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Abstract. The centrifugal instability mechanism in boundary layers flows over concave surfaces is responsible for the
development of streamwise counter-rotating vortices, known as Goertler vortices. These Vortices create two regions in
the spanwise direction, the upwash and downwash regions. The downwash region is responsible to compress the boundary
layer towards the wall, increasing drag and heat transfer rates. The upwash region does the opposite. In the nonlinear
region the downwash region becomes wider than the upwash region. In the present paper, the influence of the Goertler
vortices spanwise wavelength in the heat transfer enhancement is studied numerically, the Stanton number was used to
verify the relation between the vortex wavelength and the wall heat transfer. The results show that steady Goertler flow
can reach heat transfer rates higher than the turbulent values, even without reaching secondary instability region.
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1. INTRODUCTION

A large amount of research has been concerned with streamwise vortices in boundary layer flows with heat transfer.
Different aaproaches were adopted, for examples the theoretical (Saffmann, 1992) and computational study (Liu and Lee,
1995) on Goertler vortices. The practical interest in intensifying surface heat transfer rates with the least penalty follows
the need to reduce energy consumption via more efficient systems. Fiebig (1996) studied streamwise vortices and heat
transfer, where he analyzed the influence of vortices on heat transfer in boundary layers flows. The vortex generation in
his work was done via winglets. The vortex generators of winglet type cause a great loss in the system because, although
it can double the rate of heat transfer, it almost quadruples the drag. Fiebig (1996) suggested that the longitudinal vortices
are more effective than the transverse vortices for heat transfer enhancement and transverse vortices lead to oscillations
and transition to turbulence with lower Reynolds numbers than the longitudinal vortices.

Mitsudharmadi et al. (2004) conducted a study in a boundary layer over a concave wall in the presence of forced
wavelength Goertler (streamwise) vortices. The mean velocity contours in y-z plane demonstrates that the nonlinear
region of the vortices in which the boundary-layer flow is dominated by the mushroom-like structures.

The Goertler vortices are responsible for generating strong distortions in the velocity profiles (Liu and Lee, 1995).
As the vortices are counter-rotating, two regions arise between them: upwash and downwash regions. When the vortices
amplitude is high, in the non-linear development region, a mushroom-type structure, with the streamwise velocity distri-
bution in a crosscut plane is formed. This new velocity distribution differs from the Blasius boundary layer. Therefore,
taking into account the thermal boundary layer, an spanwise–average increase in the heat transfer is observed.

Liu (2008) carried out studies to explain theoretically the rate of heat transfer in aboundary layer flow over a slightly
concave surface. He concluded that one can greatly enhance the heat transfer, paying the price of almost one to one in
drag. Some experimental studies were conducted showing that the enhancement in heat transfer in Goertler flow can be
higher than the one observed in turbulent flows (Peerhossaini, 1987).

A parabolized formulation was adopted by Liu and Lee (1995) to study the influence on the Prandtl number in the
heat transfer rates of boundary layer flows over a concave wall. They studied flows with 3 different Prandtl numbers
(Pr = 0.72, 1.0 and 7.07). The spanwise wavenumber was the same that Swearingen and Blackwelder (1987). Their
results shows that one can achieve high gains in heat transfer rates with the presence of Goertler vortices.

Momayez and Peershossaini (2004) and Momayez et al. (2004) conducted experiments where conditions were carried
out on concave surface with heat transfer in order to understand the effects of Goertler vortices and its transition to
turbulence on heat transfer from the wall to the boundary layer. The experiments were run at nominal freestream velocities
of Un = 2, 3, 4.8, 7, and 9ms−1 and the for wavelengths values of λ = 2.5, 5, 10, 15, 20, 25, 30mm. They concluded that
Goertler number predicts satisfactorily the different stages of Goertler stability, first primary Goertler instability appears
for G ≥ 3.5, heat transfer reaches the turbulent level with values for G ≥ 6.5, the secondary instability and transition to
turbulence is accomplished for G ≥ 9. They divided the evolution of the Stanton number in three regions: the first region
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the heat transfer on the concave wall deviates gradually from the flat plate; the second region the heat transfer coefficient
gradually reaches values close to or above the turbulent boundary layer values on a flat plate; and the third region the heat
transfer ceases to increase and follows the flat-plate turbulent curve. The authors say that, in the last region, the secondary
instability grows rapidly and induces a premature transition to turbulence.

