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Abstract. When the Navier-Stokes equations are applied into turbulence, closure equations are necessary in addition
to an average approach of the associated variables. These equations relate the Reynolds stress tensor with kinematic
tensors. The methodology here presented quantifies the dependence of the Reynolds tensor with kinematic tensors such as
the rate-of-strain and the non-persistence-of-strain tensors. The methodology is based on tensor decomposition theorems
from the Reynolds stress tensor (anisotropic) obtained from LES are extracted parts in phase and parts out of phase with
each kinematic tensor. The proposed RANS basis are then compared with the Reynolds tensor which is obtained by a LES
in a backward facing step. Local measurers of the accuracy of each model are employed, becoming possible to quantify
their adequacy as a function of the position.The tensor basis used in this study are capable of representing more faithfully
the Reynolds stress tensor then the methods used by industry today, and require low computational cost.

Keywords: Turbulence modeling; persistence of straining; tensor decomposition;LES

1. INTRODUCTION

Turbulence is considered one of the most complex phenomena in Physics. Because of that, turbulence modeling
is a major active research area in Fluid Mechanics. The most accurate approach is to solve the complete set of the
Navier-Stokes equations capturing the very small scales that are necessary for a full description of turbulence, the Direct
Numerical Simulation (DNS) method. However, DNS is extremely expensive from the computational point of view,
prohibitive for complex geometries. Therefore, this method is restricted for simple cases, and for low Reynolds numbers.

On the other side of the available methods are the so called Reynolds Average Navier-Stokes (RANS). In this case,
the Navier-Stokes equations are filtered and only the mean velocity and mean pressure fields are solved. A new term that
comes into play is the divergence of the mean velocity fluctuation dyadic, and the Reynolds stress tensor can be defined
as R = −u′u′, where (.) indicates the time average operation and a single quote (′) denotes the fluctuations with respect
to the average. In order to close the set of equations and unknowns, a model for the Reylnods stress tensor connects itself
to mean kinematic quantities. RANS models are, by far, the most used approach to solve the turbulence problems faced
by industry. The reason is simple, these models are cheap and therefore they fulfill the industrial need for rapid answers.
However, the lack of accuracy provided by RANS models defies the use of such approach. In some situations, even the
qualitative behavior of the flow is not captured by a traditional RANS model.

An intermediate alternative is the Large Eddy Simulation method (LES). In the LES approach, only the large scales,
that carry most of the turbulent energy, are solved; while the small scales, which are costly to solve, are modeled. The
advantage of using this approach is that LES is not as expensive as DNS and is much more accurate then RANS. Hence,
accurate results for turbulent flows in complex geometry with a relatively high Reynolds number became attainable by
using this method.

However, from the industry perspective LES are still costly. The time scale needed for accurate simulations is much
higher then the time scale required by the decision making process. This means that RANS models will still be worthy
to be used by industry. In this scenario, it would be interesting to improve the accuracy provided by RANS models.
One path that can be used in order to achieve this goal is to construct RANS models that are somehow connected to
high accurate methods like DNS and LES. The disadvantage of bridging LES-RANS models is that there are two stages
of modeling, what means that is a model of a model. The advantage, however, is the possibility of simulating flows in
complex geometries with high Reynolds numbers with a high level of accuracy. Therefore, the corresponding RANS
model can be generated from complex flows. This advantage cannot be overemphasized, since, in general the results used
to feed RANS models come from very simple geometries where the Reynolds stress has a simple structure.

The path adumbrated to build RANS models from LES results consists of two stages. The first one is to extend
the usual Boussinesq hypothesis using the projection of the Reynolds stress tensor calculated from the LES approach
into mean kinematic tensors subspaces, also calculated from LES, suitably chosen. The second stage is to express the
coefficients associated with these projections to mean kinematic scalars, such as the invariants of the mean tensors.

The objective of the present work is to explore the first stage of the bridge LES-RANS. In this connection, the two
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tensorial entities chosen to describe the Reynolds stress tensor are the symmetric part of the velocity gradient, D, and the
non-persistence-of-straining tensor P, discussed by Thompson and Souza Mendes (2005); Thompson (2008)

2. METHODOLOGY

The methodology is the same as the one followed by ?. The difference lies on the fact that in the present case we use
LES results to construct RANS models, while there, the methodology was used to build RANS models from DNS results.

