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Abstract. There are some mathematical models for flexure bearing in the literature. Most models are simplifications of 

bending or bulking behavior of leaf-springs. These approaches aim to supply a parametric design guideline for leaf-

spring bearings. The present work adopts an intermediary solution, taking advantage of both parametric and 

analytical approaches to cope with this limitation. The parametric approach provides the optimal value of geometric 

parameters of flexure bearings. The analytical model, in turn, provides accurate measurements of the influence of 

flexure bearings, e.g. retro torque and rotary deviation, which behave systematically. The developed mathematical 

model is able to determine the main characteristic of flexure bearings made of cross leaf-spring. It takes into account 

the effect of moment, horizontal and vertical loads. The mathematical model developed is used to find the optimal value 

of geometric and form parameters to minimize the retro torque and rotary deviation. 
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1. INTRODUCTION 

 

A flexure bearing is an elastic element that provides the relative rotation between two adjacent rigid members 

through flexing (bending). It can be applied as a bearing with limited rotation capability. Flexure bearings are widely 

used in precision engineering. They show almost no friction, but only internal bounding forces (Krause, 2004). A main 

drawback of flexure bearings is given by the highly limited angle of rotation. Furthermore, flexure bearings do not 

provide a pure rotation around a fixed rotary axis because of the complex elastic behavior (Lobontiu, 2002). On the 

other hand, the position of the rotary axis dependent on the distortion of the bearing is highly repeatable. The 

requirements of the lever bearing in a torque standard machine (TSM) are low friction and the repeatable position of the 

rotary axis, so that flexure bearings seem to fit best (Bitencourt et al. 2008; 2010). With a detailed knowledge of the 

overall behavior of the bearing failure compensation can be applied. The characteristics of flexure bearings can be 

predictable if they are working in the elastic range. 

The best configuration of a flexure bearing is two crossed leaf-springs, shown in Figure 1. They are known as corner 

filled hinges when cross leaf-springs are made in a monolithic form (Krause, 2004).  This configuration gives the 

smallest center shift, the highest stiffness in the other axis and the highest compliance in the rotary axis. The problem is 

that mathematical models for this configuration lead to overdeterminated beams, which makes the model more 

complex. Most of the models to predict flexure behavior presented in the literature are simplifications based on the 

bending or bulking behavior. They can be classified into three approaches: cinematic (Wuest, 1950), parametric 

(Hongzhe and Shusheng, 2010) and analytical (Zelenika and De Bona, 2002). 

Cinematic approaches use the principle of relative movement between two pole paths. One curve is fixed and the 

other one unrolls on the fixed curve. The bearing behavior is modeled as cinematic mechanism of relative movement 

between the curves (Wuest, 1950). However, cinematic approaches only account for the effect of pure moment, which 

is a limitation. The parametric approaches aim to supply guidelines for the bearing design (Hongzhe and Shusheng, 

2010). Therefore, they make simplifications of the equation which provides the parametric set that helps the designer to 

choose a better configuration of the bearing. However, these simplifications are not enough to accurately predict the 

bearing behavior in order to compensate system deviations during operation. The analytical approaches support more 

precise behavior models of cross leaf-springs. However, they require high computational effort and produce complex 

results which cannot be applied directly. This complexity limits he analytical approach restricted to symmetric bearing 

configuration (Zelenika and De Bona, 2002). 
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Figure 1.  Crossed leaf springs. 

 

The present work adopts an intermediary solution, taking advantage of both the parametric and analytical 

approaches. The parametric approach provides optimal results for the geometric parameters of cross leaf-springs. The 

analytical model, in turn, provides accurate measurements of the systematic behavior of flexure bearings. In the 

following section, the mathematical model developed is shown.  

 

2. DEVELOPED MATHEMATICAL MODEL 

 

The main aim of the mathematical model is to determine the center shift OO’ of the cross leaf-spring, see Figure 2. 

The rotary axis of an unloaded bearing is the cross point of the leaf-springs, point O. Otherwise, if any loads are applied 

on the bearing, the center will change position to the point O’. In both cases the position of the rotary center is 

determined by the crossing point of two tangents of the leaf-spring, as shown in Figure 2(b), which is the particularity 

of the approach presented in this article. Other authors have calculated the rotary axis by the deflection of each leaf-

spring in whole length (Haringx, 1949; Zelenika and De Bona, 2002).   

 

                                                            
     

 

Figure 2. Shift of the rotary axis of the cross leaf-spring. 

 

The tangents can be determined by the end point of the leaf spring and the rotary angle. The Equation 1 shows the 

tangent for each leaf spring. They are relative to each particular reference system (OXY1 and OXY2) of each leaf 

spring. When the rotary angle (θ) is smaller than 10° (Wittrick, 1948), the end point of each leaf (∆xi, ∆yi) bearing can 

be determined by the elastic theory of a cantilever beam.  

 

tan( )( ),  i=1,2i i i iy y x x     (1) 

 

The bend of the beam can be described with the approximate expression for its curvature. In this way it is possible to 

determine the deflection of each leaf spring, considering that the springs are fixed in its stages (fixed and moving ones). 

The beams are then constrained to the geometric arrangement of the bearing. The above assumption and the equilibrium 

conditions of the bearing are shown in Figure 3. The bearing behavior is defined by eleven variables (∆x1, ∆x2, ∆y1, 

(b) (a) 
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∆y2, P1, P2, F1, F2, MB1, MB2 and θ), as shown in Figure 3. The index refers to each leaf-spring.  Therefore, eleven 

equations are necessary to determine these variables. A similar approach was taken by Zelenika and De Bona (2002), 

but they used only the symmetric configuration (λ=0.50). 