Other experiments were done in a similar way (Tandiano et al., 2009), where it was studied the development of wall
shear layer stress in concave surface boundary layer flow in the presence of Goertler vortices. They analyzed the flow by
hot-wire measurements, and vertical perturbation wires were adopted to introduce perturbations in a selected wavelength.
The author concludes that the spanwise-averaged wall shear stress coefficient Cf , which initially follows the Blasius
curve, increases well above the local turbulent boundary layer value further downstream due to the nonlinear effects of
Goertler instability and to the secondary instabilities.

The cross-sectional heat advection distribution obtained with Goertler flow is very different from the laminar boundary
layer on a flat surface. According to linear theory, the boundary layer flow over a concave wall becomes unstable at some
critical Goertler number (Floryan and Saric, 1982) and its linear amplification occurs. The first effect of Goertler vortices
in the wall heat transfer thus appears in its nonlinear development. Momayez et al. (2009) show that the intensification
of heat transfer is related to the growth of Goertler vortices under the effect of centrifugal instability and to secondary
instabilities.

In Girgis and Liu (2006), the spanwise–averaged streamwise-velocity gradient, obtained by Goertler flow, is studied in
terms of skin friction. The skin friction due to nonlinear steady longitudinal Goertler vortex can already nearly bridge the
transition from the local laminar skin friction to turbulent skin friction values. Their results were based in the experimental
measurements (Swearingen and Blackwelder, 1987). The emphasis is placed on the nonlinear modification of the steady
problem by Reynolds stresses of the wavy disturbance, and it is found that skin friction increases well above the turbulent
boundary layer value.

In the present paper it is studied numerically the influence of the Goertler vortices spanwise wavelength in heat
transfer enhancement, the Stanton number was used to verify the relation between the vortex wavelength and the wall
heat transfer. A simulation code was developed and implemented using Spatial Direct Numerical Simulation (SDNS).
The studies focused in the same parameters studied in (Momayez and Peershossaini, 2004) and (Momayez et al., 2004).
Disturbances were introduced with the same amplitude for six different spanwise wavelengths, namely: λz = 0.05, λz =
0.10, λz = 0.15, λz = 0.20, λz = 0.25 and λz = 0.30. The Prandtl number adopted was Pr = 0.72.

2. Formulation

In this section the governing equations and the numerical methodology are presented. The Navier-Stokes equations,
written in the vorticity-velocity formulation, were discretized using high-order finite-differences and spectral approxima-
tions for the spatial derivatives. A fourth order Runge-Kutta scheme was adopted for the temporal discretization.

2.1 Governing Equations

The governing equations are the incompressible equations with constant viscosity for a Newtonian fluid. Defining the
vorticity as the negative curl of the velocity vector, and using the fact that both the velocity and the vorticity fields are
solenoidal, one can obtain the following vorticity transport equation in each direction:

∂ω̃x
∂t

+
∂ã

∂y
− ∂b̃

∂z
+
Go2√
Re

∂d̃

∂z
=

1

Re
∇2ω̃x, (1)

∂ω̃y
∂t

+
∂c̃

∂z
− ∂ã

∂x
=

1

Re
∇2ω̃y, (2)

∂ω̃z
∂t

+
∂b̃

∂x
− ∂c̃

∂y
− Go2√

Re

∂d̃

∂x
=

1

Re
∇2ω̃z, (3)

where

ã = ω̃xṽ − ω̃yũ, (4)

b̃ = ω̃zũ− ω̃xw̃, (5)

c̃ = ω̃yw̃ − ω̃z ṽ, (6)

d̃ = ũ2, (7)
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are the nonlinear terms resulting from convection, vortex stretching and vortex bending. The variables (ũ, ṽ, w̃, ω̃x, ω̃y, ω̃z)
are the velocity and vorticity components in the streamwise, wall-normal and spanwise directions respectively; t̃ is the
time. The Laplace operator is:

∇2 =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
. (8)

The continuity equation is given by:

∂ũ

∂x
+
∂ṽ

∂y
+
∂w̃

∂z
= 0. (9)

The heat transfer transport equation adopted in the present work is:

∂θ̃

∂t
+
∂ũθ̃

∂x
+
∂ṽθ̃

∂y
+
∂w̃θ̃

∂z
=

1

Re Pr
∇2θ̃, (10)

where θ̃ is the non dimensional temperature given by θ̃ = (T − T0)/(T∞− T0), where T is the dimensional temperature,
and T∞ and T0 are the temperature values outside from the thermal boundary layer and at the wall, respectively.