We use two types of decompositions of a generic second order tensor, G, with respect to another symmetric tensor, F
of the following form

G = PFG + P̃
F
G . (1)

And we require that this decompositions enjoy the following properties

i) PFG and P̃
F
G . are orthogonal;

ii) F and PFG are coaxial (or commute);

iii) F and P̃
F
G are orthogonal.

2.1 Tensor decompositions

We use two kinds of decompositions of a symmetric tensor with respect to a second one. The first of these decompo-
sition will be called “proportional-orthogonal decomposition” and decomposes a tensor G with respect to a target tensor
F as

G =
tr (G ·F)

tr (F ·F)
F +

tr (F ·F)G − tr (G ·F)F
tr (F ·F)

, (2)

where the first term on the r.h.s. is the part of G proportional to F and the second term is orthogonal to F . The second
kind, called here “in-phase-out-of-phase decomposition”, decomposes a tensor G with respect to a target tensor F as

G = 1FF : G +
(
1δδ − 1FF) : G, (3)

where 1FF and the identity tensor 1δδ are fourth order tensors that are given by

1FF =
3∑
i=1

eFi ⊗ eFi ⊗ eFi ⊗ eFi , and 1δδ = ep ⊗ eq ⊗ eq ⊗ ep. (4)

In Eq. (3), the first term is the in-phase term, which represents the part of tensor G which is in-phase with tensor F . The
second term is the part of G which is out-of-phase with respect to tensor F . In Eq. (4a) eVi are the unit eigenvectors of
tensor F . These two kinds of decomposition were shown by Thompson et al. (2010) to be the only ones satisfying the
following two properties: the two decomposed parts are respectively coaxial and orthogonal to the target tensor, and these
two parts are orthogonal to each other. The mathematical analysis of these two decompositions can be found in Thompson
(2008).

2.2 Primitive tensors

The two decompositions presented above can be employed in two different ways: self-correlation and cross-correlation.
In this paper we will use the cross-correlation approach. In order to do that, we start with an original tensor like G above,
which we shall try to explain as much as possible by a target tensor – e.g. the tensor F above. In the present formulation,
the deviatoric part of the Reynolds stress tensor is the original tensor that needs to be described in relation to a target
tensor. The choice of the latter will be discussed in the next subsection, and will be based on appropriate representations
for incompressible turbulent flows. The theory of decomposition can be readily applied to compressible turbulent flows,
but for this present investigation we shall concentrate on incompressible flows.

The usual Reynolds decomposition notations will be employed: (.) indicates the time average operation and a single
quote (′) denotes the fluctuations with respect to the average. The Reynolds stress tensor, R, is defined through

R = −u′u′, (5)

where, as usual, the mass density ρ was removed from this term and incorporated into a modified pressure (p∗ = p/ρ) in
the Navier-Stokes equation.
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The deviatoric part of the Reynolds stress tensor is defined as

B = R− 1

3
tr(R), (6)

where tr(.) is the trace operator. There are two kinematic tensors that were chosen as “target tensors”, to compose
the basis of tensors used to explain the Reynolds stress tensor: the symmetric part of the velocity gradient, D and the
non-persistence-of-straining tensor P, defined by

P = [D,W∗] , (7)

where the Lie Bracket [, ] is defined as [A,B] ≡ A ·B−B ·A. Tensor W∗ is the relative vorticity tensor, defined as the
vorticity measured with respect to the rate of rotation of the eigenvectors of D.

To avoid the computational complexity of calculating the rate of rotation of the eigenvectors, Thompson (2008) showed
that the tensor P can be calculated using the out-of-phase part of the material derivative of tensor D. Since W∗ is
a difference between two tensors one that is related to the velocity gradient and the other which is related to the time
derivative of the velocity gradient, it seems to be interesting, from a numerical viewpoint, to include a transport equation
for D. In this connection, some works in the field of numerical schemes (Yabe et al. (1991); Nave et al. (2010); Sampaio
(2012)) also suggest that there are good reasons for solving a transport equation for gradients of the primitive field. In
this context, solving an extra, independent transport equation for gradients (or for D) would not only improve numerical
accuracy, but also provide an easier and more precise way to calculate P, to be used in next generation of RANS modeling.

Since D and P are orthogonal, we are able to produce 6 levels of representations of the Reynolds stress, depending on
the combinations of the decompositions adopted. Besides that, we apply indices of adherence to quantify the ability of the
particular model to capture the Reynolds tensor. These indexes (RI , RII , ...) can be seen as a measure of the theoretical
limit intrinsic to each of the models alone, i.e., the best simulation results obtainable in an hypothetical scenario in which
the turbulence model is perfect to the point of providing the optimal scalar coefficients.

