
22nd International Congress of Mechanical Engineering (COBEM 2013)
November 3-7, 2013, Ribeirão Preto, SP, Brazil

Copyright c© 2013 by ABCM

DATA COMMUNICATION AND PROTOCOLS IN SELF-RECONFIGURABLE MODULAR ROBOTS
Ana Carolina Cardoso de Sousa
Dianne Magalhães Viana
Departamento de Engenharia Mecânica, FT, Universidade de Brasília, Asa Norte, CEP 70910-900.
anacsousa1@gmail.com, diannemv@unb.br

Carla Maria Chagas e Cavalcante Koike
Departamento de Ciência da Computação, CIC/EST, Universidade de Brasília, Asa Norte, CEP 70910-900.
ckoike@unb.br

Abstract. Natural catastrophes, like mudslide and earthquakes are a challenge to the use of high-tech equipments when
obstacles block rescue robots with a fixed configuration. Thus, these procedures require more versatile systems. Self-
reconfigurable modular robots are autonomous machines with a variable morphology. In addition to the characteristics
of conventional robots (such as actuators, sensors and control systems), the modular robots are also able to change its
own shape, reorganizing the connectivity of its parts. So, a modular robot has the ability to travel over a wider variety
of terrain, adapting well to many tasks. The aim of this project is to develop the structure of communication for modular
robots, from hardware to protocols. For tests, we used the ErekoBot, a self-reconfigurable modular robot developed by the
Ereko Group, from University of Brasilia (Brazil). After the evaluation of the resources available in the robot, we defined
the layer’s functions and characteristics of the protocols. Then, we tested both the design of hardware and protocols in
real tests in controlled environments. The results of these tests proved the efficiency of the protocol and will offer new
support for group projects, specially related to locomotion. The promise of the versatility of modular robotics could lead
to a radical change in automation, especially in applications in remote locations where rescue teams cannot reach with
traditional equipment.

Keywords: Modular Robotics, Data Communication, Protocols.

1. INTRODUCTION

In situations such as a building collapse due to a landslide or an earthquake, there is occasionally a lack of access
by the rescue teams. Thus, some mobile robots were designed to perform this kind of urban operation, like the rescue
robot Urbie1. A rescue robot gathers information of the ground, processes this data and gets around, dodging obstacles
when necessary – all according to predefined rules in its software. But as these disasters are unpredictable, it’s impossible
to predefine all of them (including physical obstacles) and put it all in the software. So, the usage of robots with fixed
configuration is not good choice, as it’s known that in certain situations, like when it’s unable to move into a passage
narrower than its own width, it won’t be able to do what it has to.

Research groups study the design and construction of robots with a variable morphology for two purposes: (1) to
increase the number of lands that robots can act in and (2) to increase the number of tasks they can perform. In 1994,
Yim (Yim (1994)) created the definition of a self -reconfigurable modular robot, a robot that changes its own shape. In
the situation where a narrow path is too small for a robot with fixed morphology, a modular robot is able to become
smaller and pass through. But, as a new area, there are challenges that difficult mass production of these robots, like
manufacturing process, hardware design, control algorithms and communication (Yim et al. (2007)). This last one defines
how the robot communicates with each of its parts and how each one of its parts communicates with the central computer
(host).

The aim of this project is to develop all the structure of the communication for modular robots, since hardware to
protocols. For tests, we used the ErekoBot (Fig. 1), the modular robot designed by the Ereko Group of University
of Brasilia (Brazil) (Souza (2011)). We defined the layer’s characteristics and functions of the model OSI, based on the
project’s methodology called bottom-up. This type of methodology starts from the definition of the most basic components
and then, gradually, increases the complexity to the system.

2. METHODS

2.1 State of the Art

Currently, a number of related approaches exists for programming modular robots. The most basic form is a centralized
control application executed on a workstation that remotely controls the modular robot as has been implemented in the
early works of MTRAN (Yim et al. (2009)) and PolyBot (Zhang et al. (2004)). With sensors, it is necessary to have
an hybrid system with a global and a local control (Shen et al. (2002)): the global actions such as locomotion require a

1http://technology.nasa.gov/data/TechFinder/attachments/20060022037_2006145860.pdf

ISSN 2176-5480

5091



Sousa, A.C.C., Viana, D.M., and Koike, C.M.C.C.
DATA COMMUNICATION AND PROTOCOLS IN SELF-RECONFIGURABLE MODULAR ROBOTS

Figure 1. ErekoBots.

re-computation of the local actions to be executed by the individual modules. In most systems, the modules are physically
connected and form one single, rigid body with actuators, which have to be coordinated collectively to move the whole
robotic organism (Hamann et al. (2010)).

