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Abstract. Dumbbell air bearings provide a three degrees of freedom platform for tests of all components (hardware and
software) of an attitude control system, including control algorithms. They are aimed at simulating the frictionless space
environment. To validate the simulation environment, the accurate knowledge of the mass characteristics (moments of
inertia and center of gravity) of the assembly is necessary. This characterization is very important, since a misalignment
between this center and the air bearing rotation center causes undesirable torques on the platform, which can be higher
than those disturbances normally found at the space environment, therefore invalidating the minimum-torque environment
characteristics of the simulator. This work presents a comparison of two methods for estimating the mass characteristics
of a three degrees of freedom dumbbell air bearing: extended kalman filtering and nonlinear least squares, by using
embedded sensors in the platform. Almost all equipment used in this experiment are engineering models of flight devices
and therefore offer the realism required for this experiment. This work suggests methods for the appropriate choice of the
estimation algorithm suitable for different types of air bearings for space applications.
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1. INTRODUCTION

Air bearing tables have been used for test and verification of software and embedded electronic for at least 50 years
since the beginning of the space race (Schwartz et al., 2003). The idea behind an air bearing satellite simulator is to provide
three-axis angular movement in a frictionless environment, similar to the outer space. It is known that this idealization is
not valid since there is many disturbance torques on the system. Drag, bearing friction and gravity center offset are the
major source of disturbance torques that must be modeled in order to validate the environment. They must be minimized
until become compatible with the torque normally found in the space environment, ensuring the validity of simulators.

In the 1970s, research in air bearings were responsible for studies of internal energy dissipation effects in space
platforms (sloshing, drive mechanisms and joints) because failures were detected in various missions. Although the
technology has also been widely used by the Russians (Soviets) at the same time, little relevant information were found
to complement the historical review from Schwartz et al. (2003).

The first step for develop a complete hardware-in-the-loop satellite attitude control system simulator is to accurately
estimate the inertia matrix and the position of the center of gravity, using only the embedded equipment at the air bearing
table, a gyroscope triad and a star sensor.

We will bring forward two well-known methods for estimating a dumbbell air bearing mass characteristics by means
of extended kalman filtering and nonlinear least squares. Comparisons will be made, including a description of pros and
cons of each of the methods.

2. THEORETICAL BASIS

This section starts with a brief description of the attitude kinematics and dynamics of a rigid body, and supplemented
with a description of the two estimation algorithms used in this paper.

2.1 Attitude kinematics and dynamics

Attitude kinematics of a generic body can be described in different modes. Usually, Euler angles or quaternions are
used. The use of quaternions is justified by computational facility, since trigonometric functions are avoided, circumvent-
ing computational problems like divisions by zero. By the other hand, it presents some difficulty for attitude estimation
due to the lack of independence of the four quaternion components, wich are related by the constraint that the quaternion
has unit module. This constraint results in the singularity of the covariance matrix of the quaternion state (Lefferts et al.,
1962). With this view, we will use Euler angles for attitude propagation.

The body attitude with respect to the inertial reference can be represented by three separate rotations that align the two
distinct reference systems. In the LVLH (Local Vertical, Local Horizontal) system (East(X)-North(Y)-Up(Z), the motion
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around X-axis is called pitch (φ), around Y-axis is called roll (θ) and around Z-axis is called heading (ψ). The LVLH
system will be considered inertial system in this paper. Hence, the rotation sequence used in this work for Euler angles is
3-2-1 (Hugues, 1986; Wertz, 1978), represented by the following transformation matrix Cbr:

Cbr =

 cosφ cosψ cosφ sinψ − sinφ
sinφ sin θ cosψ − cosφ sinψ sinφ sin θ sinψ + cosφ cosψ sinφ cos θ
cosφ sin θ cosψ + sinφ sinψ cosφ sin θ sinψ − sinφ cosψ cosφ cos θ

 . (1)

The set of kinematic equations are given by: φ̇

θ̇

ψ̇

 =

 1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ/ cos θ cosφ/ cos θ

 ωx

ωy

ωz

 (2)

where ωx, ωy and ωz are the angular velocity measured at the body reference system.
The attitude dynamics of a rigid body is defined by the angular momentum law with respect to an inertial frame:

ḣ = T, (3)

where h is the angular momentum vector, defined as:

h = Iω, (4)

in which I is the body inertia matrix and ω is the body angular velocity vector. T is the sum of external torques, divided
into environmental and control torques, defined by:

T = Tenv + Tcon (5)

When expressed in a frame attached to the body, the attitude dynamics of a rigid body is represented by:

Iω̇ + ω × Iω = T (6)

Thus, the rigid body dynamics is a nonlinear function described in terms of angular velocities and external torque:

ω̇ = I−1[T− ω × Iω]. (7)

The torque caused by the displacement of the center of gravity TCG is obtained by:

TCG = RCG ×P, (8)

where RCG is the the center of gravity position vector of the bearing with respect with the bearing rotation center and P
is the weight vector. It can be noted that the vector RCG is measured in body system reference and the vector P is known
in the topocentric system reference:

P =
[

0 0 −mg
]T
, (9)

where m is the the total mass of the table ang g is the local gravity acceleration. As torque is applied to the rigid body, we
need to transform its coordenates from the local reference system to the body reference system:

TCG = RCG×CbrP, (10)

where Cbr is the rotation matrix defined in Equation 1.