2.3 Reynolds stress tensor proportional to D

The eddy viscosity (or Boussinesq) hypothesis is based on the assumption that the turbulent shear stress is linearly
dependent on the mean velocity gradient, (see Boussinesq (1877); Kolmogorov (1942)), i. e.

B = 2νTD, (8)

where D is the symmetric part of the mean velocity gradient.
The approach used here is to decompose tensor B into a tensor which is proportional to D and a tensor EI which is

orthogonal to D. Hence,

B = αD + EI , (9)

where

α =
tr (B ·D)

tr (D ·D)
. (10)

Therefore, α is the best scalar that can be related to the turbulent viscosity defined by Eq.(8). Besides that, tensor EI can
be seen as the error associated with Boussinesq hypothesis.

The scalar quantity α can be scaled with the turbulent kinetic energy k and dissipation rate ε to compose a quantity
with the dimension of a viscosity, i.e.

α = 2Cµ
k2

ε
, (11)

where Cµ is a dimensionless scalar.
An important normalized index of the present analysis is a global measure of how important is the term αD when

compared to B, or in other words, how closely Eq.(8) matches DNS or experimental data. This normalized parameter is
given by

RI = 1− 2

π
cos−1

(√
tr (α2D2)

tr (B2)

)
. (12)

Parameter RI is in [0, 1], the limiting cases being RI = 0 when αD and B are uncorrelated, and RI = 1 when they are
coincident.
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2.4 Non-linear Reynolds stress model quadratic in the rate-of-strain tensor

A second approach can use the decomposition of the Reynolds stress tensor into a part ΦD
B which is coaxial to the

rate-of-strain tensor, and another Φ̃
D

B which is orthogonal. Mathematically, this is represented by

B = ΦD
B + Φ̃

D

B = ΦD
B + EII . (13)

The in-phase part, ΦD
B , is the part of the Reynolds stress tensor that can be modeled with the rate-of-strain tensor. In other

words, if the only information we had about kinematics were tensor D, ΦD
B would be the largest part of the Reynolds

stress that could be modeled. Therefore, ΦD
B captures a larger part of B than αD in the first decomposition described

(see Eq.(9)). The quantity ΦD
B can be written as an isotropic function of D. From the Cayley-Hamilton theorem, it can

be shown that ΦD
B is a quadratic function of D,

ΦD
B = α01 + α1D + α2D

2. (14)

Using the turbulent kinetic energy and the dissipation, we can define the dimensionless coefficients Cµ0, Cµ1, Cµ2 and
rewrite Eq. (14) as

ΦD
B = Cµ0k1 + 2Cµ1

k2

ε
D + Cµ2

k3

ε2
D2. (15)

Once the eigenvalues of ΦD
B and D are known, the three scalar coefficients (α0, α1, α2) are found from solution of the

linear system of equations (14) This system has a unique solution. For incompressible flow, taking the trace of Eq.(15)
we have

3Cµ0k + Cµ2
k3

ε2
tr(D2) = 0, (16)

which can be used as a check for the values obtained for Cµ0 and Cµ2. We can also construct a global index to measure
the weight of ΦD

B on B,

RII = 1− 2

π
cos−1


√√√√√ tr

[(
ΦD

B

)2]
tr (B2)

 . (17)

This second index is also a normalized parameter not less then RI (0 ≤ RI ≤ RII ≤ 1), since it captures the total
influence of D on the Reynolds stress tensor and not only its linear influence. In this sense, the basis presented in
subsection 2.3is a particular case of the above, and therefore a poorer representation of the Reynolds stress tensor.

2.5 Non-linear Reynolds stress model including the persistence of straining tensor

The next step consists of identifying the part of the Reynolds stress tensor that can be explained by the non-persistence-
of-straining tensor (see Thompson and Souza Mendes (2005, 2011)), which is orthogonal to D.