These systems, together with the latter developments with ErekoBot α v.2 prototype were the stating points in devel-
oping the Protocol.

2.1.1 ErekoBot α v.2

The ErekoBot α v.2 is the latter functional prototype developed by graduate students in Ereko Group at the University
of Brasília (UnB). This prototype was designed to be used as a tool to study important aspects of modular systems, such
as assembly of different configurations, algorithms for motion and reconfiguration. The module has a similar shape to the
MTRAN and PolyBot’s modules. Its dimensions are 50mm x 50mm x 50mm and use manual fitting nuts and bolts in the
joints of the two sides of the connection. Table 1 resumes the module’s characteristics.

Figure 2. ErekoBot α v.2.

2.2 Protocol

There are two protocol development methodologies: top-down and bottom-up. The first starts from a broad overview
of the proposed system and gradually defines smaller components. The second defines the most basic components and
uses them to increase the system’s complexity (Tanenbaum (2002)). In this project, we used the methodology bottom-up
since the ErekoBot hardware system is known in details. As this is an application in the area of automation, we used a
stack 1-2-7 (Physical, Data Link and Application Layers).

ISSN 2176-5480

5092



22nd International Congress of Mechanical Engineering (COBEM 2013)
November 3-7, 2013, Ribeirão Preto, SP, Brazil

Table 1. ErekoBot α v.2’s characteristics

Type Homogeneous
Dimensions (mm) 50x50x50

Armor material Wood (eucalyptus)
Architecture Mobile

Reconfiguration Deterministic
Self-Reconfiguration 1 (180 rotational degrees)

Pluggable sides Yes/Manual with Velcro
Degrees of Freedom 2

Servo Motors Turnigy TGY90S

2.2.1 Physical Layer

Table 2 shows the Physical Layer’s characteristics of the Protocol2.

Table 2. The Physical Layer’s Characteristics.

Characteristic Description
Half-Duplex The modules and the host can send and receive

data, but never simultaneously.
Serial The transmitter sends the data bit by bit through

cables. (The microprocessor Atmel R© ATmega
8 R© uses the communication port USART.)

Asynchronous The host can send data to the system at any time.
Baud Rate 9600 bps Every second, Atmel R© ATmega 8 R©sends 9600

bits by the cables.
Interrupt at a low

level
Atmel R© ATmega 8 R©’s interruption is low

level-triggered.

The physical interface RS-232 (Dept. (1969)) performs the communication between the modules and the computer.
Figure 3 shows the interface circuit (the component MAX232 converts the RS-232 and the microcontroller’s voltages).

Figure 3. RS-232 interface circuit.

2.2.2 Data Link Layer

Logic Synchronization between entities As Atmel R© ATmega 8 R© synchronizes only receiving bytes, the protocol
must ensure the packet synchronization (Sync Logic). Each packet has a single byte reserved value (10H) and when a
communication interrupt occurs in a module, it expects approval of that specific byte order to receive the rest of the packet.

2They were based in the baseband regular pulse with cable communication (Tanenbaum (2002)).

ISSN 2176-5480

5093



Sousa, A.C.C., Viana, D.M., and Koike, C.M.C.C.
DATA COMMUNICATION AND PROTOCOLS IN SELF-RECONFIGURABLE MODULAR ROBOTS

Packets’ Assembly and Delimitation Figure 4 shows two types of protocol packets: the Standard Packet (five bytes)
and the Configuration Packet (eleven bytes).

Standard Packet
Synchronization

(1 byte)
Identification

(1 byte)
Message
(2 bytes)

Checksum
(1 byte)

Configuration Packet
Synchronization

(1 byte)
Identification

(1 byte)
New

Identification
(1 byte)

Number of
Modules
(1 byte)

Period
(2 bytes)

Position of
the period
(1 byte)

Checksum
(1 byte)

Figure 4. Packet Types.

Control of transmission errors At the beginning, each packet has a synchronization byte (sync) and an identification
byte (address). And, at the end, there is a byte for error detection (checksum).