2.2 Extended Kalman Filter

Kalman filter, in its standard form, is an optimal minimum variance estimator incorporating uncertainties in the dy-
namic and observation models. Unlike its linear version, the extended Kalman filter is not optimal due to truncation of
higher order terms.

Extended Kalman Filter is an state estimation algorithm that, with some adjustments, can also be used for parameter
estimation. Most references on the subject divides the algorithm into two phases: prediction and correction (Aguirre,
2007; Maybeck, 1979).

We define a generic system with input vector u, the state vector x and measurement vector y, described by:
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ẋ = f(x,u,t) + wk (11)
yk+1 = hk+1(xk+1) + vk+1 (12)

F and Hk are nonlinear functions linking the state vector x to the dynamic and observation models, respectively. The
process noise and observation noise are represented by random variables wk = N(0,Q) and vk = N(0,R), Gaussian
distributions with zero mean and covariance Q and R, in this sequence. It can be noted that the system prediction is
continuous and the observation is discrete.

For x ∈ R, the covariance matrix P has dimension n× n and is defined as:

P = cov[x] = E[(x− E[x])(x− E[x])T ] = E[xxT ]− E[x]E[x]T , (13)

where the function E [x] is the mathematical expectation.
The first phase of the EKF is based entirely on the dynamics of the system. Given the initial state vector x0 at time

t0, and knowing the input u applied over time, the system states can be propagated and therefore predicted in any time t1,
with t1 > t0. This propagation is therefore done via numerical integration of the equation (11) considering no uncertainty.

For the covariance prediction, we use continuous Ricatti equation that incorporates the uncertainty of each state equa-
tion of the model to the covariance matrix:

Ṗ = FP + PFT + GQGT, (14)

where G is the association matrix between the process noise and covariance matrix. F is the Jacobian of f , defined by:

F = Df(x) =

 ∂f1
∂x1

... ∂f1
∂xn

∂fn
∂x1

... ∂fn
∂xn


n×n

. (15)

The correction process is done by comparing the obtained measurement from the predicted state x̄k+1 with the actual
value of yk+1 obtained by the sensor at time t1, with t1 > t0. The balance (weighing) between the predicted values and
the values obtained by the sensors is given by the Kalman gain Kk+1. Thus, the equations that summarize the correction
process are:

Kk+1 = P̄k+1HT
k+1[Hk+1P̄k+1HT

k+1 + Rk+1]−1 (16)

P̂k+1 = [I−KkHk+1]P̄k+1 (17)
Resk+1 = yk+1 − h(x̄k+1) (18)

x̂k+1 = x̄k+1 + Kk+1Resk+1, (19)

where P̄ is the predicted covariance matrix and P̂ is the corrected covariance matrix.
The vector x̂k+1 is the best estimate for the state at time k + 1. The residue Res is defined as the difference between

the sensor measurement and the value of the nonlinear function h applied to x̄k+1. The matrix H is the Jacobian of h,
applied at the point x̄k+1, and defined by:

H = Dh(x) =

 ∂h1

∂x1
... ∂h1

∂xn

∂hn

∂x1
... ∂hn

∂xn


n×n

. (20)

With the already computed x̂k+1 and P̂k+1 the algorithm is fed back, restarting the prediction and correction.

2.3 Nonlinear least squares

We assume the following continuous-discrete dynamic system:

ẋ = f(x,u,t) (21)
yk = hk(xk) + vk, (22)

Unline the EKF, the system dynamics is considered perfect, and therefore, there is no uncertainty related to the system
model, in the least squares algorithm. For the least-squares algorithm, unlike the EKF, the dynamics of the system is
considered perfect, and therefore, there is no uncertainty related to the system model.
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The nonlinear least squares estimator, on its discrete form, is responsible for minimizing a function of the squared
residuals (Gelb, 2001):

Lk =
k∑

i=1

(yi − hi(xi))
T(yi − hi(xi)), (23)

where yi is the vector of observations and hi is a function that associates the observations to the model state vector xi.
It is considered that the input vector u is known throughout the process. Thus, the estimation problem comes down to
finding the vector of initial conditions x0 to minimize cost index Lk. For this it is necessary to find the solution to the
following family of differential equations:

∂Lk

∂x0k

= 0. (24)

We use the transition matrix Φk to reference all state vectors xk depending on the initial state vector x0k
. The

algorithm for nonlinear least squares is iterative and refines the variations in the states and not the states themselves. The
following deviations are defined:

δx̄i = x̂i − x̂0 (25)
δx̂i = x̂i − x̂i−1, (26)

where δx̄i represents the deviation from the initial state and δx̂i represents the deviation from the previous state. The
residue δy is defined as an array of m measurements obtained at each time tn:

δy =


yt1−ht1(x̂t1

)
yt2−ht2(x̂t2

)
...

ytn−htn(x̂tn
)

 . (27)

H is defined as the same form as described in Equation 20:

H =


H1

H2

...
Hn

 =


Ht1Φt1,t0

Ht2Φt2,t0
...

HtnΦtn,t0

 , (28)

where the matrix Φtn,t0 is found by integrating the state transition equation:

Φ̇ = FΦ, (29)

with initial condition Φ0 being the identity matrix of equal order to the number of states to be estimated. After composing
the matrices H and δy, we execute the batch algorithm (Kuga, 2005):

P̂i = (P̄−1
0 + HTR−1H)−1 (30)

δx̂i = P̂i(P̄
−1
0 δx̄i−1 + HTR−1δy). (31)

Typically the iterations continue until convergence is reached. Basically, the criterion used to terminate the algorithm
consists in checking when the deviation becomes sufficiently small. The final solution to the state of each iteration will
be (Kuga, 2005):

x̂i = x̂i−1 + δx̂i, (32)

and covariance P̂i. The presented algorithm is known as batch least squares (BLS), since all the data are processed at
once by the estimator. A variation of the BLS is the recursive least squares, where the data are processed one by one.

Using the recursive algorithm for nonlinear least squares is not advised, since numerical integration errors can hinder
the process of refinement and convergence of the estimator.
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Figure 1. Dumbbell air bearing CAD model approach.

Table 1. Dumbell air bearing mass characteristics.

Inertia matrix (kg.m2) I =

 3 0.1 0.1
0.1 12 0.1
0.1 0.1 13


Gravity center position (m) R =

[
10−6 10−6 −10−6

]
3. Results

A CAD model of the dumbbell air bearing used in this experiment can be seen in Fig. 1. All embedded equipment
were draw with same dimensions, mass and center-of-mass according to each mechanical interface document, including
fixing supports. Total mass is 72 kg and local gravity is 9.780327 m/s2.

Table 1 shows the CAD computed inertia matrix and center of gravity position. A simulation of kinematics and
dynamics will be performed with these information.

The state vector to be estimated x is:

x = [ φ θ ψ ωx ωy ωz Ixx Iyy Izz Ixy Ixz Iyz mgRx mgRy mgRz ]T . (33)

Table 2 shows the initial conditions for the EKF estimator. It can be observed that the uncertainty to the model is only
added to the Euler Equations. Kinematics propagation model is considered perfect for this case.

Figure 2 shows four graphics of the attitude dynamic simulation. Both the quaternion and euler angles propagation
are shown, wich represent the same information in two different modes. The table angular velocity is also presented in
Figure 2.

Table 2. Initializing data for EKF.

Variables Values
[ φ θ ψ ] [ 0 0 0 ] rad

[ ωx ωy ωz ] [ 0 0 0.2618 ] rad/s
[ Ixx Iyy Izz Ixy Ixz Iyz ] [ 3.0 11.5 12.5 0 0 0 ] kg.m2

[ Rx Ry Rz ] [ 0 0 0 ] m
diag(σ(x)) [ 1 1 1 1 1 1 1 2 2 1 1 1 0.01 0.01 0.01 ]
diag(R) [ 8.72× 10−5 8.72× 10−5 8.72× 10−5 1.92× 10−4 1.92× 10−4 1.92× 10−4 ]
diag(Q) [ 0 0 0 10−9 10−9 10−9 0 0 0 0 0 0 10−14 10−14 10−14 ]

Figures 3 and 4 show the estimation process during time. In blue, the state estimated value is observed. In green and
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Figure 2. Kinematic and dynamic simulation of the air bearing table.

red we observe the estimated value added and subtracted from the standard deviation.

Figure 3. Estimated moments of inertia.

Table 3 shows the final estimated values for states, including each final standard deviation. We can see that the mean
value is very close to the expected values of simulation.

The results obtained by the nonlinear least square method are presented in sequence, Table 4 shows the initial condition
for the algorithm, while Figure 5 shows the behavior of the angular velocities residue in three different iterations.

