eqs. (8),(9) and (10).
The workspace volume V can be evaluated by the Pappus-Guldin Theorem, using the following equation (see Fig.

4(a)):

V = 2rgAr (12)

where Ar is the cross section area, which is formed by the family of curves given by Eqs. (8),(9) and (10).
This research proposes a numerical formulation to approximate the cross section area, through its discretization within

a rectangular mesh. Initially, the extreme values of vectors r and z should be obtained as:

rmin = min r, rmax = max r, zmin = min z, zmax = max z (13)

Adopting nr and nz as the number of intervals chosen for the discretization along the r and z axis, the sizes of the
elementary areas of the mesh can be calculated:

∆r = (rmax− rmin)/nr (14)

∆z = (zmax− zmin)/nz (15)

The nr and nz values must be adopted so that the sizes of the elementary areas (∆r or ∆z) are at least 1% of the total
distances considered in the discretization (rmax− rmin or zmax− zmin). Every point of the family of curves form the cross
section of the workspace is calculated by Eqs. (8),(9) and (10). Using this equation, by varying the values of θ2 and θ3 in
the interval [−π, π], it is possible to obtain the family of curves of the workspace. Given a certain point (r,z), its position
inside the discretization mesh is determined through the following index control:

i = int [(r− rmin)/∆r] + 1 (16)

j = int [(z− zmin)/∆z] + 1 (17)

where i and j are computed as integer numbers. As shown in Fig. 4(b), the point of the mesh that belongs to the workspace
is identified by Pi j=1, otherwise Pi j=0, which means:

Pi j = 0, if Pi j /∈ W (P) or 1, if Pi j ∈ W (P) (18)

where W (P) indicates workspace region.
In this way, the total area is obtained by the sum of every elementary area of the mesh that is totally or partially

contained in the cross section. In Eq. (18), it is observed that only the points that belong to the workspace contribute to
the calculation of the area AT . The coordinate rg of the center of the mass is calculated considering the sum of the center
of the mass of each elementary area, divided by the total area, using the following equation:

AT =
imax

∑
i=1

jmax

∑
j=1

(Pi j ∆r ∆z) (19)

rg =

(
imax

∑
i=1

jmax

∑
j=1

(Pi j ∆r ∆z) ((i−1) ∆r +(∆r/2) + rmin)

)
/AT (20)

Finally, after the calculation of the cross section area and the coordinate of the center of the mass, given by Eqs. (19)
and (20), the workspace volume of the manipulator can be evaluated by using Eq. (12).

ISSN 2176-5480

5715



22nd International Congress of Mechanical Engineering (COBEM 2013)
November 3-7, 2013, Ribeirão Preto, SP, Brazil

4.2 System Stiffness

From the mechanical viewpoint, stiffness is the measurement of the ability of a body or structure to resist deformation
due to the action of external forces. The stiffness of a serial mechanism at a given point of its workspace can be charac-
terized by its stiffness matrix. This matrix relates the forces and torques applied at the gripper link in Cartesian space to
the corresponding linear and angular Cartesian displacements.

Two main methods have been used to establish mechanism stiffness models. The first one is called matrix structural
analysis, which models structures as a combination of elements and nodes. The second method relies on the calculation of
the serial mechanism’s Jacobian matrix which is adopted in this work. Matrix J is usually termed Jacobian matrix which
is described in Eq. (21). By considering the case that d2=1, its determinant is calculated by using the Eq. (22).

[J] =

 −sinθ3 cosθ2d4− cosθ2r2 0 −sinθ3d4
sinθ3 sinθ2d4 + sinθ2r2 d3 + cosθ3d4 0

cosθ2d3 + cosθ2 cosθ3d4 +d2 0 cosθ3d4

 (21)

det(J) = d4 (d3 +d4 cosθ3) [d2 sinθ3 +(d3 sinθ3 +(d3 sinθ3− r2 cosθ3)cosθ2)] (22)

The stiffness matrix of the mechanism in the Cartesian space is then given by the Eq. (23), where K j is the joint
stiffness matrix of the mechanism, with K j=[k1,k2,k3]. In this case, each actuator of the mechanism is modeled as an
elastic component. ki is a scalar representing the joint stiffness of each actuator, which is modeled as a linear spring:

KC = [J]T K j[J] (23)

Particularly, in the case where all the actuators have the same stiffness, e.g., k = k1 = k2 = k3, Eq. (23) will be reduced
to:

KC = k[J]T [J] (24)

Furthermore, the diagonal elements of the stiffness matrix are used as the system stiffness value. These elements
represent the pure stiffness in each direction, and they reflect the rigidity of machine tools more clearly and directly. The
objective function for system stiffness optimization can be written as Eq. (25). In this case, the stiffness index S can be
maximized:

S = K11 +K22 +K33 (25)

4.3 Dexterity

The condition number of the Jacobian matrix will be used as a measure of dexterity indices for the 3R manipulator.
By using the spectral norm, these indices will be described as.