The above equations are presented in a non-dimensional form. The reference length is a plate characteristic length
L and the reference velocity is the free stream velocity U∞. The Reynolds number is given by Re = U∞L/ν, where
ν is the kinematic viscosity. The Prandtl number is given by Pr = ν/α, where ν is the kinematic viscosity and α is

the thermal diffusivity of the fluid. The Goertler number is given by Go = (kc
√
Re)1/2. The terms Go2 ∂d̃∂x/(

√
Re) and

Go2 ∂d̃∂z /(
√
Re) are the leading order curvature terms, where h = 1 − kcy, kc = L/R is the wall curvature and R is the

curvature radius. The objective of the current study is on the Goertler flow, therefore the simulations were performed with
the introduction of steady disturbances only.

Taking the definition of the vorticity and the mass conservation equation, one can obtain Poisson-type equations for
each velocity component:

∂2ũ

∂x2
+
∂2ũ

∂z2
= −∂ω̃y

∂z
− ∂2ṽ

∂x∂y
, (11)

∂2ṽ

∂x2
+
∂2ṽ

∂y2
+
∂2ṽ

∂z2
= −∂ω̃z

∂x
+
∂ω̃x
∂z

, (12)

∂2w̃

∂x2
+
∂2w̃

∂z2
=
∂ω̃y
∂x
− ∂2ṽ

∂y∂z
. (13)

2.2 Disturbance Formulation

A disturbance formulation was adopted in the current study, therefore the flow variables were decomposed in a base
flow and a perturbation:

f̃ = fb + f, (14)

where f̃ = {ũ, ṽ, w̃, ω̃x, ω̃y, ω̃z, Θ̃} are the total flow variables. The base flow is considered two-dimensional, therefore
only ub, vb, ωzb and θb are taken into account, where the index b indicates the base flow.

With such formulation, the stability analysis of any base flow (Blasius, Falkner-Skan, etc.), can be easily performed as
the linear and nonlinear terms can be isolated. Some disadvantages of this formulation are the indirect access to the flow
variables and a higher memory usage due to the larger number of variables.

Introducing Eq. (14) in the equations (1) – (3), (10) – (13) and subtracting the base quantities, the equations for the
perturbations result in:

∂ωx
∂t

+
∂a

∂y
− ∂b

∂z
+
Go2√
Re

∂d

∂z
=

1

Re
∇2ωx, (15)

∂ωy
∂t

+
∂c

∂z
− ∂a

∂x
=

1

Re
∇2ωy, (16)

∂ωz
∂t

+
∂b

∂x
− ∂c

∂y
− Go2√

Re

∂d

∂x
=

1

Re
∇2ωz, (17)
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Figure 1: Computational Domain.

∂2u

∂x2
+
∂2u

∂z2
= −∂ωy

∂z
− ∂2v

∂x∂y
, (18)

∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2
= −∂ωz

∂x
+
∂ωx
∂z

, (19)

∂2w

∂x2
+
∂2w

∂z2
=
∂ωy
∂x
− ∂2v

∂y∂z
, (20)

∂θ

∂t
+
∂e

∂x
+
∂f

∂y
+
∂g

∂z
=

1

Re Pr
∇2θ, (21)

where the nonlinear terms a, b, c, d, e and g are:

a = ωx(vb + v)− ωy(ub + u), (22)

b = (ωzb + ωz)(ub + u)− ωxw, (23)

c = ωyw − (ωzb + ωz)(vb + v), (24)

d = 2ubu+ u2. (25)

e = ubθ + uθb + uθ, (26)

f = vbθ + vθb + vθ, (27)

g = w(θb + θ). (28)

3. Numerical Method

In this section the discretization of the adopted equations and the boundary conditions adopted in the simulations are
shown. The computational domain is illustrated in Fig. 1.

