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Abstract. The analysis and estimation is an essential step towards to a reliable reconstruction process and for a proper use
of 3D data. Therefore it is interesting to analyze which error sources influence the final result, and what is the sensitivity
of each of these error sources. The objective of this work is to perform the error analysis of a reconstructed surface. The
3D reconstructed scene has the precision improved by combining point clouds obtained from different viewpoints using
structured light. The main task is the point cloud registration algorithm that matches two point clouds. A well-known
algorithm for point cloud registration is the ICP that determines the rotation and translation that when applied to one of
the point clouds, place both point clouds in accordance. An improved ICP is used in the error analysis. The quality of
the 3D reconstruction is described as a function of input data and the correctness of the reconstructed scene is compared
with the real surface measurement.
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1. INTRODUCTION

3D reconstruction is an important subject in computer vision. 3D models generation of static real world objects
has reached increased importance in many fields of application, such as manufacturing, medicine, reverse engineering,
prototyping and also in the design of virtual worlds for movies and games. To provide a reliable reconstruction process
the error analysis and estimation is required for a proper use of 3D data. The analysis of which error source influences the
final result, and what is the sensitivity of each of these error sources are of particular interest.

A well known algorithm for point cloud registration is the Iterative Closest Point algorithm (ICP) (Besl and McKay,
1992), it has become the most widely-used approach for aligning 3D surfaces, especially for surfaces created from range
images. The ICP determines the rotation and translation that when applied to one of the point clouds, place both point
clouds in accordance. In the ICP, two main steps are executed iteratively: point correspondence and transformation
determination. Once the mapping is established, a variety of tasks can be performed using the aligned object representation
including model based localization and 3D object recognition.

If the point correspondence determination is not executed properly the ICP might converge to a local minimum and the
registration of two surfaces is not guaranteed to be successful. The failure in the registration process can occur for some
reasons, such as when the overlap between the two surfaces is insufficient, or when the range measurement error is too
large, or when the geometric constraint on the 3D rigid-body transformation between the two surfaces is insufficient (for
example, when a plane is being registered to another plane) or when the initial relative pose between the two surfaces is
too large. A conventional root-mean-squared error, coupled with the criterion measure from constraint analysis provides
the ability to estimate true registration accuracy online and can be used to guide the registration data by determining when
additional data is required to satisfy accuracy requirements and is built upon the registration constraint analysis (Simon,
1996). In Simon (1996) the relative amount of constraint on the 3D rigid-body transformation exerted by the shape of
a surface is evaluated. In his approach, a set of surface points, a value that represents the amount of constraint on the
3D rigid-body transformation when the surface is being aligned with itself is computed. The computed value does not
indicate the absolute accuracy that can be achieved with each point set during registration. It is only useful for comparing
the registration between the data sets, so as to determine which point set has the best constraint on the transformation (Low
and Lastra, 2007). The absolute accuracy of the 3D model is evaluated considering the sensor accuracy.

Since the error analysis is a necessary step to know whether an estimated transformation satisfies accuracy require-
ments at the time of registration, this work intends to evaluate the 3D reconstruction error using the technique presented
by Takimoto et al. (2012). This paper is organized as follows, the techniques used to capture the point cloud in Section
2. The modified ICP algorithm are detailed in Section 3. Next, the error analysis is explained in Section 4. Finally, some
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Figure 1. Kinect structured-light pattern, a known pattern is projected onto the scene and depth is inferred from the
deformation of that pattern.

results are shown in Section 5 and Section 6 presents the conclusions and future works.

2. Point Cloud Acquisition Using Structured-Light

The structured-light technique adds additional information for the 3D reconstruction. A coded structured-light system
is based on the projection of a single pattern or a sequence of patterns onto the measuring scene which is imaged by
a single camera or a set of cameras. In systems that use spatial encoding, the patterns are specially designed so that
codewords are assigned to a set of pixels. Every coded pixel has its own codeword, so there is a direct mapping from the
codewords to the corresponding coordinates of the pixel in the pattern. The codewords are simply numbers, which are
mapped in the pattern by using grey levels, color or geometrical representations.

As the number of points (codewords) that must be coded increases, the mapping of such codewords to a pattern is
more difficult. The problems are that they typically need complex patterns or colors to encode positional information. To
determine the spatial codes uniquely, the size of a code becomes large. Such patterns are easily affected by textures, shape
discontinuities, image compression caused by tilted surfaces. Therefore, density of patterns should be inevitable low, and
thus, 3D reconstruction tends to be sparse and unstable in reality (Sagawa et al., 2009).