Routing The Atmel R© ATmega 8 R© allows only one transmition channel and one reception in each module. Therefore,
the topology of the protocol is the type line or bus (Fig. 5). The host transmits the packets to the first ErekoBot, which
uses the information addressed to it and passes the rest to the next module.

The topology may also be like a ring, when the last ErekoBot sends messages to the host.

(a)

(b)
Figure 5. Protocol’s Topologies (a) Line (b) Bus.

Mapping logical addresses physical All the packets are addressed to a single destination, except for the Start and
Stop’s Packets.

Upon receiving a packet, each module checks whether the identification field matches its own address. If so, the
module uses the message, if not, forwards the packet to the next module (unicast). In the special case of the Start and
Stop’s Packets, a specific reserved value fills the identification field. When a module receives such a packet, it uses the
information and transmits to the others (broadcast).

2.2.3 Application Layer

The two Protocol Packets transmit different types of messages.
The Standard Packet transmits:

ISSN 2176-5480

5094



22nd International Congress of Mechanical Engineering (COBEM 2013)
November 3-7, 2013, Ribeirão Preto, SP, Brazil

• The movement phase;

• The angle position of the servo;

• When the modules start to move;

• When the modules stop to move;

• The transmission of the Configuration Packet.

The Configuration Packet configures ErekoBot motion, stating:

• The new address;

• The Gait Table to be used;

• The number of the modules in the system;

• The period;

• The movement phase (same of the Standard Packet).

There are four types of application in the Protocol, called Communication Profiles3.

First Profile The First Profile is the simplest, in which the modules do not have any autonomy, the host computes all
the values for each module and transmits for the system in real time. This profile only uses the Standard Packet.

The receiver sets up the communication and the PWM signal, and then waits for a communication interruption. In this
interruption, the module receives the packet and checks if the identification field is equal to its own address, if so, apply
this value in the motor, if not, it sends the packet to the next module (Fig. 6).

Figure 6. Receiver’s algorithm at the First Profile: unicast (blue) and loop (yellow).

Figure 7 shows the Java program that transmits the packets through the RS-232 interface. In this program, the user
determines the number of modules in the system and the period size. From that, we initialize and fill tables with the angles
and address values for each module, and then we can start or stop the movement with just one button.

Second Profile In the Second Profile, modules have a Table of Gaits and the host tells the time in which the modules
must start or stop the movement. This profile just uses the Standard Packet.

The receiver sets up the communication and pwm signal, and waits for a start signal. With this signal, it searches at
the Table of Gaits the value of the servo PWM corresponding to the current time state and applies it at the servo motor.

In the case of a communication interruption, the program receives the packet and checks if it is a broadcast (Start or
Stop) or if it is unicast (updates the time current state). Figure 8 shows the receiver algorithm.

3All codes are open source and can be downloaded at: http://sourceforge.net/projects/erekobotcommunication/files/?source=navbar

ISSN 2176-5480

5095



Sousa, A.C.C., Viana, D.M., and Koike, C.M.C.C.
DATA COMMUNICATION AND PROTOCOLS IN SELF-RECONFIGURABLE MODULAR ROBOTS

Figure 7. Transmitter’s program at the First Profile.

Figure 9 shows the Java program that transmits the packets through the RS-232 interface. This program operates
similarly to the First Profile: the user determines the system information, initializes and fills the tables and finally sets,
starts and stops the motion with the respective buttons.

Third Profile In the Third Profile, the modules have the ability to reconfigure themselves, because they contain more
than one Table of Gaits. The host sets up when and which tables will be used, and, for this, it uses the two packets:
Standard and Configuration Packets.

The receiver sets up the communication and the pwm signal and waits for a start signal. With this signal, it is searched
in the Table of Gaits that has configured the corresponding angle value to the current time and applies it.

In the case of a communication interruption, the program receives the packet and checks if it is broadcast (start or
stop) or unicast (sets up the movement). Figure 10 shows the receiver algorithm

Figure 11 shows the Java program that transmits the packets through the RS-232 interface. This program works
similarly to the previous profiles.

Fourth Profile In the Forth Profile, the embedded circuits in the modules are reprogrammable, the host can send real-
time algorithms, formulas and / or Tables of Gaits.

This profile has not been implemented in this protocol by impracticability hardware.

2.3 Tests

We tested the protocol and we identified problems related to noise and loss of synchronism. After solving these
problems, the Reliability Packet Delivery Test and the Estimation of Transmission Delay Test were conducted to prove
the protocol usability and efficiency.