3.1 Spectral Aproximation

The flow is assumed to be periodic in the spanwise direction. Therefore, the flow field can be expanded in Fourier
series with K spanwise Fourier modes:

f(x, y, z, t) =
K∑
k=0

Fk(x, y, t)e(iβkz), (29)

where f = u, v, w, ωx, ωy, ωz, θ, a, b, c, d, e, f, g; Fk = Uk, Vk,Wk, Ωxk
,Ωyk ,Ωzk , Θzk , Ak, Bk, Ck, Dk, Ek, Fk, Gk;

and βk is the spanwise wavenumber given by βk = 2πk/λz , and λz is the spanwise wavelength of the fundamental
spanwise Fourier mode, and i =

√
−1.
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Substituting the Fourier transforms (Eq. 29) in the vorticity transport equations (15 – 17), in the velocity Poisson
equations (18 – 20), and in the heat transfer transport equation (21) yield the governing equations in the Fourier space:

∂Ωxk

∂t
+
∂Ak
∂y
− βkBk −

Go2√
Re

βk(D2
k) =

1

Re
∇2
kΩxk

, (30)

∂Ωyk
∂t

+ βkCk −
∂Ak
∂x

=
1

Re
∇2
kΩyk , (31)

∂Ωzk
∂t

+
∂Bk
∂x

+
∂Ck
∂y
− Go2√

Re

∂(D2
k)

∂x
=

1

Re
∇2
kΩzk , (32)

∂2Uk
∂x2

− β2
kUk = −βkΩyk −

∂2Vk
∂x∂y

, (33)

∂2Vk
∂x2

+
∂2Vk
∂y2

− β2
kVk = −∂Ωzk

∂x
+ βkΩxk

, (34)

∂2Wk

∂x2
− β2

kWk =
∂Ωyk
∂x

+ βk
∂Vk
∂y

, (35)

∂Θk

∂t
+
∂Ek
∂x

+
∂Fk
∂y
− iβkG =

1

Re Pr
∇2
kΘk, (36)

where∇2
k =

(
∂2

∂x2 + ∂2

∂y2 − u
2β2
)

.
The equations (30 – 36) were solved numerically in the domain shown schematically in Fig. 1. The calculations are

done on an orthogonal uniform grid, parallel to the wall. The fluid enters the computational domain at x = x0 and exits at
the outflow boundary (x = xmax). Disturbances were introduced into the flow field using spanwise suction and blowing
in a disturbance strip at the wall. This strip is located between x1 and x2. In the region located between x3 and x4 a buffer
domain technique (Kloker et al., 1993) was implemented in order to avoid wave reflections at the outflow boundary. In
these simulations a 2D Navier-Stokes solution, was used as the base flow, and for the thermal boundary layer, the standard
similarity solution obtained using the Pohlhausen formula was used.

The time derivatives in the vorticity transport equations were discretized with a classical 4th order Runge-Kutta in-
tegration scheme (Ferziger and Peric, 1997). The spatial derivatives were calculated using a 6th order compact finite
difference-scheme (Souza et al., 2005; Souza, 2003; Lele, 1992). The V -Poisson equation – Eq. (34) – was solved using
a multigrid Full Approximation Scheme (FAS) (Stuben and Trottenberg, 1981). A V-cycle working with 4 grids was
implemented.

3.2 Boundary Conditions

The governing equations are complemented by the specification of boundary conditions. At the wall (y = 0), a
no-slip condition was imposed for the streamwise (Uk) and the spanwise (Wk) velocity components. The wall-normal
velocity component at the wall (Vk) was specified at the suction and blowing strip region between x1 and x2, where the
disturbances were introduced. Away from the disturbance generator this velocity component was set to zero. The function
used for the wall-normal velocity Vk=1 at the disturbance generator is:

Vk=1(i, 0, t) = A sin3(ε) for l1 ≤ i ≤ l2 and

Vk=1(x, 0, t) = 0 for l < l1 and l > l2, (37)

where ε = (l − l1)/(l2 − l1) and A is a real constant chosen to adjust the amplitude of the disturbance. The variable l
indicates the grid point location xl in the streamwise direction, and points l1 and l2 correspond to x1 and x2 respectively.
For all modes k 6= 1 the value of Vk = 0 at the wall was settled.