To deal with this issue, fast methods (Rusinkiewicz et al., 2002; Koninckx and Gool, 2006; Zhang et al., 2002; Je et al.,
2004) that can measure the shape at a high frame rate were proposed. Among them, the methods proposed by Zhang
et al. (2002) and Je et al. (2004) can extract the shape from a single image then are suitable for real-time acquisition.
Also, several researches reduced the required number of patterns using both temporal and spatial changes (Young et al.,
2007; Hall-Holt and Rusinkiewicz, 2001). However, the main difficulty is the simultaneous texture acquisition because
visible light patterns are projected to measure the shape. Two solutions were proposed for the problem: time-sharing
methods (Raskar et al., 1998; Waschbüsch et al., 2005; Weise et al., 2007) and band-separating methods (Frueh and
Zakhor, 2005; Hiura et al., 1996; Microsoft, 2012).

The time-sharing method uses structured-light not only for capturing shape but also for illuminating objects to ob-
tain texture. If the structured-light patterns are removed from the images, they can be used as texture images. This is
accomplished by computing the average of the images of time-multiplexing patterns, or low-pass filtering of fringe pat-
terns. The advantage of this approach is that texture and shape can be obtained using the same camera. However this
method cannot be used with other illumination in the environment because structured-light is used for both shape and
texture. Consequently, the illumination using this approach is restricted. Additionally, if an object in the image moves
fast, misalignments between the texture and the shape may appear since the duration of the shape and the texture capture
are different.

The band-separating methods uses different light wavelengths for shape and texture. The shape is obtained by using
infra-red (IR) light, while the texture image is captured with visible light. Since the structured-light patterns for IR light
are not detected by the camera for visible light, the acquisition of shape and texture can be accomplished simultaneously.
Frueh and Zakhor (2005) use vertical stripes and a horizontal line of IR. The vertical stripes are used for shape recon-
struction and the horizontal line for identifying the vertical stripes. Hiura et al. (1996) proposed a laser range finder that
obtains a range image at 30 Hz by fast scanning of IR light stripes. The texture image is captured simultaneously with the
system. Kinect (Microsoft, 2012) can capture a shape (depth data) by using IR projector and a IR camera and at the same
time a texture (color data) by another CCD camera. Fig. 3 shows the static spatially encoded IR pattern projected onto
the scene generated by the Kinect. The pattern is deformed as it falls onto the objects and the IR camera then captures
an image of the scene and decodes the result. Although the low resolution of the generated 3D scene, the depth can be
calculated with only one capture.

The pattern is deformed as it falls onto the objects and the IR camera then captures an image of the scene and decodes
the result. Although the low resolution of the generated 3D scene, the depth can be calculated with only one capture.
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Figure 2. Kinect camera. Depth resolution: 640× 480 px, RGB resolution: 1600× 1200 px.

The modified ICP algorithm proposed by Takimoto et al. (2012) uses data from both the color and depth cameras
in the Kinect (see Fig. 4). The IR projector illuminates the scene with a structured dot pattern, in which the IR camera
records to produce a depth map in VGA resolution with eleven bits of precision per sample. The depth reconstruction is
robust in the absence of strong IR interference from other sources like other Kinects or direct sunlight. The camera in the
middle records visible-color images at 30 frames per second. It has fixed focal-length lens with low radial lens distortion
and automatic brightness adjustment.

3. Modified ICP Registration

In the ICP algorithm proposed by Besl and McKay (1992), each point in one data set is paired with the closest point in
the other data set to form correspondence pairs. Then, using a point-to-point error metric, the sum of the squared distance
between points in each correspondence pair is minimized by rigidly transforming one of the data sets. The process is
iterated until the error becomes smaller than a threshold or it stops changing. Thus, two views of a surface are said to be
in registration when any pair of points (pi, qi) from the two views representing the same surface point can be brought into
coincidence by one rigid transformation (Chen and Medioni, 1991). That is, there exists a rigid transformation T, such
that

