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Abstract. In this paper, it is suggested a numerical assessment for the Extended GTN model, which is based on the 

micromechanical of defects and applied to predominant shear loading conditions. In the first part, theoretical aspects 

of the GTN model and the extended GTN model are discussed. Furthermore, it is presented an implicit numerical 

integration algorithm for the extended model, which is based on the operator split methodology and implemented in an 

academic finite element development. In the second part, numerical tests are carried out regarding the classical GTN 

model and the Extended GTN model, using shear specimens under pure shear, combined shear/tension and combined 

shear/compression loading conditions. Aspects as the evolution of the effective damage parameter, evolution of the 

equivalent plastic strain, the reaction curve, the level of displacement at fracture and ability to predict the correct 

fracture onset are available. 
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1. INTRODUCTION 
 

DUCTILE FRACTURE IN METALS is an important subject to be improved in order to predict the correct location 
of crack initiation in machine components and rupture in general structures. The fracture phenomenon can be studied by 
its separated evolution contribution as the initiation and growth of general micro defects which is induced by large 
deformations. Some researchers like  McClintock (1968) and Rice & Tracey (1969) developed pioneering work 
undertaken on the subject, where the nature of defect was taken into account the study of ductile damage by analyzing 
its geometry in a continuous matrix.  

The formulations proposed by Lemaitre and Gurson are the most important coupled damage ductile models to 
describe the above two methodologies (see Chaboche et al., 2006). Since then, motivated by the limitations of these 
classical models, such as in prediction of the correct fracture location or in determination of the correct values of the 
internal variables at fracture, many researchers have proposed improvements in both methodologies, by introducing 
more effects in the constitutive formulation or  in the damage evolution law  like the pressure effect, temperature, Lode 
angle dependence, visco-plastic effects, crack closure effect, shear mechanisms, among others (Tvergaard & 
Needleman, 1984; Rousselier, 1980 and 2001; Xue, 2007; Nahshon & Hutchinson, 2008; Lemaitre & Chaboche, 1990; 
Chaboche, 2003; Andrade Pires et al., 2003; Chaboche et al., 2006 ; Besson, 2010; Mirone et al., 2010; Li et al., 2011; 
Stoughton et al., 2011; Khan et al., 2012). 

These classical coupled damage models have the ability to predict the correct fracture location under a specific 
range of stress triaxialities (see Xue, 2007; Nahshon & Hutchinson.; 2008; Teng,  2008; Brunig et al, 2013) and are 
extremely accurate for loading conditions close to the calibration point (see Malcher et al, 2012). For example, within 
range of high levels of stress triaxialities, where the spherical void growth is the predominant mechanism, the models 
based on Gurson theory, like the Gurson-Tvergaard-Needleman model, have good performance in prediction of fracture 
location and parameters in fracture as equivalent plastic strain and displacement. However, under shear dominated 
loads, where failure is mainly driven by the shear localization of plastic strain of the inter-voids ligaments due to void 
rotation and distortion, the model does not perform well, (see Engelen et al, 2005; Chaboche et al, 2006). 

Motivated by these short comings, in this contribution, a new extension to the GTN model is available , under 
different loading conditions, in order to analysis the ability to predict the correct fracture location and determinate the 
internal parameters at fracture. 
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2. CONSTITUTIVE MODELLING 
 
2.1 Gurson–Tvergaard–Needleman (GTN)´s Model  

 
One of the shortcomings of the Gurson model is the fact that, whatever strain history the material might be 

subjected; no void volume fraction evolution will be predicted if the initial void ratio is zero. Therefore, in order to 
enhance the model, several mechanisms for damage nucleation have been proposed such that voids can nucleate 
depending on the strain history. One of the most well-known nucleation laws was proposed by Chu & Needleman 
(1980) and later used by Tvergaard–Needleman (1984) in the GTN model. The damage evolution is represented by 
three simultaneous or successive mechanisms: nucleation, growth and coalescence of voids. The effective porosity,   ,  
is determined by the following bilinear function: 

    

                            

    
 

  
    

      

       
     

  (1) 

where    represents the critical void volume fraction and    is the void volume fraction at fracture. The effective 
porosity,   , is obtained from both nucleation and growth mechanisms if the void volume fraction is less than the 
critical value,   . The coalescence mechanism becomes active when the void volume fraction is higher than the critical 
value,   . The void volume fraction rate,   , is given by the sum of the nucleation and growth mechanism as: 