At the inflow boundary (x = x0), the velocity, the vorticity components and the temperature are specified based on the
similarity solutions. At the outflow boundary (x = xmax), the second derivatives with respect to the streamwise direction
of the velocity and vorticity components are set to zero. At the upper boundary (y = ymax) the flow is considered non
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rotational. This is satisfied by setting all vorticity components and their derivatives to zero. The wall-normal velocity
component at the upper boundary was settled according to the condition:

∂Vk
∂y

∣∣∣∣
x,ymax,t

= 0. (38)

This condition was imposed in the solution of the Uk velocity in the Poisson equation (Eq.33). The equations used for
evaluating the vorticity components at the wall are:

∂2Ωxk

∂x2
− β2

kΩxk
= −∂

2Ωyk
∂x∂y

− βk∇2
kVk (39)

∂Ωzk
∂x

= βkΩxk
−∇2

kVk. (40)

A damping zone near the outflow boundary was defined in which all the disturbances are gradually damped down to
zero (Kloker et al., 1993). This technique is used to avoid reflections in the outflow boundary. Meitz and Fasel (2000)
adopted a fifth order polynomial, and the same function was used in the present code. The basic idea is to multiply the
vorticity components by a ramp function f1(x) after each sub-step of the integration method. Using this technique, the
vorticity components are taken as:

Ωk(x, y, t) = f1(x)Ω∗k(x, y, t), (41)

where Ω∗k(x, y, t) is the disturbance vorticity component that results from the Runge-Kutta integration and f1(x) is a ramp
function that goes smoothly from 1 to 0. The implemented function was:

f1(x) = f(ε) = 1− 6ε5 + 15ε4 − 10ε3, (42)

where ε = (l− l3)/(l4− l3) for l3 ≤ l ≤ l4. The points l3 and l4 correspond to the positions x3 and x4 in the streamwise
direction, respectively. To ensure good numerical results a minimum distance between x3 and x4 and between x4 and the
end of the domain xmax has to be adopted. In the simulations presented here each zone had 30 grid points.

Another buffer domain, located near the inflow boundary was also implemented in the code. As pointed out by Meitz
(1996), in simulations involving streamwise vortices, reflections due to the vortices at the inflow can contaminate the
numerical solution. The damping function is similar to the one used for the outflow boundary:

f2(x) = f(ε) = 6ε5 − 15ε4 + 10ε3, (43)

where ε is ε = (l− 1)/(l1 − 1) for the range 1 ≤ l ≤ l1. All the vorticity components were multiplied by this function in
this region.

The boundary conditions for the temperature were:

• inflow – θ = 0;

• outflow – θ = 0, since the same buffer domain for the vorticity was also applied for the temperature;

• wall – θ = 0;

• upper boundary – the values were obtained from the heat transfer transport equation.

4. Results

The parameters adopted in the simulations were: the Reynolds number was Re = 10000; the Goertler number was Go
= 2.385; the free stream velocity was U∞ = 3m/s the distance between two consecutive points in the x and y directions
were dx = 0.015 and dy = 0.0006; the Prandtl number was Pr = 0.72; the number of points in the x and y directions
were 857, and 561, respectively; the time step was dt = 0.003; the disturbances were introduced in the region 1.735 ≤ x
≤ 2.185, with an amplitude of A = 0.005; in the z direction, 21 Fourier modes were used with 64 points in the physical
space. The disturbances were introduced for six different spanwise wavelengths: λz = 0.05, λz = 0.10, λz = 0.15, λz =
0.20, λz = 0.25 and λz = 0.30.

The heat transfer analysis is carried out by verifying the evolution of the spanwise–average Stanton number in the
streamwise direction. The Stanton number is given by:

Stx =
Nux
PrRex

, (44)
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where Nux is the Nusselt number:

Nux = qwall
L

k(Te − Tw)
, (45)

where qwall is the heat flux at the wall:

qwall = −k∂T
∂y

∣∣∣∣
wall

(46)

The energy is also analyzed, and for each Fourier spanwise mode it is calculated by:

Ek =

∫
0

∞
(|Uk|2 + |Vk|2 + |Wk|2)dy (47)

for k > 0, and

Ek =
1

2

∫
0

∞
(|Uk|2 + |Vk|2)dy (48)

for k = 0
In this calculation only the disturbance components are taken into account (Lee and Liu, 1992).
It should be emphasized that all results presented here were obtained with the introduction of steady disturbances,

therefore the secondary instability was not studied in the present paper.