2.3.1 Noise

The noise enables the communication interruption and the module goes into a loop waiting for a synchronization
signal, which prevented the correct system execution. To avoid this problem, we added a pull-up resistor to each module.

ISSN 2176-5480

5096



22nd International Congress of Mechanical Engineering (COBEM 2013)
November 3-7, 2013, Ribeirão Preto, SP, Brazil

Figure 8. Receiver’s algorithm at the Second Profile: unicast (blue), broadcast (red) and loop (yellow).

Figure 9. Transmitter’s program at the Second Profile.

To avoid deadlock, we also added a timeout in the Second and Third Profiles: if synchronization does not occur, the
module exits the communication thread and returns to the main program.

ISSN 2176-5480

5097



Sousa, A.C.C., Viana, D.M., and Koike, C.M.C.C.
DATA COMMUNICATION AND PROTOCOLS IN SELF-RECONFIGURABLE MODULAR ROBOTS

Figure 10. Receiver’s algorithm at the Third Profile: unicast (blue), broadcast (red) and loop (yellow).

Figure 11. Transmitter’s program at the Third Profile.

2.3.2 Loss of Sync

The modules should, in theory, perform processing at a frequency of 6MHz, but the internal oscillators of each Atmel R©

ATmega 8 R© are different, then, with time, modules lose synchronization.

ISSN 2176-5480

5098



22nd International Congress of Mechanical Engineering (COBEM 2013)
November 3-7, 2013, Ribeirão Preto, SP, Brazil

In modular robotics it’s essential that there is timing in the movement, and, as the protocol control is open loop, the
best solution found was to “restart” the system constantly, using the Christian’s algorithm (Cristian (1989)). In it, one of
the modules works as a "time server" and provides the time to reset the modules.

2.3.3 Reliability Packet Delivery Test

Figure 12 shows the execution of reliability package delivery test. Every interval ∆t , the module 1 sends, a Standard
Package with an angle message to module 2, which runs the First Profile. The packet address is different from module 2,
then, the module receives it and transmits to the computer (via the RS-232), which counts the number of received packets.
With different values of ∆t we plotted graphs of transmission reliability percentage. The host sent 1000 packages in the
test.

Figure 12. Preparation of Reliability Packet Delivery Test.

2.3.4 Estimation of Transmission Delay Test

As the topology of the protocol is a Line, there is a transmission delay proportional to the number of modules. In the
test for estimating the transmission delay the host sends a packet to the modules, and they transmit back to the computer
which reads the interval of time between sending and receiving a packet. Based on this time difference, we plotted graphs
of the time delay by the number of modules in the system. The host sent 150 packages in the test.

3. RESULTS

3.1 Reliability Packet Delivery Test

The results of the reliability package delivery test (Fig. 13) shows that the protocol is effective for time intervals which
are bigger than 200 ms.

3.2 Estimation of Transmission Delay Test

The results of the estimation of transmission delay test (Tab. 3) show that the delay time increases proportionally to the
number of modules. With the use of cftool, a tool from Matlab R©’s tool , we performed a linear regression and found the
linear polynomial function of Eq. (1), in which delaytotal is the total propagation delay and M is the number of modules
in the system.

delaytotal = 4.619M + 6.714 (1)

In order to estimate the module delay, we divide Eq. (1) by the number of ErekoBot and calculate the limit when M
tends to infinity, which results in a delay of 4.619ms.

ISSN 2176-5480

5099



Sousa, A.C.C., Viana, D.M., and Koike, C.M.C.C.
DATA COMMUNICATION AND PROTOCOLS IN SELF-RECONFIGURABLE MODULAR ROBOTS

Figure 13. Tests results for packet delivery’s reliability.

Table 3. Test results for estimating the transmission delay.

Number of Modules (M) Delay (ms)
1 11
2 16
3 21
4 25
5 31
6 35
7 39
8 43

4. DISCUSSION

From the results of Fig. 13, we found that the packet delivery is efficient for time intervals greater than 200 ms.
Considering that the ErekoBot movements already posses time limitation of the servo engines (they need at least 500 ms
to stabilize between any positions 4), Protocol data transmission realibility is enough for the system.

We also found that the delay per module is approximately 4.6 ms, which makes the number of modules become a
limiting factor for moving synchrony.

