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Abstract. In the last years, printing techniques have gained much attention because its applicability in the production of
electronics devices, like polymer solar cells, flat panel displays (LCD) and other general purposes electronics circuits.
Roto-gravure printing is a specially attractive roll-to-roll procedure, because its high accuracy and production rate. The
term gravure comes from the fact that one of the rolls has a pattern engraved in its surface, which is made of tinny cells or
cavities containing fluid that is transferred by direct contact to the final substrate. In this work it is solved the stretching
of a 2D planar liquid filament between a fixed cavity and a moving plane plate, to model the liquid transfer in a gravure
printing unit. To mimic the kinematic of the real process, the plate is moved with a velocity obtained from a complete
kinematics analysis of a roll to roll system. The fluid flow problem is modeled by solving the Navier-Stokes equations,
which are discretized with the finite element method; the free surfaces evolution and resulting domain deformation are
tracked by a pseudo-solid mesh deforming algorithm. The results predict that as the roll radius is reduced, thus increasing
the lateral and rotation velocities of the top plate relative to the cavity, more liquid is removed from it. However, due to
an increase in the lateral displacement of the liquid bridge, special care must be taken in the wettability properties of the
substrate to avoid severe errors in the pattern fidelity. When the roll radius and cavity geometry are fixed, the simulations
predict a strong non-linear behavior of the liquid fraction extracted from the cavity versus capillary number. The results
shown that to obtain a good description of the process in a wide range of operating conditions, it is important to introduce
an appropriate kinematic for the moving surface.
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1. INTRODUCTION

In the last years, printing techniques have gained much attention because its potential applicability in the production
of flexible electronics devices. One important example is the production of polymer solar cells, which are a promising
solution in the reduction of the high cost photovoltaic technologies (Krebs, 2009). Polymer solar cells are suitable to be
manufactured by using high scale film-forming techniques like slot and gravure coating and also by printing technologies
like screen, pad or gravure printing (Santa-Nokki et al., 2006; Ding et al., 2009). The high production rate and low
manufacturing cost are crucial factors to compensate the low efficiency conversion these devices have at present (Krebs,
2009). Another common example of electronic device that can be manufactured by printing techniques is flat panel
displays which are formed by thousands of light emitting diodes or LEDs (Lee et al., 2010b; Chung et al., 2010). Also,
gravure and offset printing techniques have been successfully tested to print general purpose small scale electronic circuits
on flexible substrates (Lee et al., 2010a; Pudas et al., 2004b,a).

Among the many used printing techniques, gravure is very attractive because it allows printing tiny patterns (in the
order of 10 microns) using liquids of medium viscosities (up to 1000 cP) and at fast substrate velocity (10 m/s and higher),
when a roll-to-roll configuration is used (Krebs, 2009). The term gravure comes from the fact that one of the rolls has
a pattern engraved on its surface, which is made of small cells or cavities. They are filled with the liquid as the surface
of the rolls rotate inside a bath, then a blade removes the excess of liquid and finally the cavities are emptied by direct
contact, thereby transferring the engraved pattern to a second surface (ussually, the final substrate).

To model the liquid transfer from a cavity to a surface, the usual simplification has been to consider the stretching of
a planar or axisymmetric liquid filament between a moving surface (flat plate) and a fixed trapezoidal cavity. The main
goals are usually to determine the mass fraction of liquid that is transferred from the cavity to the moving surface (usually
denoted as ϕ and also called pickup fraction) as a function of contact angles, surface velocity, geometry of the cavity and
flow parameters. Hoda and Kumar (2008) used the boundary integral method to study the removal of liquid from 2D
planar grooves with rectangular cross sections. By imposing simultaneously shear (horizontal) and stretching (vertical)
velocities to the upper plate, the authors predicted the residual liquid fraction left in the cavity for different cavity aspect
ratios and stretching velocities, while the capillary number Ca was kept fixed (Ca = 0.01). Their results show that
almost all the liquid inside the cavity can be removed when the stretching velocity is higher than a critical value, which is
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a function of the cavity aspect ratio. The predictions indicated that wider cavities are easier to empty. Finally, they also
made few simulations introducing a combination of shear and rotational motion to the upper plate, finding that rotation
tends to increase the liquid fraction removed from the cavity.

Up to our knowledge, the most recent work on liquid transfer from a cavity to a surface motivated by printing appli-
cations is that presented by Dodds et al. (2009). The main objective was to explore the behavior of axisymmetric liquid
bridges being stretched between a plate and cavities with trapezoidal cross sections. They used the Galerkin finite element
method to solve the Navier-Stokes equations and an elliptic mesh generation equation was used to map the physical and
computational domains (Christodoulou et al., 1997). Their results show that the volume fraction ϕ rises as the cavity is
made wider and that ϕ increases with the capillary number.