             (2) 
       The nucleation mechanism can be driven either by plastic strain or hydrostatic pressure. The definition of the 
nucleation mechanism based on the equivalent plastic strain is given by:  
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where    represents the volume fraction of all particles with potential for microvoid nucleation,    and    are the mean 
strain/pressure for void nucleation and its standard deviation. The variable    represents the equivalent plastic strain and 
  
 
 is the rate of the accumulated plastic strain. The nucleation mechanism only occurs if the hydrostatic pressure is 

greater than zero,    . If the hydrostatic pressure is less or equal to zero,    , the nucleation rate is equal to zero.        
The evolution of the growth mechanism in the GTN model is given by the same expression as the original Gurson 
model (see Gurson, 1977).  
       The yield function of the GTN’s model, which assumes isotropic hardening and isotropic damage, is expressed by: 

               
 

 
      

       
      

    

   
    

     (4) 

where parameters   ,    and    are introduced to bring the model predictions into closer agreement with full numerical 
analyses of a periodic array of voids. 
 
2.2 Shear Mechanism 
 

The original formulation of Gurson based models did not include shear effects, which excludes the possibility of 
predicting shear localization and fracture under conditions of low triaxiality. Under shear dominated loading conditions, 
the distortion of voids and inter-void linking promotes an effective increase in the material internal degradation and 
contributes to the material softening. Therefore, in order to improve Gurson based models predictive ability, under both 
zero and low levels of stress triaxialities, several researchers (Barsoum & Faleskog, 2007a; McVeigh et al., 2007; Xue, 
2008; Nahshon & Hutchinson, 2008; Butcher & Chen, 2009; Lecarme et al., 2011; Stoughton et al., 2011) have 
suggested the introduction of shear effects. The formulation of shear mechanisms, which can be based on geometrical or 
phenomenological considerations, resulted in evolutions laws that include the influence of the third invariant of the 
deviatoric stress tensor, the plastic strain tensor and its rate.  

The shear damage mechanism proposed by Xue (2007) is can be represented in the rate form as: 
 

           
         , (5) 

where    and    are geometrical parameters that can be defined for two or three dimensional problems. For a two 

dimensional problem,    
 

  
 and          and for a three dimensional problem,    

 

 
 
 

 
 
     

 and         . 
 

A modified shear damage expression was later derived by Butcher & Chen (2009) that, contrary to Xue (2008), did 
not perform a Taylor series expansion of the artificial strain and expressed the failure strain with the logarithmic 
definition as: 
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       (6) 

where the parameter   is the ligament size ratio defined for two or three dimensional problems. 
 

2.3 Lode Angle Function 
 
       The shear damage evolutions, which were described for a pure shear loading condition in Section 2.3, need to be 
generalized for arbitrary stress states. This can be accomplished with the introduction of a Lode angle dependence 
function. The Lode angle, which is associated to the third invariant of the deviatoric stress tensor, is an essential 
parameter in the characterization of the effect of the stress state on ductile fracture (Kim et al., 2003 and 2004; Bao and 
Wierzbicki, 2004; Gao et al., 2006; Barsoum and Faleskog, 2007a and 2007b; Bai and Wierzbicki, 2007; Mirone eta l., 
2010; Gao et al., 2009:2011; Stoughton et al., 2011; Brünig et al., 2013). The Lode angle dependence function proposed 
by Xue (2008) is defined by a linear expression of the normalized Lode angle, as: 

           (7) 

where    represents the so-called Lode angle function and    is the normalized Lode angle, expressed by: 

     
    

 
   

 

 
          (8) 

where   represents the Lode angle and   is the normalized third invariant, which is a ratio between the third invariant of 
the deviatoric stress tensor,                

 
   , and the von Mises equivalent stress,            : 

   
 

 
 
 

  (9) 

An alternative Lode angle dependence function as been proposed by Nahshon & Hutchinson (2008), which 
discriminates between uniaxial and biaxial tension and expresses a quadratic relation with the normalized third 
invariant: 

       . (10) 
Expressions (5) and (6) can be used to activate the shear mechanisms, described in previous sections, whenever 

shear effects are present.  