P = D ·W∗ −W∗ ·D. (18)

In the above equation,

W∗ = W −ΩD, (19)

where W is the skew-symmetric part of the mean velocity gradient (the mean vorticity tensor). The starred W indicates
that this tensor is computed relatively to ΩD, the rate of rotation of the eigenvectors of D, defined through

ΩD ≡ ėDk eDk , (20)

where eDk are the normalized eigenvectors of D, and ėDk are their time derivatives.
The three term basis representation (D, D2 and P) was previously used by Rumsey et al. (2000) in a non-linear

turbulence model and by Mompean et al. (2003) for a viscoelastic algebraic extra-stress constitutive equation.
Obtaining tensor P can be a difficult task since, from Eq.(20), the rate of change of the eigenvectors of D have to

be calculated. In Thompson et al. (2010) it is shown how the decomposition in the in-phase and out-of-phase parts of a
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tensor makes the evaluation the persistence of straining tensor P easier and computationally cheaper, without having to
evaluate the rate of rotation of the eigenvectors of D.

Once P is known, and using the fact that this tensor is orthogonal to D, we can search for the part of Φ̃
D

B that is
proportional to P. Thus, the decomposition stated by Eq.(13) can be written in another form as

B = ΦD
B + βP + EIII , (21)

where EIII = Φ̃
D

B − βP is mutually orthogonal to D and P. The determination of β follows the same lines of Eq.(10),
i. e.

β =
tr
[
Φ̃

D

B ·P
]

tr [P2]
. (22)

Having found β we are now able to define a third index as

RIII = 1− 2

π
cos−1


√√√√√ tr

[(
ΦD

B + βP
)2]

tr B2

 , (23)

enjoying the property 0 ≤ RI ≤ RII ≤ RIII ≤ 1.
Similarly to what was done in the previous section, we can construct a dimensionless coefficient, Cβ , based on the

parameter β. Since tensor P has the same dimension as D2,

β = Cβ
k3

ε2
. (24)

2.6 A Reynolds stress model which is linear on the rate of strain and on the persistence of straining tensor

An intermediate level of approximation is achieved by writing the anisotropic Reynolds stress tensor as a linear func-
tion of D and P as

B = αD + βP + EIV , (25)

where EIV is the error associated to this fourth hypothesis model. In this case, the model resembles the simplified form
proposed by Shih et al. (1995). The difference lies on the fact that the tensor P in the model proposed by Shih et al.
(1995) uses the vorticity tensor in the place of the relative-vorticity tensor in Eq. (18). Here, we can notice that from the
concept of the decompositions adopted, the coefficients α and β are the same of those calculated from models MI and
MII . The index RIV can also be calculated with the analogous expression given by

RIV = 1− 2

π
cos−1


√√√√ tr

[
(αD + βP)

2
]

tr B2

 . (26)

2.7 A Reynolds stress model linear on the mean strain rate and non-linear on the persistence of straining tensor

An approach which was not explored previously in the literature is a model which is proportional to the mean rate of
strain and in-phase with the persistence-of-straining tensor.

B = αD + ΦP
B + EV , (27)

where EV is the error associated to this fifth level of the non-linear model. Analogously to what was done with tensor
ΦD
B , the quantity ΦP

B can be written as

ΦP
B = β01 + β1P + β2P

2. (28)

Using dimensionless coefficients, we can write

ΦP
B = Cβ0k1 + Cβ1

k3

ε2
P + Cβ2

k5

ε4
P2. (29)
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Here, we can notice that from the concept of the decompositions adopted, the coefficients α and β are the same of
those calculated from models MI and MII . Analogously, the index RV can also be calculated with the expression:

RV = 1− 2

π
cos−1


√√√√√ tr

[(
αD + ΦP

B

)2]
tr B2

 . (30)

2.8 A Reynolds stress model in-phase with the mean strain rate and in-phase with the persistence of straining
tensor

The last approach presented here is the most completed one and has not been explored in the literature so far. It is a
model that is in-phase with the mean rate of strain and in-phase with the persistence-of-straining tensor:

B = ΦD
B + ΦP

B + EV I , (31)

where EV I is the error associated to this fifth level of representation. The index RV I is given by

RV I = 1− 2

π
cos−1


√√√√√ tr

[(
ΦD

B + ΦP
B

)2]
tr B2

 . (32)

3. RESULTS

For the sake of clarity and for easier referencing in this section, we provide below a summary of the six models
presented above:

MI : BI = αD (33)

MII : BII = α0I + αDD + αD2D
2 (34)

MIII : BIII = α0I + αDD + αD2D
2 + βP (35)

MIV : BIV = αD + βP (36)

MV : BV = β0I + αD + βPP + βP2P
2 (37)