Because the inherent complexity in the observation and measurements of such small-scale interfacial fluid flow, few
experimental analysis are available. Good examples are those presented by Yin and Kumar (2006) and Chuang et al.
(2008). Actually, to simplify both the visualization process and the measurements of transferred liquid fractions, they
used up-scaled engraved cavities with characteristic dimensions in the order of millimeters, much larger than actual
cavities used in gravure printing. More specifically, Yin and Kumar (2006) made experiments to visualize the process
of emptying of a single cell (width × length = 1.5 × 1 mm). By filling the cavities at different levels, they emptied the
cell by displacing horizontally a top curved surface at different velocities. The setup allowed visualization of the flow
field during the process and they could observe different flow patterns, mainly depending on both the initial level of the
liquid in cavity and the gap between the cavity and the moving surface. They found that the extracted liquid fraction
reaches maximum values close to ϕ = 0.5 for low capillary numbers (Ca ∼ 10−4) and then decrease monotonically up
to Ca ∼ 5 × 10−2. Chuang et al. (2008) used trapezoidal cavities similar to those of Yin and Kumar (2006). They also
made arrays of up to 4 cavities to study how their interaction affects the transferred volume fraction ϕ. To simulate the
gravure printing process, they passed a roller at different velocities and gaps. The range of the capillary number explored
was small (2.5× 10−3 < Ca < 3× 10−2), but they also observed a decrease in ϕ as Ca rises.

Summarizing, the available experimental results suggest that the transferred liquid fraction decreases as capillary
number rises, at least in the explored range. By contrast, Dodds et al. (2009) presented results for two values of capillary
numbers (Ca = 0.1 and 0.01) and their predictions suggest that the liquid fraction ϕ decrease as capillary number falls;
thus, new results are needed to close the gap between simulations and experiments.

In the present work, we also solve numerically the free surface flow that occurs during the process of liquid transfer
from a fixed 2D planar trapezoidal cavity and a moving plate, as an effort to understand the fundamental aspects involved
in gravure printing operations. As was shown by the works of Hoda and Kumar (2008) and Dodds et al. (2012), the
relative motion of rotation and shear affects the liquid transfer. Thus, we develop an expression for the relative velocity
of the plate based on a kinematic model of a roll-to roll system (Section 2.1). This allows to us to consider stretching
(vertical), shearing (horizontal) and rotational velocities in a coherent manner and related to the operational parameter of
the process. To model the fluid flow we solved the Navier-Stokes equations with appropriate boundary conditions, which
are detailed in Section 2.2 and implemented a robust numerical algorithm to solve them, which is discussed in Section 3.
. We discuss the effects of the moving surface kinematics and cavity aspect ratio on the transferred liquid fraction ϕ

in Section 4.2, while examine the influence of capillary number and other important aspects of printing applications in
Section 4.3. Finally, in Section 5.we present the main conclusions of this work and some future research directions.

2. THE MODEL

2.1 Kinematic description of a rotational gravure printing system

Figure 1 shows the schematic configuration of two equal counter rotating rolls separated by a gap H0. The positions of
points on both roll surfaces are defined by the angles θ1 and θ2 with respect to the horizontal line, as shown in the figure.
The angles θ1 = θ2 = ωt + θ0 = θ, while θ0 is introduced to include the possibility to consider an initial inclination or
twist of the plate with respect to the cavity. However, this issue will not be explored in this work and for all situations
analyzed here θ0 = π/2: points C and O are initially located in the minimum gap plane. The bottom roll represents
the engraved roll having the cavities and only one cavity is sketched (dark gray color) to simplify the diagram. Figure 1
shows two frames of reference. One frame (F1) is fixed at the center of the bottom roll and is defined by the unit vectors
(i′, j′,k′). The coordinates of any point with respect to this frame are represented by (x′, y′, z′). The second frame of
reference (F2) is attached to the center of the cell surface (point O) and therefore is moving with respect to the fixed frame
F1. The coordinates of any point with respect to the moving frame F2 are represented by (x, y, z). The goal is to derive
an expression for the velocity Vw of points on the vecinity of C, respect to the moving frame F2. Because the area wetted
by the liquid will be ussually very small respect to the roll radius, we can safely represents those points as belonging on
small plane rotating with angular velocity ωr = ω around the point C.

After some basic kinematic transformations, not detailed here for brevity, we can demostrate that the final expression
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Figure 1. Geometric model, variables and frames used to describe the relative motion between the cavity and points on
the top roll surface.

for the velocity of points on this top plane respect to frame F2, is

Vw(x, t) = [−2ωR cos2(θ)− 2ωry + ωryC ]i+ [−2ωR cos(θ) sin(θ) + 2ωrx− ωrxC ]j,

xC = |x′
C − x′

O| cos(θ), yC = |x′
C − x′

O| sin(θ),

|x′
C − x′

O| = 2R+H0 − 2R sin(θ).