Three of the equations come from the equilibrium between the moving stages and leaf-spring, Eq. 2-4. The other 

two come from the geometric restriction of each leaf spring, Eq. 5-6. They must remain fixed in both stages (moved and 

fixed).  

 

       2 1 1 2sin cosF P P F F       (2) 

 

       1 2 1 2cos sinP P P F F       (3) 
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              1 2 1 2y cos α x x sin α 2 λ sin α λ sin α cosy L L         (5) 

 

           1 2 1 2y y sin α   x cos α 2 λ sin α sinx L        (6) 

 

 
 

Figure 3. Variables of cross spring-leafs. 

 

The other six equations come from the force equilibrium and deformation of each leaf spring, see Figure 4. These 

equations are obtained through the differential equation of a bending beam, Eq. 7, and elastic theory, Eq.8. 

 

 
Figure 4. Deflection of each leaf springs. 
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These eleven equations together come to a non linear system, which makes its analytical resolution complex. Most 

authors make some kind of approximation or simplification of the load on the bearing (Zelenika and De Bona, 2002) or 

use adimensional parameters (Hongzhe and Shusheng, 2010). Both approaches are not appropriate to determine the 

bearing behavior for online compensation. Therefore numeric optimization was chosen as the method to solve the 

equation system, because this approach provides more accurate results. The numeric optimization was made carried out 

the mathematical software MatLab™. The equations were written as a function of the rotary angle. Thus the center shift 

and the rotation compliance were obtained.  

Routines were written in the MatLab™ environment as shown in Figure 5. The mancal_principal.m is 

responsible for calling the other ones and for the inputs. The mancal_rigidez.m determines the dimension of the 

leaf spring that gives the smallest stiffness and satisfies the failure criteria (Maximum-Shear-Stress Theory and 

Bulking). The non linear equation system in function of the moment applied to the bearing must be written. The 

routines mancal_sistema_momento.m and solucao_inicial_momento.m are responsible for solving this 

equation system. With the dimension of the leaf-spring it is possible to determine the center shift. The routine 

mancal_desvio_centro.m is responsible for determining the center shift by calculating the tangents equations 

and their cross point. It is also necessary to calculate the deformation of the end of each leaf spring for each rotary angle 

in order to write the tangent equations. This task is done by the routines mancal_sistema_theta.m and 

solucao_inicial_theta.m. 

These routines and the mathematical approach provide the best configuration of the bearing for TSM application as 

well as to determine the center shift and the compliance which can be used to do online compensation. These results are 

shown in the following section. 
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Figure 5. Developed routines 
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3. RESULTS AND DISCUSSION 

 

The results of the proposed model were compared to the literature. The first comparison was made with those 

accepted to theoretically give the best accuracy for cross leaf-spring with pure moment (Zelenika and De Bona, 2002). 

The results of the proposed model fit better for rotary angles smaller than 5°. Another comparison was made with 

Hongzhe and Shusheng (2010). The authors found the values of λ that give the smallest center shift are 13% and 87%. 

The developed model came up with similar results, as shown in Figure 7. 

 
 

Figure 6. Relative deviations of proposed model from Zelenika and De Bona (2002) in function of θ(°) 

 

Once the model had been validated, we applied it to determine the optimal configuration for the cross leaf-spring 

bearing. The first step is to determine the material of the leaf spring. Ashby’s method was adopted to determine the best 

material for this function (high strength and low stiffness) (Ashby, 1994). The selected material was beryllium-copper 

alloy (E = 131 GPa and σR = 1,251 MPa). The maximum loads are moment of 2 Nm and vertical load 100 N. For safety 

factor of 1.5 it was found the leaf dimensions of length=20.0mm, width=31.0mm and thickness=0.4mm. These 

dimensions give a bearing stiffness of 5.866 Nm/rad. The center shift of the bearing as a function of the geometric 

parameter (α and λ) is shown in Figure 8. 

 
Figure 7. Values of λ that give the smallest center shift 

 

99.9 %

99.6 %

96.0

96.5

97.0

97.5

98.0

98.5

99.0

99.5

100.0

0 5 10 15 20 25 29

%

θ(°)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8
x 10

-4



d
/L

 

 

 (°)=   0

 (°)=1.25

 (°)= 2.5

 (°)=3.75

 (°)=   5



Proceedings of COBEM 2011         21
st
 Brazilian Congress of Mechanical Engineering 

Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 

  

 

There are specific values of α and λ that give minimal center shift (λ1 = 0.13 and λ2= 0.87), Figure 9. The 

corresponding values for α can be found using λ1 and λ2 calculated for different rotary angle (θ), Figure 10. 30° was 

selected, which gives small center shift and small fabrication complexity. 

 
Figure 8. Center point behavior as function of α and λ 

 

 
Figure 9. Behavior of center shift as function of α and λ, θ=5° 

Figure 10. Behavior of center shift as function of α, λ1 =0.13 and λ2 =0.87 
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Figure 11 shows the center shift for the chosen configuration α=30° and λ=0.13. With these results it is possible to 

compensate the parasitic movement of the cross leaf-spring. Figure 12 shows a sketch of the cross leaf-spring bearing. 

 

 
Figure 11. Center shift of cross leaf spring bearing, α=30° and  λ =0.13 

 

 

 
Figure 12. Cross leaf-spring bearing, α=30° and  λ =0.13 

 

 

 

4. CONCLUSION 

 

This article presented an alternative approach to determine the main characteristic of a cross leaf-spring bearing 

using numerical and optimization methods. The main bearing characteristics considered were stiffness and center shift. 

The mathematical model is solved through a numerical and optimization approach. Routines in Matlab™ were written 

to help solve a non linear system with eleven equations. The proposed model was compared to results available in the 

literature to show its feasibility. In this way, we demonstrate that it is possible to determine the optimal leaf spring form 

and the optimal configuration of the cross spring bearing. 
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