The convergence of the least squares algorithm is proven when the residue tend to zero, maintaining a noisy pattern
with the order of the uncertainty associated with the observations. Another important factor is the increment in the
estimated values for the states, represented by the vector ∆x, which fall to a predefined limit.

If the increment of all states enter into the pre-established limits, the algorithm ends as expected and the last iteration
provide the values of the estimated parameters. Table 5 shows the final result of the estimation process for the inertia
matrix and gravity center position of the body.
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Figure 4. Estimated position of gravity center.

Table 3. Air bearing estimated mass characteristics using EKF.

Results Values

Inertia matrix (km.m2) I =

 3.0326 0.1011 0.1012
0.1011 12.1381 0.1012
0.1012 0.1012 12.1376


Gravity center position (m) RCG =

 1.027× 10−6

0.974× 10−6

−1.000× 10−6


Standard deviation matrix (kg ∗m2) σ(I) =

 0.1398 0.0048 0.0048
0.0048 0.5641 0.0078
0.0048 0.0078 0.5644


Standard deviation matrix (m) σ(RCG) =

 2.676× 10−7

1.805× 10−7

2.395× 10−7



Table 4. Initial conditions for the nonlinear least square estimator.

Variables Values
[ φ θ ψ ] [ 0 0 0 ] rad

[ ωx ωy ωz ] [ 0 0 0.2618 ] rad/s
[ Ixx Iyy Izz Ixy Ixz Iyz ] [ 3.0 11.5 12.5 0 0 0 ] kg.m2

[ Rx Ry Rz ] [ 0 0 0 ] m
diag(σ(x)) [ 1 1 1 1 1 1 1 2 2 1 1 1 0.01 0.01 0.01 ]
diag(R) [ 8.72× 10−5 8.72× 10−5 8.72× 10−5 1.92× 10−4 1.92× 10−4 1.92× 10−4 ]

4. Conclusions

We observe that both estimation algorithms had satisfactory behavior and accomplished good results for the inertia
matrix and center-of-mass position. By the comparison of algorithms, we note that the EKF obtained a better result when
compared with nonlinear least squares for this case. This fact is explained by comparing the robustness of the algorithms.
The concept of robustness of an estimator is closely related to its ease of obtaining the convergence of states, using a
larger number of different initial conditions. If we vary the initial conditions, heading to worst initial guess, the EKF
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Figure 5. Angular position (left) and angular velocity (right) residue of nonlinear least square estimator for first, third and
fifth estimation cycle.

Table 5. Estimated mass characteristics using nonlinear least square algorithm.

Results Values

Inertia Matrix (km.m2) I =

 3.0073 0.1020 0.1016
0.1020 12.1728 0.1018
0.1016 0.1018 12.1505


Standard deviation matrix (kg ∗m2) σ(I) =

 0.3333 0.0111 0.0111
0.0111 1.3333 0.0112
0.0111 0.0112 1.3329


CG Position (m) R =

 1.0163× 10−6

1.0150× 10−6

−1.0141× 10−6


Standard deviation matrix (m) σ(R) =

 1.1103× 10−7

1.1115× 10−7

1.1092× 10−7



will continue to accomplish convergence. The same does not happen with the nonlinear least square filter because this
algorithm is much more sensitive to the nonlinearities of the problem. Therefore, choosing good initial conditions for
attitude dynamics and parameter estimation problems is very important.

Another substantial fact is in the system nonlinear behavior. For obtaining a better estimation of all principal moments
of inertia, it is suggested that all axis are fully excited. In this problem, just the X-axis were fully excited. The small
angular movement at the other two is caused by coning motion. This fact can be confirmed by comparing the final
standard deviation of the Ixx with the other ones Iyy and Izz. For both estimators, the lowest standard deviation was
obtained for the X-axis, instead of the Y-axis or the Z-axis. Hence, for nonlinear problems, it is suggested that the
set of measurements excite all system modes. For dumbbell air bearing tables, the Y-axis can not be fully excited and
the estimation process may be worst for the parameters that are more sensitive with the Y-axis rotation. This is more
intensified in the nonlinear least square because the algorithm itself is more susceptible to a bed set of measurements.
Also, we can base the commentary of the last paragraph by analysing the EKF result. It is obviously noted that the states
Iyy, Izz and Iyz does not have the same observability level of the states Ixx, Ixy and Ixz, due to less sensitivity of these
states among the set of measurements.

By choosing a more precise initial conditions for the parameters, the nonlinear least square algorithm must return more
reliable values, which represent more effectively the nature of the nonlinear problem. The combination of both estimation
methods could ensure a more trustful result.
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