              
          , (11) 

           
 

      
 

    

      
 
        (12) 

 
3.  EXTENDED CONSTITUTIVE FORMULATION 
 

Due to the limitation of Gurson based models, in the prediction of fracture onset under conditions of low stress 
triaxiality or capture Mode II and Mode III of crack initiation, several researchers (Barsoum & Faleskog, 2007a; 
McVeigh et al., 2007; Xue, 2008; Nahshon & Hutchinson, 2008) have proposed the introduction of shear effects (see 
Section 2.3) on the formulation. Although the results obtained with the modified GTN models (Xue, 2008; Nahshon & 
Hutchinson, 2008) have shown improvements in the prediction of damage, it has also been observed (Reis et al., 2011; 
Malcher et al., 2012), that both models have inherent limitations. In particular, the prediction of the location of fracture, 
the displacement to fracture and the equivalent plastic strain to fracture, for combined stress states, is not adequate. 
Therefore, in order to overcome these shortcomings, a new extended GTN model is proposed (Malcher et al, 2013) that 
incorporates a new nucleation law for second-phase particles, the yield surface is modified to include two distinct 
damage mechanisms (volumetric void growth and shear damage), a modified Lode angle dependence function is 
introduced and a new criterion for coalescence is proposed. 

 
3.1 Nucleation mechanism 

 
The extended GTN model, proposed by Malcher et al (2013), incorporates two independent nucleation 

mechanisms. The first one, which is the conventional nucleation mechanism of the GTN model, triggers the evolution 
of the void volume fraction. The second triggers the evolution of the shear mechanism. The activation of these 
nucleation mechanisms under pure volumetric and shear conditions is relatively straightforward to establish. 
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Nevertheless, under arbitrary stress states that may include combinations of tensile/shear or compressive/shear is not so 
easy to define. It is necessary to couple both mechanisms and also establish their relative magnitude, as:        

          
  

     
     

 

 
 
 
 
   
  

 

 

   
 
  (13) 

 

      
  

  
    

     
 

 
 
 
 
   

 

  
  

 

   
 
  (14) 

Under pure tensile loading conditions, the function    is equal to zero and only primary nucleation of voids occurs 
(Equation 13). For pure shear loading conditions, the function    is equal to one and only secondary nucleation occurs 
(Equation 14). For combined tensile/shear stress states, both mechanisms are active and the Lode angle function defines 
the relative importance of each component. Finally, if a combination of shear/compressive conditions is present there is 
no nucleation of primary voids and secondary nucleation takes place with the function    defining the relative 
magnitude. 

 
3.2 Incorporation shear effects 

 
In contrast with original approach, Malcher et al (2013) have proposed the use of two separate damage variables. 

The first one is the evolution of the void volume fraction employed in the GTN model, rewritten here with appropriate 
modifications, as: 

                 
  

     
     

 

 
 
      
  

 

 

              
 
  (15) 

       The second variable is the evolution of damage due to shear effects, which is defined by an independent scalar 
variable, as: 

           
        

  

  
    

     
 

 
 
 
 
   

 

  
  

 

          
       (16) 

where    represents the evolution of the shear damage variable,     represents its nucleation, which was introduced in 
Equation (14), and         is the evolution of shear effects that can be defined based on geometrical considerations (see 
Equations (11) and (12)) or phenomenological considerations (Nahshon & Hutchinson, 2008). The parameter    is a 
numerical constant, calibrated for each specific material, which defines the magnitude of the damage growth rate in 
shear. 
       The extended GTN model proposed here has two scalar damage variables: a volumetric damage component 
characterized by the void volume fraction,  , and a deviatoric damage component described by shear damage,  . Each 
of these variables will be coupled with a specific component of the stress tensor: the hydrostatic pressure,  , will be 
related with the void volume fraction,   and the deviatoric component of the stress tensor,  , will be associated with the 
shear damage variable,  . The yield function of the model is therefore, defined by the following equation: 
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       In Box 1, the basic constitutive equations and evolution laws for the internal variables and damage are summarized: 
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Box 1. GTN’s extended modified model including nucleation, growth and shear effects. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. NUMERICAL INTEGRATION ALGORITHM 
 
       In this section, the numerical solution strategy adopted to perform the numerical simulations is summarized. 
Algorithms based on operator split methodology are especially suitable for the numerical integration of the evolution 
problem and have been widely used in computational plasticity (see Simo & Hughes, 1998; De Souza Neto et al., 
2008). The overall algorithm for numerical integration is summarized in Box 2. 
 