With these two findings, we confirmed that the protocol can be used for ErekoBot, as long as movement specifications
accept the lack of synchronization generated by the number of modules.

More recent work in Modular Robotics uses a centralized system (Arney et al. (2010)) (similar to the First and Second
profiles), except in situations with sensors, which, in general, mix centralized with decentralized systems (Shen et al.
(2002)) (similar to Third Profile). When these works do not deal with modular robots reconfiguration, they also use
wiring communication (Hamann et al. (2010)).

The ErekoBot module is a simple robot and, therefore, the protocol meets its needs. For more robust modules, with
automatic fittings and sensors, the protocol must be adapted.

A desirable update is the change of a topology in series for a bus one, which not only reduces the delay time, but also
simplifies the system diagrams. Another possible direction is the implementation of wireless communication, so it does
not hinder the movement of the robot.

However, for modular robotics, reconfiguration is the most important challenge, once from it, modules would be able
to change their moving ways with user commands. The implementation of the Fourth Profile allows this reconfiguration

4Specification: http://www.hobbyking.com/hobbyking/store/uh_viewitem.asp?idproduct=9392

ISSN 2176-5480

5100



22nd International Congress of Mechanical Engineering (COBEM 2013)
November 3-7, 2013, Ribeirão Preto, SP, Brazil

in real time.
Obviously, being able to send and receive data from robots efficiently is important for the development of projects, but

in the case of modular robotics, this importance is even greater because the host must deal with not only one, but several
robots, which must react in a synchronized way at all times.

This work obtained a verified and validated function protocol, which may be useful to future projects in the area of
modular robotics. This area promises a versatility that can radically change the automation, especially in places with
limited reach.

5. ACKNOWLEDGEMENTS

The authors would like to acknowledge the Brazilian institutions: ANP, FINEP, MCT, and Petrobras for supporting
the present study and the program PRH-PB 23.

6. REFERENCES

Arney, D., Fischmeister, S., Lee, I., Takashima, Y. and Yim, M., 2010. “Model-based programming of modular robots”.
In Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC), 2010 13th IEEE International
Symposium on. pp. 66–74. ISSN 1555-0885. doi:10.1109/ISORC.2010.16.

Cristian, F., 1989. “Probabilistic clock synchronization”. Distributed Computing (Springer), Vol. 3, pp. 146–158.
Dept., E.I.A.E., 1969. Interface between data terminal equipment and data communication equipment employing serial

binary data interchange. Electronic Industries Association. Engineering Dept.
Hamann, H., Stradner, J., Schmickl, T. and Crailsheim, K., 2010. “A hormone-based controller for evolutionary multi-

modular robotics: From single modules to gait learning”. In Evolutionary Computation (CEC), 2010 IEEE Congress
on. pp. 1–8. doi:10.1109/CEC.2010.5585994.

Shen, W.M., Salemi, B. and Will, P., 2002. “Hormone-inspired adaptive communication and distributed control for conro
self-reconfigurable robots”. Robotics and Automation, IEEE Transactions on, Vol. 18, No. 5, pp. 700–712. ISSN
1042-296X. doi:10.1109/TRA.2002.804502.

Souza, N.C.A., 2011. “Erekobot alfa project: Design and construction of a modular robot prototype”. 21st Brazilian
Congress of Mechanical Engineering, Vol. 1.

Tanenbaum, A., 2002. Computer Networks. Prentice Hall Professional Technical Reference, 4th edition. ISBN
0130661023.

Yim, M., 1994. “Locomotion with a unit-modular reconfigurable robot”. Technical report.
Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E. and Chirikjian, G.S., 2007. “Modular

self-reconfigurable robot systems – challenges and opportunities for the future”. IEEE Robotics and Autonomation
Magazine, Vol. March, pp. 43–53.

Yim, M., White, P.J., Park, M. and Sastra, J., 2009. “Modular self-reconfigurable robots”. In Encyclopedia of Complexity
and Systems Science, pp. 5618–5631.

Zhang, Y., Yim, M., Ackerson, L., Duff, D. and Eldershaw, C., 2004. “Stam: A system of tracking and
mapping in real encironments”. IEEE J. on Wireless Communications, Vol. 11, No. 6, pp. 87–96. URL
http://dx.doi.org/10.1109/MWC.2004.1368901.

7. RESPONSIBILITY NOTICE

The authors are the only responsible for the printed material included in this paper.

ISSN 2176-5480

5101