∀ pi ∈ P,∃ qj ∈ Q | ‖T · pi − qj‖ = 0 (1)

where P and Q are two views of the same surface and T · pi is the result of applying T to pi.
Although the ICP algorithm is widely used to register 3D point clouds, some limitations must be addressed. The

algorithm has a local minima very close to the global minimum and getting trapped at one of these local minima can lead
to sub-optimal registration accuracy. In (Besl and McKay, 1992) an approach to sample the 6-dimensional space of the
rigid motion parameters, and run the ICP registration from each sample pose is suggested. This method does not really
address the problem of local minima close to the global one because the subset of initial poses that will converge to the
global minimum can be very small, and therefore the pose sampling may miss them completely. In the ICP algorithm
described by Besl and McKay (1992) a point-to-point error metric is used in which the sum of the squared distance
between points in each correspondence pair is minimized, therefore each point in one data set is paired with the closest
point in the other data set to form correspondence pairs. The use of this ICP algorithm is not suitable because there are
some outliers in both point clouds due to sensor movement. The conventional ICP algorithm (Besl and McKay, 1992)
iteratively executes the point correspondence by determining the points from one set that are closest to the points in the
other set. The correspondence cannot be one-to-one, because outliers can exist because of occlusion, appearance and
disappearance. Actually, it is necessary to execute subset-subset point correspondence.

The modified ICP algorithm that improves the point correspondence algorithm is proposed by Takimoto et al. (2012).
The algorithm uses robust statistics to generate a dynamic distance threshold on the distance allowed between closest
points. This dynamic distance threshold is used to relax the requirement that one data set be a proper subset of the other,
so that partially overlapping data sets can be registered. Instead of matches all points, this technique uses a distance
parameter D and a statistical analysis to remove some of them.

The algorithm uses a maximum tolerable distance D1
max to choose the matches that will be used, thus each point {pi}

in the first data set whose distance to its closest point is less than D1
max is retained, together with its closest point {qi} and

their distance {di = pi − qi}. The mean µ and the sample deviation is given by

µ =
1

N

N∑
i=1

di (2)

σ =

√√√√ 1

N

N∑
i=1

(di − µ)2. (3)

ISSN 2176-5480

5501



Rogério Takimoto, Marcos Tsuzuki, Thiago Martins, Edson Ueda, Toshiyuki Gotoh and Seiichiro Kagei
3D Reconstruction Scene Error Analysis

’
Figure 3. Relative depth and measured disparity relationship.

The maximum tolerable distance D1
max is adaptively set based on statistics of the distance evaluated values. The mean

µ is compared with the distance parameter D to update D1
max using the distances statistics. The iteration ends when the

change in the translation and rotation is less than 1%.
The modified algorithm also adds a weight to the points that are closer to the sensor. Since the weight is used in the

registration precision (dk − dk+1), the algorithm will force a better registration of the points that are near to the sensor.
As the sensor can perform translation and rotation movement, considering only the rotation movement the points that are
near will have a smaller displacement when compared with the points that are far.

3.1 Some Improvements

To improve the robustness of the modified algorithm an implementation based on the color information is also pro-
posed. The proposed algorithm analyze and uses the color information in the closest point evaluation. Let P and Q be
two data sets with colors cp = (cp, cp, cp) and cn = (cn, cn, cn) respectively. The Euclidean distance with the color
information is described by

d2 = d2pq + α1(cp − cn)2 + α2(cp − cn)2 + α1(cp − cn)2 (4)

where α1, α2 and α3 are parameters used to weight the color component importance. To avoid the specular reflection
influence, the distance using the color information is not used if the color difference is greater than a defined threshold.

4. Error Analysis

The following errors are going to be considered: point cloud acquisition error and registration error. The translational
and rotational alignments are separately considered in the registration error analysis.

4.1 Point Cloud Acquisition Error

Since Kinect is a recent development - it was released in November 2010 - little information about the geometric
quality of its data is available thus an analysis of the systematic and random errors of the data is necessary. The correction
of systematic errors is a prerequisite for the alignment of the depth and color data, and relies on the identification of the
mathematical model of depth measurement and the calibration parameters involved. The characterization of random errors
is important and useful in further processing of the depth data. The Kinect error analysis uses the mathematical model
discussed in (Khoshelham and Elberink, 2012). Khoshelham and Elberink (2012) provided an insight into the geometric
quality of the Kinect depth data through calibration and an analysis of the accuracy and density of the points. The Kinect
error analysis is evaluated from the relation between the distance of an object point k to the sensor relative to a reference
plane and the measured disparity d (see Fig. 5).