 

 

 

 

 

        

        

           
  

   
 
 

 
      

           
    

   
    

  

        

      
  

  
 

         
  

     
     

 

 
 
      
  

 

 

              
  

     
  

  
    

     
 

 
 
 
 
   

 

  
  

 

          
 

            
      

        

 
 
 

 
    

   
 
                                                    

 

      
 

  
 

    
  
                                             

  

    

                                                         

                                                              
  

(i) Elasto-plastic split of the strain tensor 

(ii) Elastic law 

(iii) Yield function 

(iv) Plastic flow and evolution equations for  ,   and   

where, 

 

and, 

  
 
  

 

 
          

   
 
         

 
(v) Loading/unloading criterion 
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Box 2. Fully implicit Elastic predictor/Return mapping algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

              
  

     
     

 

 
 
     
 

   
  

 

 

      

                             
       
   

  

   
  

             
                  

       
   

 

 
 

 
           

              
       
   

    

(i) Evaluate the elastic trial state: Given the incremental strain     and the state variables at   : 
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(ii) Check plastic admissibility: 

IF        
  
     

      
      

 

 
         

              
          

       
     

   
          

      
 
   THEN  

Set              
       (elastic step) and go to (v) 

ELSE go to (iii) 
(iii) Return mapping (plastic step): Solve the system of equations for   ,    ,    ,      and      
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Box 2. Fully implicit Elastic predictor/Return mapping algorithm (continue). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. NUMERICAL RESULTS 

 
For a consistent analysis of the proposed formulation at low level of stress triaxiality, some numerical tests are 

performed using the butterfly specimen and the implicit algorithm suggested in above sections. Three different loading 
conditions are taken as: pure shear, shear/tensile and shear/compression, and two materials as: aluminum alloy 2024-
T351 and steel 1045. The performance of some parameters as equivalent plastic strain and displacement at fracture as 
well as the ability to predict the correct fracture location are evaluated. At the end, the numerical results determined by 

          
  

  
     

     
 

 
 
     
 

   
 

  
  

 

      

       

 

 
 
 

 
         

  
 

        
 
       

        
 

                                                               

        
 

 
        

  

      
 

      
 

        
       

                                   

  

              
   

  

 
 
 

 
 
 
 

 
    

  
  
 

 
 

              

 
 

 
    

  
  
 

 
 

              

  

(iv) Update the others state variables: 

    
      

           
    
     

    
    

      
          

 
 

 
               

       
   

    

     
    
     

    
    

      
  

 

                

        
 

 
 

    
          

     

    
    

      
  

 

        
 

 
 

 
                

       
   

  

 

  

     
 

      
       

       

(v) Exit 
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the new formulation are compared with results obtained by other shear mechanisms as Xue (2008) and Nahshon & 
Hutchinson (2008). Tables 1 and 2 contain the properties found by Malcher et al (2013) for the proposed model using 
an optimization method based on a multi-objective function. 

Table 1: Materials properties for aluminum alloy 2024-T351: (            ,       ,       ,     , 
        and       ). 

                 
    

             

0.04 0.2 0.1 0.060 0.08 0.15 0.10 1.0 0.08 0.0012 

 

Table 2: Materials properties for steel 1045: (             ,       ,       ,     ,         and 
      ). 

                 
    

             

0.05 0.2 0.1 0.076 0.10 0.15 0.10 1.0 0.16 0.0009 

 
5.1 Geometry and mesh definition 
 

Regarding the numerical tests, a butterfly specimen was used, and the specimen was initially designed by Bai 
(2008) and the geometry and general dimensions can be verified by Figure 1. 

 
Figure 1. The geometry for butterfly specimen. Dimension in (mm). Taken from Bai (2008). 

 
       In this case, a three dimensional finite element mesh of 3392 twenty nodded elements, with nine Gauss integration 
points, is used amounting to 17465 nodes (see Figure 2). 
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Figure 2. Finite elements mesh for butterfly specimen. 
 
5.2 Evolution of equivalent plastic strain and damage parameters 
 

The experimental results obtained by Bai (2008), which will be used as reference for comparison, are listed in Table 
3. In particular, the displacement at fracture,   , the equivalent strain at fracture,    , and the location of crack initiation 
are listed for each loading condition and material. 

 
Table 3: Reference values for different loading scenarios of two materials. 

 

Angle 
Aluminum alloy 2024-T351 Steel 1045 

       Fracture location        Fracture location 

0° 0.70 0.22 Surface of the critical zone 1.03 0.50 Surface of the 
critical zone 

10° 0.50 0.26 Middle of the critical zone 0.42 0.36 Middle of the 
critical zone 

-5° 1.00 0.22 Surface of the critical zone 1.71 0.60 Surface of the 
critical zone 

 
       Based on numerical results presented, we can conclude that the new formulation has the ability to predict the 
correct moment to crack formation by appropriately calibrating the numerical constants and parameters of the model. 
Both the equivalent plastic strain and the displacement, calculated by present formulation, are in close agreement with 
the experimental data for both loading conditions and materials applied (see Table 4 and Table 5). 
 