4.1 Results for λz = 0.05

The vortices are amplified initially in a linear manner and downstream when the amplitude of then is already high in
the non-linear region of their development, there is the formation of mushroom-like structure with a distribution of the
velocity component in the main flow direction.

Figure 2 shows energy distribution in the streamwise direction for the steady modes from 1 to 10, and also the mean
flow mode (0). Between the Rex equal 2.5 × 104 until 1.0 × 105 the Goertler vortices show a linear growth. After Rex
= 1.0 × 105, the vortices saturates and almost all modes remains with constant amplitude. In the saturation region the
difference between the amplitude of consecutive modes are almost constant, and the amplitudes of the last modes are very
small.

Figure 2: Energy distribution for each mode in
the streamwise direction for λz = 0.05.

Figure 3: ũ isovelocity contours in the zy-plane
at Rex ∼ 3.32× 105 for λz = 0.05.

Figure 3 shows the isovelocity and isotemperature distribution in a crosscut at Rex = 3.32× 105. The hydrodynamic
boundary layer is shown with dashed lines and the thermal boundary layer is shown with solid lines. Since the simulations
were carried out for Pr = 0.72 the thermal boundary layer is higher than the hydrodynamic boundary layer. The
downwash region is more pronounced than the upwash region giving a higher spanwise–average heat transfer rate.

The streamwise evolution of the spanwise–average Stanton number is show in Fig. 4. The disturbance is imposed in
the region at Rex ∼ 0.6× 105. At the beginning when the vortices are in the linear development region the curve fits the
laminar flow. It can be seen that after Rex ∼ 1.6× 105 Goertler flow intensifies the heat transfer. Since Rex = 6.0× 104

the rate of heat transfer begins to increase. At Rex = 1.09× 105 the Stanton number with Goertler flow is 143% higher
than laminar and and 13% lower than turbulent values respectively. The result obtained in the present case showed that
with this wavelength the reached value did not reach the turbulent values predicted for turbulent flows.
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Figure 4: Streamwise evolution of the spanwise–averaged Stanton number for λz = 0.05.

4.2 Results for λz = 0.10

Figure 5 shows the energy distribution in the streamwise direction. The saturation energy obtained in the present case
reached lower values than the first case (λz = 0.05). The saturation region starts at a streamwise positionRex = 8.0×104.

Figure 5: Energy distribution for each mode in
the streamwise direction for λz = 0.10.

Figure 6: ũ isovelocity contours in the zy-plane
at Rex ∼ 3.32× 105 for λz = 0.10.

The isovelocity and isotemperature contours for the streamwise velocity at Rex ∼ 3.32× 105 is shown in Fig. 6. The
mushroom structure typical for Goertler flow can be seen. The velocity field of the vortice induces periodic motion nomal
the transverse direction in the boundary layer, which changes when the developing regions of low momentum of the fluid
moves away from the wall and the fluid at high speed moves to the outer wall. In this figure it can be more pronounced
than the upwash region. This helps for understand that the spanwise–average Stanton number increases in the nonlinear
development region.

Figure 7 shows the streamwise evolution of the spanwise–average Stanton number for λz = 0.10. It can be seen that
after Rex ∼ 1.8× 105, the Goertler flow intensifies the heat transfer. At Rex = 1.09× 105 the The Stanton number with
Goertler flow is 299% and 45% higher than laminar and turbulent values respectively. In this case we have the biggest
gain for the rate of heat transfer of all simulated cases.

4.3 Results for λz = 0.15

Figure 8 shows the energy distribution for each mode from 0 to 10 for λz = 0.15. The saturation region starts at a
streamwise position Rex = 8.0× 104, almost at the same position observed for λz = 0.10.

The isovelocity and isotemperature distribution in a crosscut at Rex ∼ 3.32× 105 is shown in Fig. 9.
Figure 10 shows the streamwise evolution often the Stanton number for λz = 0.15. In the present case at Rex =

1.09 × 105 the Stanton number with Goertler flow reaches 234% and 22% higher than laminar and turbulent values
respectively.