(1)

As mentioned before, all cases discussed here consider that the initial condition is such that the cavity and substrate
are in horizontal position (θ = π/2). From this initial condition, the top roll surface evolves according to Eq. 1, while
the cavity remains fixed. It is clear that the resulting kinematics given by Eq. 1 is a combination of shear (horizontal),
extension (vertical) and rotational velocities of the plate. Another important issue to be considered here is the selection
of the velocity scale for the problem. Because the cavity and plate surfaces have the same tangential velocity, Vt = ωR
does not represent a correct scale at all for the filament stretching, but a more appropriate velocity scale is the stretching
vertical velocity at which those surfaces separate. It is very easy to show that this vertical velocity scale is given by
VE = Vt

√
2(Lb/R− (Lb/R)2) (Dodds, 2011). In the above expression, Lb represents a breakup length, i.e. the vertical

distance between the plate and cavity at which the liquid filament breaks. Simulations performed in both Dodds et al.
(2009) and in this work show that Lb ∼ 5δ, being δ the depth of the cavity, which will be used as the length scale. Typical
values of the above magnitudes in gravure printing systems are Vt = 10m/s, δ = 10µm and R = 10 in = 0.254m.
Thus, VE ∼ Vt

√
10δ/R ∼ 0.2m, that is, two orders of magnitude smaller that Vt. Thus, by selecting VE , δ and δ/VE as

scales of velocity, length and time, respectively, the dimensionless expression for the plate velocity is

Vw(x, t) = [−2ωbRb cos
2(θ)− 2ωpy + ωpyC ]i+ [−2ωbRb cos(θ) sin(θ) + 2ωpx− ωpxC ]j, (2)

In Equation 2, Vw, x, y, xC , yC and θ = ωbt + θ0 are now redefined dimensionless quantities, while VE =
Vt

√
10/Rb, wb = ωδ/VE , ωp = ωrδ/VE and Rb = R/δ.

In cases when Rb ≫ 1 and because θ ∼ π/2, which implies that cos2(θ) ≪ cos(θ) sin(θ), Eq. (2) can be simplified
to

Vw(x, t) = −2ωbRb cos(θ)j. (3)

In summary, for cases when the roll size R is much bigger that cavity size δ, the kinematic of the system can be
approached as a pure extensional motion given by Eq. 3. Note that this limiting case can be recovered from Eq. 2 by
simply doing ωp = 0; this characteristic will be used in the results to compare the pure extensional case from the general
cases including extension, shearing and rotation.

2.2 Flow equations and boundary conditions

The differential equations and the appropriate boundary conditions that describe this transient, free surface flow with
contact lines are presented in this section. The flow domain and the relevant geometric parameters are shown in Fig. 2.
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Figure 2. Sketch of the domain and geometric parameters.

The geometry in the figure represents the cross section of a groove (also called plane cavity in this work) engraved on the
gravure roll. This case is the preferred option when continuous patterns (such as tracks of an electronic circuit) must be
printed, because it gives better continuity and uniformity (see for example Pudas et al. (2004b,a); Lee et al. (2010b,a)).

The flow domain consists of a plane liquid bridge of a Newtonian liquid with density ρ, viscosity µ and surface tension
σ, formed between the cavity and the plate. The surrounding gas phase has negligible density and viscosity (relative to
the liquid properties) and a constant pressure p0 = 0 which is set as reference. At t = 0 we consider the system in
equilibrium, then the free surface is a static meniscus between the cavity and plate with static contact angles θc and θp,
respectively. Quantities xi

c and xi
p represent the contact lines positions along the cavity and plate respectively, with i = l

denoting the left and i = r the right contact lines.
Using the dimensionless variables defined in the preceding section, the Navier-Stokes equations are:

Re(Dv/Dt+ Ff ) = −∇ ·T+ Stg

∇ · v = 0
(4)

In Eq. 4, T = −pI+(∇v+∇vT ) is the total stress tensor (I being the identity tensor), Re = ρδVE/µ is the Reynolds
number and St = ρgδ2/(VEµ) the Stokes number. The term Ff represents the fictitious inertial forces coming from the
fact that we are using a non-inertial frame F2, which is translating and rotating attached to the cavity.

Along the free surfaces, we consider the liquid is free of impurities and the interface is surfactant-free, i.e. the surface
tension is assumed constant. Therefore, the capillary forces that enters in the stress boundary condition for the momentum
equations will have only normal component given by

nfs ·T =
κ

Ca
nfs, (5)

where Ca = µVE/σ is the capillary number and κ the mean curvature of the free surface given by κ = −∇s ·nfs. In the
above expression, ∇s = (I− nn) · ∇ is the surface gradient operator.