From the similarity of triangles, the distance (depth) Zk of the point k in object space is

Zk =
Zo

1 + Zo

fb d
(5)

where b is the base length, f is the focal length of the infrared camera and d is the observed disparity in image space. The
Z coordinate of a point together with f defines the imaging scale for that point and the world coordinate of each point can
be calculated using the image coordinate and the scale, as follows

Xk =
Zk

f
(xk − xo + δx) (6)

ISSN 2176-5480

5502



22nd International Congress of Mechanical Engineering (COBEM 2013)
November 3-7, 2013, Ribeirão Preto, SP, Brazil

Yk =
Zk

f
(yk − yo + δy) (7)

where xk and yk are the image coordinates of the point, xo and yo are the coordinates of the principal point, and δx
and δy are corrections for lens distortion. Since there is a shift in the x direction between the disparity and infrared
images (Khoshelham and Elberink, 2012), (6) and (7) must be normalized. Therefore, d should be replaced with md+ n
with d as the normalized disparity and m, n the parameters of a linear normalization. The normalized distance Zk can be
written as

Z ′
k =

(
m

fb

)
d′ +

(
Z ′
o +

n

fb

)
, (8)

in which expresses a linear relation between the inverse depth of a point and its corresponding normalized disparity.
By observing the normalized disparity for a number of object points (or planes) at known distances to the sensor the
coefficients of this linear relation can be estimated in a least-squares fashion. The calibration parameters mentioned above
completely define the relation between the image measurements (x, y, d) and object coordinates (X,Y, Z) of each point.
Once estimated, they enable the generation of a point cloud from each disparity image. Assuming that the calibration
parameters are determined accurately and that d is a random variable with a normal distribution it is possible to propagate
the variance of the disparity measurement to obtain the variance of the depth measurement as follows

σ2
Z =

(
δZ

δd

)2

σ2
d (9)

After simplification this yields the following expression for the depth standard deviation

σZ =

(
m

fb

)
Z2σd (10)

with σd and σZ respectively the standard deviation of the measured normalized disparity and the standard deviation of
the calculated depth. Expression (10) basically expresses that the random error of depth measurement is proportional to
the square distance from the sensor to the object. Since depth is involved in the calculation of the world coordinates, it is
expected the error in X and Y to be also a second order function of depth. By propagating the errors, and assuming that
the random error of image coordinates x, y can be ignored, the random error of X and Y is obtained

σx =

(
mx

f2b

)
Z2σd (11)

σy =

(
my

f2b

)
Z2σd (12)

What shows that the error of the point cloud acquisition is directly proportional to the distance of the object to the Kinect.

4.2 Registration Error

In the registration error analysis, translation and rotation are considered separately as they are parameterized by differ-
ent entity types. The translation is parameterized by distance and rotation by angle. For the rotation analysis, the arbitrary
scale of the object is not a problem since the analysis will be done separately. The registration error analysis can be done
using the first-order approximation of the true point-to-surface distance

D(x) =
F (x)

‖∇F (x)‖
(13)

where F (x) = 0 is the implicit equation of the surface, ‖∇F (x)‖ is the magnitude of the gradient to the surface, x
is a point in which may not lie on the surface and D(x) is the approximate distance. The application of a differential
transformation T on point xs that lies on the surface, D(xs) = 0 can be written as

V (xs) =
∂

∂t
D(T (xs)) =

[
nxs

xs × nxs

]
(14)

where T can be represented by a homogeneous transformation in which is a function of the six parameters (tx, ty , tz , ωx,
ωy , ωz), rotations and translations along the x, y and z axes and nxs is the unit normal to the surface evaluated at the
point xs.
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Figure 4. Scene to be analyzed.

4.2.1 Translational Alignment Error

Let [xi, yi, zi]
T be the 3D coordinates of the ith true surface point, where i = 1, 2, . . . ,M . Suppose there are two

sets of measurements of the surface points, producing the point set A with coordinates [xi + uAi, yi + vAi, zi + wAi]
T

and the point set B with coordinates [xi + uBi, yi + vBi, zi + wBi]
T , where (uAi, uBi), (vAi, vBi) and (wAi, wBi) are

measurements errors in the x, y and z directions, respectively. After the ICP, the point set B is translated so that it is
aligned with point set A. The alignment uses the least-squares (least-sum-of-squares) error metric, where the translation
vector τ = [tx, ty, tz]

T to translate the point set B is used to minimize

SSE =

M∑
i=1

∥∥∥∥∥∥
 xi + uAi

yi + vAi

zi + wAi

−
 xi + uBi

yi + vBi

zi + wBi

−
 tx
ty
tz

∥∥∥∥∥∥
2

. (15)

Given that the measurement errors uAi, uBi, vAi, vBi, wAi and wBi are independent and normally distributed with
mean 0 and standard deviations not greater than eRMS , it is possible to conclude that the error alignment is directly related
to the translation parameter.