4.4 Results for λz = 0.20

Figure 11 shows energy distribution in the streamwise direction for the steady modes from 1 to 10, and also the mean
flow mode (0). The saturation region starts at a streamwise position Rex = 8.0 × 104, almost at the same position
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Figure 7: Streamwise evolution of the spanwise–averaged Stanton number for λz = 0.10.

Figure 8: Energy distribution for each mode in
the streamwise direction for λz = 0.15.

Figure 9: ũ isovelocity contours in the zy-plane
at Rex ∼ 3.32× 105 for λz = 0.15.

Figure 10: Streamwise evolution of the spanwise–averaged Stanton number for λz = 0.15.

observed for λz = 0.10 and λz = 0.15.
The isovelocity and isotemperature contours for the streamwise velocity at Rex ∼ 3.32× 105 is shown in Fig. 12.
Figure 13 shows the streamwise evolution of the Stanton number for λz = 0.20. In the present case atRex = 1.09×105

the Stanton number with Goertler flow is 173% higher than laminar and 0.1% lower than turbulent values, respectively.
These results show that the growth of the vortices were not monotonic.

4.5 Results for λz = 0.25

Figure 14 shows energy distribution in the streamwise direction for the steady modes from 1 to 10, and also the mean
flow mode (0). The saturation region starts at a streamwise position Rex = 5.0× 104.

The isovelocity and isotemperature contours for the streamwise velocity at Rex ∼ 3.32× 105 is shown in Fig. 15.
Figure 16 shows the streamwise evolution often the Stanton number for λz = 0.25. In the present case at Rex =

1.09 × 105 the Stanton number with Goertler flow reaches 238% and 23% higher than laminar and turbulent values
respectively. This case has the second best result for the gain in heat transfer and shows that the growth of the vortices
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Figure 11: Energy distribution for each mode in
the streamwise direction for λz = 0.20.

Figure 12: ũ isovelocity contours in the zy-plane
at Rex ∼ 3.32× 105 for λz = 0.20.

Figure 13: Streamwise evolution of the spanwise–averaged Stanton number for λz = 0.20.

Figure 14: Energy distribution for each mode in
the streamwise direction for λz = 0.25.

Figure 15: ũ isovelocity contours in the zy-plane
at Rex ∼ 3.32× 105 for λz = 0.25.

were not monotonic.

4.6 Results for λz = 0.30

Figure 17 shows energy distribution in the streamwise direction for the steady modes from 1 to 10, and also the mean
flow mode (0). The saturation region starts at a streamwise position Rex = 6.0× 104.

The isovelocity and isotemperature contours for the streamwise velocity at Rex ∼ 3.32× 105 is shown in Fig. 18.
Figure 19 shows the streamwise evolution often the Stanton number for λz = 0.30. In the present case at Rex =

1.09 × 105 the Stanton number with Goertler flow reaches 207% and 22% higher than laminar and turbulent values
respectively.
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Figure 16: Streamwise evolution of the spanwise–averaged Stanton number for λz = 0.25.

Figure 17: Energy distribution for each mode in
the streamwise direction for λz = 0.30.

Figure 18: ũ isovelocity contours in the zy-plane
at Rex ∼ 3.32× 105 for λz = 0.30.

Figure 19: Streamwise evolution of the spanwise–averaged Stanton number for λz = 0.30.

5. Conclusion

In the present paper it was analysed the influence of the spanwise wavelengths: λz = 0.05, λz = 0.10, λz = 0.15, λz =
0.20, λz = 0.25 and λz = 0.30 for Pr = 0.72, in the heat transfer rate. Although the secondary instability was not studied,
it was observed that the steady Goertler flow can reach heat transfer rates higher than the turbulent boundary layes flows.
Although some authors believe that the high heat transfer rates is a consequence of Goertler flow secondary instabilities,
with the present results one can see that the Goertler flow itself is responsible to achieve these gains. Comparing the six
spanwise wavelengths results, it was observed that for λz = 0.10 the higher gain in heat transfer rate was observed, and in
5 of the 6 cases studied that the Stanton number reached values higher than the turbulent ones. It was observed also that
this gain is not monotonic with the spanwise wavelength.
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