At the moving plate and cavity surfaces, because the contact lines slip along them, we must introduce some approxi-
mation or model to overcome the stress singularity at the contact lines (Huh and Scriven, 1971). As done by Dodds et al.
(2009), Navier’s slip boundary condition is used and a prescribed constant contact angle between the liquid interface and
solid walls is imposed:

(nw ·T) · tw = 1/β(tw · (v − vsurf )); nw · nfs = cos(θi); i = c, p (6)

In Eq. 6, β is the dimensionless slip coefficient, as defined in Lamb (1975), and vsurf is the velocity of the solid
surface. When small, β is a good measure of the length along the surface where the fluid shows a significant slip.
Away from the contact line, the fluid velocity quickly approaches the surface velocity (no-slip boundary condition). Both
surfaces are considered impermeable:

v · nw = 0, on cavity wall;

(v −Vw) · nw = 0, on the moving plate.
(7)

Because the above flow equations and boundary conditions must be solved in a domain that is moving and deforming
with time, the domain itself must be calculated as part of the solution. Then, the coordinates of the computational nodes
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are introduced as new unknowns. We consider a computational mesh that always adjusts to the fluid domain and its
boundaries (interface, moving and fixed solid surfaces). To achieve this, we consider the mesh as a fictitious elastic
solid which deforms in response to boundary loads. As the mesh deforms, the interior nodes moves like particles of a
compressible elastic material, while the boundary nodes move to track the boundaries of the problem. This is the so called
ALE (Arbitrary Lagrangian Eulerian) mesh motion formulation (Hughes et al., 1978), because while some nodes move
like fluid particles (typically the boundary nodes) others move with arbitrary velocities following some physical criteria
or equations to minimize mesh distortion.

Following Cairncross et al. (2000), we consider that the motion of the interior nodes of the domain is governed by a
quasi-static momentum equation:

∇ · S = 0,

S = λseI+ 2µsE,
(8)

where S is the Cauchy stress tensor in the pseudo-solid which is related to the deformation field through a Hookean
constitutive equation. In Eq. 8, λs and µs are the Lamé constants of the pseudo-solid, E is the Eulerian strain tensor and e
the volume strain. One important issue introduced by Cairncross et al. (2000) was the use of a finite Eulerian strain tensor

E =
1

2

[
∇d+∇dT −∇d · ∇dT

]
=

1

2

[
I− F−TF−1

]
, (9)

where d = x−X is the displacement field, x are the current coordinates of the nodes at time t (to be calculated), X are the
coordinates of the fixed free-stress reference state and F = ∂x/∂X = I+∂d/∂X is the Lagrangian deformation gradient
with respect to the undeformed reference state. Finally the volume strain is e = 3(det(|F |1/3) − 1), which reduces to
tr(|∇d|) for small displacements. As discussed in Cairncross et al. (2000), the use of a finite strain tensor results in
important improvements on the mesh quality, especially when it experiences large deformation and rotation as in the
present work. We have compared solutions using both the small displacement and finite displacement versions of the
strain tensor. The use of Eq. 9 minimized mesh distortion, therefore decreasing the number of times that computationally-
expensive re-meshing procedure have to be implemented.

To solve Eq. 8 two type of boundary conditions are used. The first is a kinematic condition that relates the velocity of
the computational nodes with the velocity of fluid particles. This boundary condition is used along moving surfaces, such
as the interface and the moving plate, i.e.

nfs · (v − ẋ) = 0, at free surfaces;

nw · (v − ẋ) = 0, at moving plate.
(10)

In the above expressions ẋ represents the velocity of the computational nodes and v the fluid velocity on that boundary.
The second type of boundary conditions imposed on Eq. 8 are equations that describe the shape of given surface. For
example, along the cavity wall, the nodal coordinates must satisfy (Dodds et al., 2009):

y = f(x) = −1

2

[
1− tanh

(
|x| − rc

rs

)]
, along the cavity wall (11)

In Eq. 11, rc represents the width of the cavity, measured at y = −δ/2 (in dimensional units), and is used to control
the aspect ratio. In addition, rs is a parameter that controls both the curvature of the corners and the steepness of the
cavity wall. Sharp corners and steep cavity walls are obtained using small values of rs. All quantities in Eq. 11 are made
dimensionless with the cavity depth δ.

3. NUMERICAL SOLUTION

The numerical technique used to solve the system of differential equations and its boundary conditions was inpired by
techniques that have been used successfully to solve others fluid flow problems involving interfacial dynamics. The main
ideas were taken from the works of Ubal et al. (2012); Sprittles and Shikhmurzaev (2012); Cairncross et al. (2000), in
which a detailed description of the procedure to obtain the weak formulation of the governing equations is presented. Dif-
ferent numerical approaches discussed in the aforementioned works were combined here to construct a robust numerical
tool to solve the transient free surface flow with moving contact lines; they are commented on below.