Cond(J) = |λmax(J)/λmin(J)| (26)

where λmax and λmin mean the maximum and minimum singular values of the Jacobian matrix J, respectively. Regarding
the computing time of the optimization process, this expression is selected as the objective function for the optimization
of dexterity. The value of Cond(J), which is directly related to singular values of the Jacobian matrix, is between 1 and
positive infinity. All the singular values of the Jacobian matrix will be the same and the manipulator is isotropic if Cond(J)
is equal to 1. While Cond(J) is prone to be positive infinity it also means that the Jacobian matrix is singular. Therefore,
for the optimization of dexterity, the condition number must be minimized.

5. Numerical Simulation

The objective of the proposed manipulator design procedure is the dimensional synthesis of the 3R orthogonal robot.
In this study, the optimal design should take into account: the workspace volume (V), the system stiffness (S) and the
manipulator dexterity (Cond J). In this way, the multi-objective optimization problem is defined as:

max f (x) = [V −Cond(J) S] (27)

subject to 0≤ xi ≤3, i = 1, · · · ,4.
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In this formulation, the robot geometric parameters are adopted as the design variables, thus x = [d3d4r2r3]
T . The

volume workspace is given by Eq. (12) and the system stiffness is calculated by Eq. (25). Notice that to optimize
dexterity the condition number (Cond J), given by Eq. (26), must be minimized.

In Brandão et al. (2012), a simplified scheme for the optimal design of the robot manipulator is solved by the Differ-
ential Evolution and Shuffled Complex Evolution optimization methods.

In order to evaluate the performance of the DE and IDEP techniques, some important points should be emphasized, as
shown below.

According to Oliveira (2006), the Differential Evolution algorithm was performed applying the computer code devel-
oped by the authors, implemented in Matlabr, using a PC Intel(R), Core(TM)i7 920 CPU, 2.67 GHz, 3.23 GB (RAM).
The parameters adopted for the DE were: population with 15 individuals, 50 generations, ED/best/1/bin strategy, differ-
ence factor F = 0.8 and crossover probability CR = 0.6.

The stopping criterion of the algorithm DE, adopted by Oliveira (2006), was the maximum number of population
generations and the verification of its stagnation. According to the author, the optimization process is stopped if no
significant improvement occurs in the value of the function after 15 successive iterations. This explains the variation in
the number of evaluations of the objective function for this technique.

The computational code of the IDEP was developed by the authors in C++ and simulations were solved by using
a computer Intelr CoreT M i5-430M Processor and 6 GB of RAM. The parameters used in the IDEP were: population
with 64 subjects divided into 4 processors, 50 generations, ED/best/1/bin strategy, difference factor F = 0.8 and crossover
probability CR = 0.6.

The adopted criterion to stop the IDEP was the maximum number of generations of the population (which is 50
iterations). Thus, all cases studied were performed with 16000 evaluations of the objective function.

In the following tables the optimal values found by Oliveira (2006) applying Differential Evolution (DE) and the
optimal values obtained using Improved Differential Evolution implemented in parallel (IDEP) are summarized.

Table 1: Optimal values considering the Weighting Objectives Method.
Weight Coef. Algorithm Volume [u.v.] Dexterity Stiffness [u.s.] [d3 d4 r2 r3 α2 α3] Time N.E.∗

w1 = 0.8 DE 3691.67 1.15 254.05 [3.00 3.00 3.00 3.00 3.00 -90.00 -75.43] 17.48 h 435
w2 = w3 = 0.1 IDEP 3678.19 1.18 255.30 [3.00 3.00 3.00 3.00 3.00 48.59 74.10] 14.15 min 16000

w2 = 0.8 DE 3608.81 1.01 249.44 [3.00 3.00 3.00 3.00 3.00 89.48 -90.00] 17.46 h 540
w1 = w3 = 0.1 IDEP 3359.80 1.04 264.51 [3.00 3.00 3.00 3.00 3.00 90.00 32.93] 14.30 min 16000
w1 = w2 = 0.1 DE 2905.83 1.17 283.51 [3.00 3.00 3.00 3.00 3.00 45.36 -73.29] 16.51 h 465

w3 = 0.8 IDEP 2751.82 1.39 290.69 [3.00 3.00 3.00 3.00 3.00 88.75 24.18] 14.36 min 16000
w1 = 0.5 DE 3609.13 1.01 249.93 [3.00 3.00 3.00 3.00 3.00 90.00 -90.00] 10.09 h 300

w2 = w3 = 0.25 IDEP 3646.38 1.17 265.42 [3.00 3.00 3.00 3.00 3.00 -11.10 -74.22] 14.38 min 16000
w2 = 0.5 DE 2846.61 1.02 214.98 [3.00 3.00 3.00 3.00 3.00 -81.55 -90.00] 7.77 h 240

w1 = w3 = 0.25 IDEP 3556.31 1.04 261.85 [3.00 3.00 3.00 3.00 3.00 79.83 89.10] 14.38 min 16000
w1 = w2 = 0.25 DE 3432.88 1.01 261.99 [3.00 3.00 3.00 3.00 3.00 68.78 90.00] 16.01 h 450

w3 = 0.5 IDEP 3499.26 1.14 271.17 [3.00 3.00 3.00 3.00 3.00 89.18 20.01] 14.13 min 16000
w1 = w2 = DE 3601.96 1.01 249.97 [3.00 3.00 3.00 3.00 3.00 89.55 90.00] 11.78 h 345
w3 = 1/3 IDEP 3617.24 1.15 267.07 [3.00 3.00 3.00 3.00 3.00 70.8989 -7.46] 14.01 min 16000