4.2.2 Rotational Alignment Error

Using an analogous approach for the rotation component, the alignment uses the least-squares (least-sum-of-squares)
error metric, where the rotation vector θ = [ωx, ωy, ωz]

T to translate the point set B is used to minimize

SSE =
M∑
i=1

∥∥∥∥∥∥
 xi + uAi

yi + vAi

zi + wAi

−R(ωx, ωy, ωz) ·

 xi + uBi

yi + vBi

zi + wBi

∥∥∥∥∥∥
2

(16)

where R(ωx, ωy, ωz) is the composite rotation matrix for rotations of ωx, ωy and ωz radians about the x− axis, y− axis
and z − axis, respectively. Since the rotations will be small, the matrix R(ωx, ωy, ωz) can be approximated by using the
approximations sin θ ≈ θ and cos θ ≈ 1 when θ ≈ 0.

Given that the measurement errors uAi, uBi, vAi, vBi, wAi and wBi are independent and normally distributed with
mean 0 and standard deviations not greater than eRMS , it is possible to conclude that the error alignment is directly related
to the rotation parameter.

5. Results

The error analysis and the parameters influence were verified in the acquisition of real scenes. For the registration error
analysis, two cases were considered the translational and the rotational movement. The Fig. 6 shows the image used to
analyze the translational movement. The point cloud generated in the ICP process in two different situations. The Figs. 7
and 8 show translational acquisitions using small and large translational movement of the sensor respectively. The results
showed that it was possible to get good results when the movement of the sensor is lower than 5 cm.

The reconstructed image obtained after processing the Figs. 7 and 8 can be viewed in Figs. 9 and 10. From the images
it was possible to verify the point cloud acquisition error. The images show that as the distance from the sensor increases
the acquisition error increases. Moreover, the point cloud density has great influence over the reconstruction quality, as
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Figure 5. Point Cloud generated by the ICP for a small translational (3 cm) movement of the sensor.

Figure 6. Point Cloud generated by the ICP for a large translational (9 cm) movement of the sensor.

the point cloud density increases the reconstruction quality also increases. The Fig. 8 ilustrates this behaviour, as the point
cloud density is low in some regions, the surface reconstruction failed in those regions.

For the rotational movement analysis, two different situations were also considered, small and large angles displace-
ment. In this analysis the face reconstruction were considered and the point cloud result using different angles of acqui-
sitions can be viewed in Figs. 11 and 12. The results showed that it was possible to get good results when the rotation of
the sensor is lower than 70 degrees. The angle used in Fig. 12 was 80 degrees.

Using first-order approximation of the point-to-point distance between the point clouds, it was possible to evaluate
the error considering two point clouds. In the error analysis the sum all distances errors were considered, therefore the
inliers and the outliers distance errors wer included. Although the error between the points is small and on the order of
millimeters, the sum of all distance errors is higher and on the order of centimeters. The error behavior of the modified
ICP (Takimoto et al., 2012) to align two point clouds can be viewed in Figs. 13. and 14. The Fig. 13 shows the distance
error for the ICP applied to translated point clouds, it is possible to notice that as the translation movement increases
the error also increases. However, the distance between acquisitions of maximum of 3cm is a good balance (number of
acquisition × error) as the error increases too much after that. The Fig. 14 shows the distance error for the ICP applied to
rotated point clouds, it is possible to notice that as the rotation movement increases the error also increases. The rotation
has a different behavior when compared to translation, as from 0 to 50 the error is kept almost stable. Based on this, it is
possible to conclude that rotations have smaller errors when compared to translations.

6. Conclusion

The results showed that the point cloud acquisition must be performed within a certain range to ensure the quality
of the reconstruction because as the distance from the sensor increases the error and the point cloud density decreases.
From the results, it is possible to verify that the ICP is more robust to rotation movement when compared to the translation
movement. The reconstruction quality is satisfactory when the translational movement is low and the rotational movement
is lower than 50 degrees.
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Figure 7. Reconstructed scene for a small translational (3 cm) movement of the sensor.

Figure 8. Reconstructed scene for a large translational (9 cm) movement of the sensor.

Figure 9. Point Cloud generated by the ICP for a small rotational (40 degrees) movement of the sensor.

Figure 10. Point Cloud generated by the ICP for a small rotational (90 degrees) movement of the sensor.
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Figure 11. Distance Error between point clouds considering only translation.

Figure 12. Distance Error between point clouds considering only rotation.
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