MV I : BV I = (α0 + β0) I + αDD + αD2D
2 + βPP + βP2P

2 (38)

and the indexes, Ri, i ∈ {I, II, III, IV, V, V I} that measure the quality of the approximations are given by

Ri = 1− 2

π
cos−1

√
tr B2

i

tr B2
. (39)

In Eq. (39), Bi are the deviatoric Reynolds stress tensor projected in the i-basis, while B is the deviatoric Reynolds
stress tensor that comes from the DNS data. The indices given by Eq. (39) were shown Thompson (2008) to provide a
normalized quantity with the following property

φVU + φ̃VU = 1− 2

π
cos−1

√√√√ tr
(

ΦV
U

)2
trG2 + 1− 2

π
cos−1

√√√√ tr
(
Φ̃

V

U

)2
trG2 = 1 (40)

The quantities Ri are local. It is straightforward to infer that, at any point of the domain, the following inequalities
hold:

0 ≤ RI ≤ RII ≤ RIII ≤ RV I ≤ 1 (41)

0 ≤ RI ≤ RIV ≤ RIII ≤ RV I ≤ 1 (42)

0 ≤ RI ≤ RIV ≤ RV ≤ RV I ≤ 1 (43)

From the inequalities above, we can establish the different complexity levels of approximation. One important issue
is to address the differences between models of the same level of complexity such as the pair MII and MIV and the pair
MIII and MV .
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4. NUMERICAL FORMULATION

4.1 Geometry: Backward facing step

The backward facing step is a classical benchmark test case, and has been extensively used in the literature to validate
turbulence models. Here we use the same geometry as Le et al. (1997), with a 1.2 expansion ratio (ER = Ly − h/Ly ,
with Ly = 6h), shown in Fig. 1. The other dimensions are Lx = 23h, Lz = 4h, and Li = 3h, where h is the step height,
Li is the inlet length, before the step, and Lx, Ly, Lz are the total length, height and span, respectively.

Figure 1. Backward facing step geometry

The inlet boundary conditions are: imposed velocity, according to a profile obtained with DNS ((Le et al., 1997)) at
x = −3h from the step. The step height based Reynolds number was Re = U0h/ν = 5100, where U0 is the maximum
velocity, and ν is the kinematic viscosity. Zero gradient in normal direction is also imposed on the pressure field. For
simplicity, turbulence is not set there, in a hope that at least some part of the spectrum would have developed before
reaching the step, and that the abrupt geometry will provide most of the turbulence downstream.

The outlet is set as an outflow, with fixed pressure (zero) and null normal gradient for the velocity and turbulence
variables.

The bottom surfaces are set as walls, while the top, as an impenetrable, no-stress plane. The lateral planes are set as
periodic.

4.2 Discretization

To solve the governing equations in a computer, a discretization process is needed to project the complete and contin-
uous function space and operators into a vectorial space, resulting in a linear system to be solved.

The mass, momentum, and turbulence equations were discretized using the Finite Volume Method (FVM) imple-
mented in OpenFOAM (OpenFOAM version 2.1.1). The field values are stored at the control volume centroids. Whenever
fluxes or other face quantities are needed, the centroid values are interpolated to the faces centroids, using the most appro-
priate scheme. Here, a linear interpolation is used for the velocity field, corresponding to the classical central differences
scheme of Finite Difference Method (FDM). This avoids extra dissipation which would otherwise affect the turbulence
spectrum, and it is the recommended scheme when a physical modeling approach is chosen over an implicit LES. On the
other hand, for variables like the subgrid turbulent kinetic energy, which cannot assume negative values and should be
bounded, a Total Variation Diminishing (TVD) scheme based on Minmod limiter is employed. This guarantees a bounded
behavior when high frequency oscillations are eminent, yet an accurate discretization for smoother modes.

The discretization of these equations generates three sets of linear systems, corresponding to the mass, momentum,
and subgrid turbulence equations, which are solved separately, in a segregated approach. During a time step of the
transient evolution, the momentum is solved first, then the pressure is found to correct the mass conservation, and lastly
the subgrid energy is solved to update the find the temperature, based on the velocity found in the other two steps.
Numerical experiments suggested that the temperature-velocity coupling inside a single time step is far less important
than the velocity-pressure coupling. Therefore, an inner loop coupling is performed only for the velocity and pressure
fields, using the PISO methodology (Issa, 1986).