Unstructured meshes of triangles were used to tesellated the flow domain. All boundary conditions were enforced
using Lagrange’s multipliers, as described in Sprittles and Shikhmurzaev (2012) and Ubal et al. (2012). Bi-quadratic
interpolating functions were used to expand the velocity, pseudo-solid displacement and (nodal coordinates) and the
Lagrange’s multipliers associated with each boundary condition; bi-linear continuous basis functions were used to expand
the pressure field, resulting in the well known six nodes P2P1 triangular elements.
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An implicit second order time integration scheme with adaptive time step was implemented. The resulting set of
non-linear equations was solved using Newton’s method, with the Jacobian matrix updated at each Newton’s iteration to
improve the convergence. In each time step, all variables were calculated simultaneously. This is a very important aspect
in viscous free-surface flows, because this type of monolithic schemes shows better convergence and stability properties
when compared with others decoupled or semi-implicit numerical procedures (Christodoulou and Scriven, 1992; Campana
et al., 2007).

The model was implemented in the commercial finite element software COMSOL Multiphysics (COMSOL Multi-
physics, 1998-2013). The element size in different regions of the flow domain was controlled to assume the accuracy of
the solution. Special care was taken near the contact lines and regions of high surface curvature. Near the contact lines,
the difference between the computed θc and the imposed contact angle θ (∆θ = |θ − θc|) was used as a measure of the
solution accuracy, as suggested by Sprittles and Shikhmurzaev (2012). The element size near the contact line was adjusted
during the computations, such that ∆θmax ∼ 3%. Besides controlling the element size near the contact line, several mesh
tests were also performed to verify that the solutions presented here are mesh independent.

As the liquid bridge is highly deformed during the liquid transfer process, the elements becomes distorted during
calculation, compromising the solution accuracy. To control the overall mesh quality a parameter directly related to the
aspect ratio of each element is computed. Whenever this control parameter becomes below a critical value, the solution
stops. At this point, the last converged solution is used to define a new geometry, which is then tessellated into a new,
high-quality mesh of triangles. The last converged solution is interpolated on the new mesh and the time integration
resumes. The simulations here conducted typically required between 9 and 14 re-meshing stages before achieving the
breakup time. There is an inherent error in each geometry re-construction and further re-meshing stage. The total volume
of liquid bridge was used as a control variable to verify the error associated with the re-meshing and interpolation steps.
The maximum total variation of the volume between the initial and breakup times was always below to 0.1% (in most
cases, it was around 0.01%). The linear system on each Newton’s iteration was solved using direct solvers like PARDISO
(Schenk and Gärtner, 2004), which ensured converged solutions in 3 or 4 Newton’s iterations when using an appropriate
initial guest.

4. RESULTS

4.1 Validation and selection of a base case

To validate our model and numerical method we first solve a similar model to just described, but for an axisymmetric
trapezoidal cavity. When the moving plate was moved with a constant vertical velocity, our results reproduced those pre-
sented by Dodds et al. (2009). We compared interfacial shapes, contact line positions and the liquid fraction ϕ efectively
transferred to the plate, finding an excellent agreement with values reported by Dodds et al. (2009). These results are not
included here for brevity.

Before presenting a parametric study, a base case (BC) must be selected. The base case parameters where chosen con-
sidering typical values of operating conditions, geometric parameters and liquid properties. By taking ρ = 1000Kg/m3,
µ = 0.01Pa s, σ = 0.05N/m, R = 6 in = 0.1524m, δ = 10µm, Vw = 10m/s, the corresponding dimensionless
parameters values are Rb = 15240, ωb = 0.0025, Ca = 0.05, Re = 0.25, St ∼ 10−4. For simplicity we have set
Ca = 0.1, Re = St = 0. While the inertial effects can have impact on the flow, as shown by Dodds et al. (2011), we have
limited our analysis to Stokes flow and focus it on the effects of other parameters. By setting Re = 0, the fictitious inertial
forces resulting from the use of a non-inertial frame of reference can be neglected (see Section 2.2). In the base case, the
cavity geometry was the same one used in Dodds et al. (2009), e.g. rc = 0.8 and rs = 0.3. The contact angles were set at
θc = θp = 70o. The initial gap H0 between the plate and the top boundary of the cavity (x = 0) is also a parameter and it
was set to H0 = 0.03 for all cases. This a reasonable value to avoid extremely thin gaps at initial times and also to avoid
the contact between the ends of the plate and the top surface of the cavity when the plate is under rotation. Because we
cannot follow the evolution up to the filament breakup itself, a termination criterion for the simulation must be defined.
The runs were stopped when the minimum bridge thickness was less than 0.03 and this instant was taken to be the breakup
time tb.

The slip parameter β is very important in the model and its effect was explored in several tests. As summary, values of
β > 10−2 led ussually to an unrealistic large slip region near the contact line, while β = 10−4, led to a strong boundary
layer near the contact lines and very small contact line velocities, which required and extremely fine mesh. Therefore, all
predictions presented were obtained with β = 10−3; with this value the slip region was confined to a small area close the
contact line and outside it, the velocity was virtually zero (i.e. no-slip condition).