Table 4: Numerical results for butterfly specimen using 1045 steel and different loading conditions. 

Angle 
Experimental data Numerical results 

                             

0º 1.03 0.50 

0.5 1.03 0.516 0.022 0.061 0.000 0.122 

1.0 1.03 0.522 0.022 0.060 0.000 0.160 

1.5 1.03 0.528 0.021 0.057 0.000 0.204 

10º 0.42 0.36 

0.5 0.33 0.257 0.241 0.477 0.018 0.045 

1.0 0.44 0.353 0.245 0.485 0.026 0.053 

1.5 0.59 0.440 0.257 0.507 0.030 0.061 

-5º 1.71 0.60 

0.5 1.71 0.611 -0.066 -0.173 0.000 0.100 

1.0 1.71 0.612 -0.065 -0.173 0.000 0.126 

1.5 1.71 0.616 -0.065 -0.173 0.000 0.153 
 
 

Table 5: Numerical results for butterfly specimen using aluminum 2024-T351 alloy and different loading conditions. 
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Angle 
Experimental data Numerical results 

                             

0º 0.70 0.22 

1.0 0.70 0.292 0.018 0.048 0.000 0.084 

2.0 0.70 0.298 0.017 0.048 0.000 0.107 

3.0 0.70 0.305 0.017 0.047 0.000 0.137 

4.0 0.70 0.318 0.017 0.046 0.000 0.179 

10º 0.50 0.26 

1.0 0.55 0.230 0.250 0.486 0.013 0.032 

2.0 0.63 0.271 0.254 0.492 0.017 0.039 

3.0 0.75 0.336 0.257 0.494 0.021 0.051 

4.0 0.75 0.337 0.264 0.502 0.021 0.056 

-5º 1.00 0.22 

1.0 1.00 0.414 -0.066 -0.176 0.000 0.084 

2.0 0.98 0.424 -0.065 -0.173 0.000 0.110 

3.0 0.95 0.432 -0.064 -0.169 0.000 0.140 

4.0 0.93 0.455 -0.063 -0.165 0.000 0.190 
 
5.3 Prediction of the correct fracture location 
 

Figures 3 and 4 present the contour of effective damage for the steel 1045 and the aluminum alloy 2024-T351, 
respectively, at fracture. It is possible to conclude that the new damage formulation has the ability to predict the correct 
fracture location in all loading conditions. 

 
 

           

 

           

 

           

 

 
(a) (b) (c) 

Figure 3. Effective damage contour for butterfly specimen using 1045 steel. (a) shear/compression, (b) pure shear and 
(c) shear/tensile loading conditions. 
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(a) (b) (c) 
Figure 4. Effective damage contour for butterfly specimen using aluminum 2024-T351 alloy. (a) 

shear/compression, (b) pure shear and (c) shear/tensile loading conditions. 
 

6. CONCLUSION 
 

In this contribution, a new formulation was tested, regarding the ability to predict ductile fracture under a low level 
of stress triaxiality. Numerical tests were conducted, with on implicit integration algorithm, in order to evaluate the 
formulation ability to predict the crack formation. A butterfly specimen was employed and two different materials: the 
steel 1045 and the aluminum alloy 2024-T351 were used. In all loading conditions, the model behaves well, either in 
the determination of the correct level of equivalent plastic strain and displacement at fracture, or in prediction of the 
location of crack formation.  

The introduction of two damage parameters affecting separate components of the stress tensor stress critically 
affects the evolution of internal variables and allows more accurate values at the time of crack formation. Furthermore, 
the introduction of a new micro-defects nucleation mechanism facilitates the calibration model and thus an improved 
performance for a wide range of stress triaxiality. The introduction of the stress triaxiality dependence in the evolution 
of shear damage parameter also enhanced the prediction of the fracture location under combined loading conditions, 
since this parameter influences the behavior of material under low stress triaxiality. An effective damage variable is 
determined in post-processed step as a function of both volume void fraction and shear damage parameter. A 
penalization factor is introduced in order accelerate the damage evolution due to the presence of multi axial loading 
conditions. 

In spite of the best performance of this formulation when compared to the models available in the literature, the 
introduction of more parameters that need to be calibrated requires special attention. In particular, two calibration points 
are required to fully define the model. A calibration point at high triaxiality, which was already required in GTN 
original model, and now a new point at low triaxiality, to obtain the parameters that govern the new shear damage 
evolution law.  In summary, the new model was formulated in order to perform well in all loading conditions and for 
different materials. From the results presented, it is possible to conclude that the objective was achieved for the cases 
tested. 
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