An hexahedral mesh consisting of 300 × 160 × 32 subdivisions in the streamwise (x), vertical (y) and spanwise (z)
directions respectively was employed. In the x-direction, 40 subdivisions out of the total (300) were placed before the
step, with a small concentration towards the step. Also, in the y-direction a non-uniform distribution of subdivisions was
employed, concentrating control volumes close to the wall and in the step level. After simulation was ran and the mean
wall shear stress was obtained, it was possible to evaluate the near wall normal spacing in wall units, ∆y+ = ∆y/δ. The
wall characteristic length is given by δ = ν/u∗ = ν/

√
τw/ρ, where τw is the local mean wall shear stress. The resulting

near wall mesh spacing in wall units were ∆y+ = 0.56 in average, and ∆y+ = 7.57 in the worst case, indicating that a
suitable resolution was obtained to tackle turbulence with LES.
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4.3 LES Model

The Navier-Stokes equation and continuity are implicitly filtered in space, taking advantage of the Finite Volume
Methods integral over each control volume. The resulting equation presents an additional term representing the subgrid
(filtered) scales and its interaction with the resolved scales, and needs modeling as it cannot be closed. This term is
modeled according to the Boussinesq hypothesis, in the framework of a functional model, where the dissipative role it
plays in the energy cascade is more important than the exact capturing of the subgrid stress tensor structure.

The subgrid stress tensor, or more precisely, its deviatoric part, is thus assumed tied to the symmetric part of the
resolved velocity gradient, by means of a “subgrid” viscosity, which is the very essence of all the modeling involved.

To provide the local value of this viscosity, two characteristics quantities are generally needed. Among the various
modeling options, we choose the one equation subgrid model of Horiuti (Yoshizawa and Horiuti, 1985), in which the two
characteristic values are the subgrid kinetic energy (kSGS), given by its own additional transport equation, and a length
scale, given by the cubic root of the control volume volume. The constant parameters of the model were dynamically
adjusted, locally and for each time step, following the Germano methodology (Germano et al., 1991; Ghosal et al., 1995).

5. RESULTS

5.1 Validation of LES results

In order to validate our LES results, before we use them to construct a RANS formulation, we compare some quantities
with the DNS results obtained in the literature. Here we report some of them, taken after 6h, 10h, 15h, and 19h so that the
reader can analyze how was the evolution of the results accuracy with respect to CPU time.

Figure 2. Velocity at a certain position after 6 hours of CPU time.

Figure 3. Velocity at a certain position after 10 hours of CPU time.

Figure 4. Velocity at a certain position after 15 hours of CPU time.

Figure 5. Velocity at a certain position after 19 hours of CPU time.
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Figure 6. Reynolds stress component Rxx at a certain position after 6 hours of CPU time.

Figure 7. Reynolds stress component Rxx at a certain position after 10 hours of CPU time.

Figure 8. Reynolds stress component Rxx at a certain position after 15 hours of CPU time.

Figure 9. Reynolds stress component Rxx at a certain position after 19 hours of CPU time.

Figure 10. Reynolds stress component Rxy at a certain position after 6 hours of CPU time.

Figure 11. Reynolds stress component Rxy at a certain position after 10 hours of CPU time.

5.2 Indices of model performance

A global measurer of the model performance is given by the indices shown in the methodology that give the norm
of the Reynolds stress predicted by the model, normalized by the norm of the Reynolds stress predicted by the LES
calculations. Below, we show the results for all these indices, from RI to RV I .
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Figure 12. Reynolds stress component Rxy at a certain position after 15 hours of CPU time.

Figure 13. Reynolds stress component Rxy at a certain position after 19 hours of CPU time.

Figure 14. Index RI , related to model MI .

Figure 15. Index RII , related to model MII .

6. CONCLUSIONS

The methodology was successfully employed with the indices corresponding to more complete models providing a
better representation of the Reynolds stress tensor that was originated by a LES approach. The Boussinesq hypothesis
was shown to be a very poor representation for the Reynolds stress tensor. At the inlet, all the models had a poor
performance. This fact was due to a vanishing Reynolds stress tensor at the entrance. Therefore, no model could give a
good representation. A possible path to circumvent this problem is to model the full tensor, including the term with the
molecular viscosity.The next step is to propose functions for the coefficients.
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Figure 16. Index RIII , related to model MIII .

Figure 17. Index RIV , related to model MIV .

Figure 18. Index RV , related to model MV .
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