4.2 Effect of the cavity aspect ratio and roll radius

In this section we analyze the effect of the cavity width and roll size in the liquid transfer process, when the top surface
velocity corresponds to the expression that describes the full roll-to-roll kinematics (see Eq. 2). Predictions are shown

ISSN 2176-5480

10164



22nd International Congress of Mechanical Engineering (COBEM 2013)
November 3-7, 2013, Ribeirão Preto, SP, Brazil

0 2 4 6 8

x 10
−3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ω
p

φ

 

 

r
c
 = 0.4

r
c
 = 0.8

r
c
 = 1.6

Figure 3. Liquid volume fraction transferred to the moving plate in function of the kinematic parameter ωp and the cavity
aspect ratio. Lines were obtained by linear regression.

for two values of dimensionless roll radius, e.g. Rb = 15240 and 2540. Considering a cavity depth δ = 10µm, these
values correspond to rolls radius of R = 6 and 1 in, respectively. The first value is a typical roll radius in gravure printing
systems, while the second is representative of micro-gravure printing applications (Lee et al., 2010b). As the roll radius
Rb falls, the curvature of the roll begins to be comparable to the cavity size and consequently, the rotational and lateral
velocities become more pronounced. To evaluate this effect, three different cases were studied: (i) pure stretching motion
with Rb = 15240, ωb = 2.5×10−3 and ωp = 0 (plate velocity given by Eq. 3); (ii) complete plate kinematics (Eq. 2) with
Rb = 15240, ωp = ωb = 2.5 × 10−3; and (iii) complete plate kinematic with Rb = 2540 and ωp = ωb = 6.27 × 10−3.
Note that the dimensionless rotation speed changes, even though the dimensional rotation was kept constant. This is
associated to the change in the roll radius, because ωb and ωp both scale with 1/R

1/2
b . With respect to the cavity aspect

ratio (or size), the values explored were rc = 0.4, 0.8 and 1.6, while rs was kept constant, e.g. rs = 0.3. The initial level
of liquid at t = 0 was the same for all the conditions explored. This implies that the initial liquid meniscus between the
plate and the cavity will be formed at different horizontal positions (x-coordinates) but at approximately the same position
relative to the exterior corner. This is important to get comparable results, because the contact line mobility depends on
the wall slope (curvature).

Figure 3 shows the volume fraction ϕ as a function of the parameter ωp and for different cavity sizes rc. The results
show that wider cavities are easier to empty, because ϕ always increases with rc; the following discussion explain this
result. The breakup of the liquid filament is controlled by two time scales. One is the time it takes the filament to thin
up to the breakup limit, which is of course related with its initial thickness. The other is the time required for the contact
lines to move along the cavity wall, which is related to the wettability properties (i.e. slip coefficient and contact angle)
and the slope and curvature of the wall. Since the contact angles and the wall slope were constant in these simulations,
the breakup is only controlled by the initial thickness. Thus, a wider initial filament thickness (wider cavity) allows the
contact lines to move inside the cavity a longer distance before the breakup occurs and thus more liquid can be removed
from it. Figure 4 depicts the free surfaces at breakup for all cases presented in Fig. 3.

The results also show that for a given geometry the volume of liquid transferred to the plate rises with ωp, which is
a function of roll angular velocity and radius. Higher values of ωp are associated to higher angular velocity and smaller
roll radius. Figure 4 shows how the twist and lateral displacement of the plate when ωp ̸= 0 results in an non-symmetric
motion of the contact lines: while the left contact line moves outside the cavity the right contact line goes deeper into it,
promoting a better emptying. For rc = 0.4 and 0.8, there is a direct relation between the positions of the contact lines
and the plate at the breakup to the parameter ωp. As ωp rises, the configuration of the filament at the breakup shows both
contact lines shifted to the left of the cavity and the plate further away from the cavity. The increased lateral displacement
and rotation of the plate promotes the lateral displacement of the contact lines, which helps removing liquid from the
cavity but also delays the breakup. With a wide cavity (rc = 1.6) the behavior is not monotonic. The breakup at the
higher value of ωp (ωp = 6.27 × 10−3) occurred faster, consequently the plate position at the breakup is closer to the
cavity.

ISSN 2176-5480

10165



D. M. Campana, M. S. Carvaçho
Liquid transfer in gravure printing applications

−1 0 1
−1

−0.5

0

0.5

1

1.5

2

2.5

3

x

y

 

 

(a)

t
b
=4.52

t
b
=4.72

t
b
=5.02

−2 0 2
−1

0

1

2

3

4

5

6

x

y

(b)
 

 
t
b
=5.27

t
b
=6.21

t
b
=7.37

−2 0 2
−1

0

1

2

3

4

5

6

7

8

x

y

(c)
 

 
t
b
=8.02

t
b
=8.83

t
b
=8.49

Figure 4. Free surfaces at breakup instant for the three cavity sizes: a) rc = 0.4, b) rc = 0.8 and c) rc = 1.6. On each
graph, the solid line correspond to ωp = 0, dashed line to ωp = 2.5× 10−3 and dot dashed line to ωp = 6.27× 10−3.