∗ Number of evaluations of the objective function.

Table 2: Optimal values considering the Global Criterion Method.
Metric Algorithm Volume [u.v.] Dexterity Stiffness [u.s.] [d3 d4 r2 r3 α2 α3] Time N.E.∗

L1 DE 3689.50 1.20 262.60 [3.00 3.00 3.00 3.00 3.00 90.00 72.15] 29.09 h 750
IDEP 3689.50 1.19 260.91 [3.00 3.00 3.00 3.00 3.00 14.15 57.86] 14.01 min 16000

L2 DE 3681.31 1.21 263.l7 [3.00 3.00 3.00 3.00 3.00 90.00 69.97] 25.84 h 750
IDEP 3654.82 1.27 265.34 [3.00 3.00 3.00 3.00 3.00 45.67 -30.20] 14.01 min 16000

L2R DE 3436.38 1.01 262.68 [3.00 3.00 3.00 3.00 3.00 68.58 89.22] 14.82 h 450
IDEP 3609.40 1.00 251.60 [3.00 3.00 3.00 3.00 3.00 39.18 89.52] 14.08 min 16000

L3 DE 3679.75 1.15 257.88 [3.00 3.00 3.00 3.00 3.00 -89.26 67.62] 26.27 h 750
IDEP 3686.07 1.14 255.89 [3.00 3.00 3.00 3.00 3.00 73.78 -55.29] 13.97 min 16000

L3R DE 3466.22 1.04 262.92 [3.00 3.00 3.00 3.00 3.00 69.55 87.59] 16.54 h 495
IDEP 3266.69 1.01 259.71 [ 3.00 3.00 2.96 3.00 2.89 90.00 89.48] 14.31 min 16000

∗ Number of evaluations of the objective function.

It is worth noting that the optimal results present in Tab. (2) are strongly dependent on the weighting coefficients.
The ideal values (optimal value for each objective function considered separately) calculated for the workspace vol-

ume, dexterity and system stiffness are: Videal=3689.507 [u.v.], Dideal=1.0035 and Sideal=293.2703 [u.s.], respectively.
Analyzing the results shown in the tables, one can conclude that the methods are effective to solve the problem since

the results approach the ideal values.
Comparing the results obtained with DE and IDEP, it is possible to observe that are very similar. However, for the

studied problem, the IDEP method reached the optimum faster. This analysis should be very careful, these results do not
mean that this method is always the best.

ISSN 2176-5480

5717



22nd International Congress of Mechanical Engineering (COBEM 2013)
November 3-7, 2013, Ribeirão Preto, SP, Brazil

Figures 5 and 6 show the graph of the cross-sectional area of the workspace of the robot manipulator considering the
Weighting Objectives Method and the Global Criterion Method, respectively.

(a) w1 = 0.8,
w2 = w3 = 0.1

(b) w2 = 0.8,
w1 = w3 = 0.1

(c) w3 = 0.8,
w1 = w2 = 0.1

(d) w1 = 0.5,
w2 = w3 = 0.25

(e) w2 = 0.5,
w1 = w3 = 0.25

(f) w3 = 0.5,
w1 = w2 = 0.25

(g) w1 = w2 =
w3 = 1/3

Figure 5: Cross-sectional area of the workspace of the robot manipulator considering the Weighting Objectives Method

(a) Metric L1 (b) Metric L2 (c) Metric L2R (d) Metric L3 (e) Metric L3R

Figure 6: Cross-sectional area of the workspace of the robot manipulator considering the Global Criterion Method

6. CONCLUSIONS

In this contribution, two evolutionary techniques, the Differential Evolution algorithm and the Improved Differential
Evolution algorithm (implemented in parallel) were used to solve a multi-objective problem. An optimal manipulator
design was presented to illustrate the methodology studied here.

Successful numerical applications have demonstrated the efficiency of these techniques. The preliminary results seem
to indicate that the IDEP is faster in achieving the optimal solution and that it’s highly parallelizable. Furthermore, the
need for communication between the processors is minimum, thus ensuring a great decrease in execution time of the
program in relation to the sequential algorithm.

For future work we intend to use the Improved Differential Evolution optimization method implemented in parallel to
find a solution of large linear systems, using the model presented by Purcina (2010).
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