4.3 Effect of Ca number

The liquid fraction ϕ is plotted in Fig. 5 as a function of capillary number and for the same parameters used to define
the BC. For comparison purposes, the predictions for pure stretching (ωp = 0) and experimental results obtained by Yin
and Kumar (2006) and Chuang et al. (2008) are also included. The predictions for pure extensional motion, i.e. ωp = 0,
present a monotonic behavior showing that the liquid volume transfer ϕ rises with capillary number. This behavior is the
opposite of those observed experimentally by Yin and Kumar (2006) and Chuang et al. (2008). By contrast, predictions
obtained with the complete plate kinematics presents a strong non-linear behavior, with local maximum and minimum
points. This is due to the different responses of filament stretching dynamics and contact line pinning with capillary
number, that can be understood by analyzing the evolution of the interfaces up to the breakup time for different cases,
as in Fig. 6. The sequence of interfacial configurations does not correspond to the same times in all cases, but they was
selected appropriately on each case to better describe the evolution.

The interface evolution at Ca = 0.01 is presented in Fig. 6-a. Because of the plate rotation, the radius of curvature
of the left meniscus is smaller than the radius of curvature of the right interface. The curvature difference sets a strong
pressure gradient that drives liquid towards the left. This lateral capillary pumping action drives liquid out of the cavity
before the filament becomes elongated and the capillary action, that drives liquid from the middle of the filament towards
the plate and cavity, becomes strong. Most of the filament stretching motion occurs with both contact lines out of the
cavity; thus, the dynamics is roughly the same as a filament stretching between flat plates, studied by Dodds et al. (2009).
Despite the fact that the plate is under rotation relative to the cavity, the liquid fraction is ϕ = 0.5. This is because
the liquid has almost any preference to flow towards the plate or cavity. Three dimensional calculations of Dodds et al.
(2012) of filament stretching with a rotating upper plate have shown that is necessary a high angular velocity to break the
symmetry of the liquid transfer.

To the best of our knowledge, this is the first time that such behavior is captured with numerical simulations. It was
only possible because the model considers the complete kinematics that fully describes the relative motion between the
substrate and the cavity, which includes extension, shearing and rotation. The low capillary number associated with the
plate movement allows the development of a lateral capillary pumping that is strong enough to pull liquid out of the cavity.
Although, at slightly different conditions and kinematics, this lateral capillary pumping was experimentally observed by
Yin and Kumar (2006). In their experiment, a curved top surface is slide horizontally over a cavity filled with liquid. The
configuration of the interface when the liquid first touches the curved plate depends on the liquid level and the gap between
the cavity and plate. For a zero gap situation, and a liquid level at the top of the cavity, a very thin asymmetric meniscus
is formed with strong curvature difference between the left and the right side of the liquid bridge. At that conditions, they
have observed a rapid liquid flow out of the cavity. In situations at which the curvature difference is not significant they
did not observe such behavior. This process is similar to the one described in our numerical results, with the difference
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Figure 5. Mass fraction transferred to the substrate versus capillary number Ca. The other parameters correspond to the
BC. Y&K: Experiments by Yin and Kumar (2006). C&al: Experiments by Chuang et al. (2008).

that here the curvature gradient is created by the imposed plate kinematic.
At first the liquid fraction ϕ rises with the capillary number, reaching ϕ = 0.58 at Ca = 0.025. The evolution of the

interface at this capillary number is show in Fig. 6-b. The dynamic is very similar to the one just described but with one
important difference. Because the capillary forces are weaker (higher Ca), the pressure gradient that drives liquid out the
cavity is smaller and this reduces the contact line velocities. As a result, when the filament begins to thin, the left contact
line is outside the cavity, but the right contact line is still inside and becomes pinned at the corner of the groove during
most of the filament extension. This asymmetry moves the breakup plane closer to the cavity, leading to a larger liquid
volume transferred to the top plate.

From Ca = 0.025 to Ca = 0.15, the liquid fraction ϕ falls as capillary number rises. Figure 6-c shows the interface
evolution at Ca = 0.05. The process is again similar to that at Ca = 0.025, but now the contact lines speeds are lower
because of the weaker capillary forces. When the liquid bridge starts to thin down, the left contact line is near the corner
of the groove and the right contact line is still near of the bottom surface of the cavity. The restricted movement of the left
contact line causes the pinch off to occur closer to the top plate, leading to a smaller ϕ. The minimum value of ϕ occurs
at Ca = 0.15, whose interface evolution is shown in Fig. 6-d. The capillary force is not strong enough to pump liquid out
of the groove. Then, both contact lines remain inside the cavity during the entire process until breakup.

At even higher capillary number, e.g. Ca = 0.5 in Fig. 6-e, the contact lines at the top and bottom surfaces have very
low mobility during the entire process. Thus, the wetted area on the top plate is considerably higher when compared to
previous cases and, therefore, the volume of liquid attached to the top plate. As result, ϕ shows a local maximum. Finally,
for Ca = 1 in Fig. 6-f, the contact lines are virtually frozen and its displacements is negligible during all the simulation.
Although this produces an even higher wetted surface on the upper plate, less liquid is removed from the cavity and the
fraction ϕ presents a small decrease.

We do not know experiments on liquid transfer from grooves available in the literature. As mentioned before, we
have include data from Yin and Kumar (2006) and Chuang et al. (2008) to use as basis for comparison, even though their
experiments do not correspond directly to the problem analyzed in this section. Yin and Kumar (2006) used a trapezoidal
cavity with aspect ratio rc = 1.2. They studied the liquid transfer not to a rotating cylinder, but to curved plate that was
slide over the top of the cavity. They found that the liquid fraction ϕ was virtually constant at ϕ = 0.5 for Ca < 5×10−3,
and decreased monotonically for 5 × 10−3 < Ca < 5 × 10−2. Figure 5 only presents the data in the range we have
explored with our model. Chuang et al. (2008) work with trapezoidal cells with an aspect ratio rc = 0.83 and used a
rotating roll over the cavity to remove the liquid from the cell, i.e. the same kinematic we have used in our analysis.
However, it is important to note that they used cells in the order of millimeters and inertial and gravitational effects may
become important; moreover, the parameter Rb ∼ 170 was much smaller than the one used in our analysis. They found
that ϕ falls as capillary number rises in the range explored.

Despite the differences in the imposed kinematics and geometrical parameters, the predictions show the same general
trend of the experiments. It is important to note that the predicted increase of ϕ at 10−2 < Ca < 2× 10−2 is small and it
would be very hard to capture experimentally. Unfortunately, we are not aware of experimental data of liquid fraction ϕ
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Figure 6. Free surface evolution along the emptying of the cavity for (a) Ca = 0.01, (b) Ca = 0.025, (c) Ca = 0.05 and
(d) Ca = 0.15, (e) Ca = 0.5 and (f) Ca = 1.0.
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at higher capillary number to validate the predicted change of behavior of ϕ as a function of Ca. Predictions obtained by
considering only the extensional motion, such as those presented by Dodds et al. (2009) and here (with ωp = 0 in Fig. 5)
has the opposite behavior, i.e. ϕ rises with capillary number. However, the rotation and lateral components of the relative
motion between the substrate and cavity completely changes the dynamics of the interface deformation and, consequently,
the amount of liquid transferred to the substrate.

5. Final remarks

The fundamental aspects of gravure printing can be better understood by analyzing the liquid transfer from a cell or
groove to a rotating roll. In order to verify the effect of the kinematic on the dynamics of the process, we have used the
complete description of motion between the substrate and a groove, which consider extension, shearing and rotation. The
results show that the kinematic has a tremendous effect on the interface deformation and contact line displacements.

From an application point of view, the results considering the complete kinematics show that capillary number, i.e.
liquid viscosity and substrate speed and the roll radius, have all a very strong effect on the process. When printing is
performed at low capillary number, the contact lines are very mobile and a strong lateral capillary pumping action is
created. This pumping is produced by the lateral and rotational motion between the surfaces, which promotes different
curvatures between the right and left interfaces and a strong pressure gradient. This effect only can be observed when
a complete kinematic is introduced in the model. Approximately 50% of the liquid is transferred to the substrate and,
because of the lateral pumping, all liquid is removed from the cavity. The liquid not transferred to the substrate remains
on the neighboring land to the cavity. As an unwanted effect, because the high contact line mobility, the printed pattern
may be distorted and loss of registration may also occur. The lateral displacement of the printed pattern could be controlled
by special substrate treatments to promote contact line pinning even at low capillary number, as suggested by Darhuber
et al. (2001).

By contrast, printing at high capillary number has the advantages of a lower mobility contact lines, which lead to less
distortion in the transferred image and better registration. This conclusion agrees with the experimental observation of
Darhuber et al. (2001), which show that higher ink viscosity and extensional velocity between the surfaces avoid unwanted
lateral ink redistribution during the printing. The lower transferred liquid fraction observed at high capillary number could
be controlled by using smaller diameter rolls, which promotes a better liquid emptying.

Finally, the results show that use an accurate kinematic description with shearing and rotation could be only necessary
at low capillary numbers, when the lateral displacement of the contact lines can be important. At high capillary number,
the transferred liquid fraction is mainly controlled by the stretching and a simpler extensional motion is apparently enough
to get reliable predictions. However, new experiments are needed to verify the numerical results here presented.
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