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Abstract. Several studies have investigated the properties of the workspace of robotic chains opened with the purpose of 

emphasizing its geometric and kinematic characteristics, to devise analytical algorithms and procedures for its design. The 

workspace of a manipulator robot is considered of great interest from theoretical and practical viewpoint. In this paper, the 

workspace topology is defined by the number of kinematic solutions, the number of cusps and nodes that appear on the workspace 

boundary. In the classical cases used in Industry, manipulators, to change posture, need to pass through a singularity of the joint 

space. A 3-revolute (3R) manipulator can execute a non singular change of posture if and only if there is at least one point in its 

workspace with exactly three coincident inverse kinematic solutions. In this work, a mulit-objective optimization problem is 

formulated with the aim of obtaining the optimal geometric parameters of robot which must obey the topology specified by the 

designer. The maximum workspace volume, the maximum system stiffness and the optimum dexterity are considered as multi-

objective functions.  In addition, the optimization problem is subject to penalties that control the topology, forcing it to occupy a 

certain portion of the workspace. One sequential technique and two evolution algorithms are applied to obtain the problem solution. 

Two applications are presented to show the efficiency of the proposed methodology. 
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1. INTRODUCTION 
 

In the classical cases used in Industry, manipulators, to change posture, need to pass through a singularity of the 
joint space. In other words, the end effector must bump into the frontier of the workspace. But this behavior is not 
general at all.  

A manipulator with three rotational joints (3R) can execute a non singular change of posture if and only if there is at 
least one point in its workspace which has exactly three coincident solutions of the inverse kinematic model (IKM), 
resulting in one of the separation surfaces which divide the workspace in several regions, called of domains, with 
manipulators which have same properties (binary or quaternary, regions with the same number of cusp points and 
nodes). So, to study such manipulators is essential to know the topology of the singularity surfaces in the workspace. 
These singularities are defined as places where the determinant of the Jacobian matrix of direct kinematic model 
(DKM) is annulled, defining the equations others of surfaces which divide the workspace.   

Wenger and El Omri (1996) showed that for some choices of the parameters, 3R manipulators may be able to 
change posture without meeting a singularity in the joint space. They succeeded in characterizing such manipulators but 
they needed general conditions on the design parameters. Corvez and Rouillier (2002) found important results about this 
issue. In 2004, Baili presented a formulation of the surfaces that separate the different types of 3R manipulators with 
orthogonal axes and made a classification in the parameters space. 

As an application of the classification of the parameters space, Oliveira et al. (2008) presented formulated 
optimization problems with aim of obtaining the optimal geometric parameters of orthogonal 3R manipulators so as to 
maximize the workspace for topologies pre-determined. 

In this paper, the multi-objective optimization problem is formulated with aim of obtaining the optimal geometric 
parameters of orthogonal 3R manipulators which maximize the workspace volume and the system stiffness and 
optimizes the dexterity. Moreover, the topology constraints specified by the designer must be obeyed. 
 This paper also makes a comparative study of three numerical techniques, i.e., sequential quadratic programming 
(SQP), genetic algorithms (GA) and differential evolution (DE).  

The presence of voids, singularities and generation of the discontinuous envelopes can to increase the complexity of 
the algebraic formulation for a correct mathematical model of the robot. Moreover, the objective function can to present 
several local maxima and be nonlinear. These factors increase the difficulties involved in the optimization process, 
justifying the use of different optimization techniques to validate the results.  

It is known that conventional methods are based on rule of point-to-point and they have the danger of "falling" into 
local optima, while the evolutionary algorithms are based on rule of population-to-population.  
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Evolutionary algorithms have advantages of robustness and properties good of convergence. They not require 
knowledge on the function gradient or informations about the optimization problems, in this case only the objective 
function and corresponding fitness levels can influence the directions of search. They use probabilistic transition rules 
and they solve well the large-scale optimization problems in the presence of local optimal, discontinuities and 
nonlinearities.  

Genetic algorithms and differential evolution have been shown efficient to solve linear and nonlinear problems by 
exploring all regions of search space and exploiting promising areas through operators of mutation, crossover and 
selection applied to individuals in the population. Therefore, they are suitable for the optimization problems studied 
here. 

The Fig. 1 illustrates manipulators with three rotational joints and orthogonal axes.  The study of this type of 
manipulator is done according to the Denavit-Hartenberg parameters: d2, d3, d4, r2, and r3. To reduce the number of 
parameters, will be considered d2 = 1 and r3 = 0. The joint variables, which represent the input angles of the actuators, 
are θ1, θ2 and θ3. For this type of manipulator, the direct kinematic model is given in Eq. (1): 

 

 
Figure 1. 3R Manipulator with orthogonal axes  

 

( ) ( )3 4 3 2 1 2 4 3 11x d d c c c r d s s= + + − +    

 

( ) ( )3 4 3 2 1 2 4 3 11y d d c c s r d s c= + + + +                                    (1) 

 

( )3 4 3 2z d d c s= − +  

 
in which  

i
c = cos

i
θ and 

i
s = sin

i
θ ,  for i = 1, 2, 3. 

 
 

 
By using the powerful algebraic tool Grobner basis, it is possible to obtain analytical expressions of the surfaces of 

the parameters space that separate the different types of manipulators. The annulment of the determinant of Jacobian 
matrix of the inverse kinematic model (IKM) enables to obtain the others surfaces that separate the various regions of 
topologies (Corvez and Rouillier, 2002; Baili, 2004; Oliveira et al., 2009). Thus, it is possible obtain:  
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3 1 rdB +−=      (2) 

 

The Equation (2) is the surface of separation between the manipulators of domain 1 and domain 2. The manipulators 
that belong to domain 1 are binary, have a toroidal cavity in its workspace and do not have cusps and nodes points. The 
domain 2 represents the manipulators that have 4 points of cusp, but do not have the same number of nodes. 

The surface of separation C2 ,  between the domains 2 and 3, is defined by: 
 

( )
2 2

2 4 3 3 3 2: /(1 ). 1C d d d d r= + + +      (3) 

 
The domain 3 is composed by manipulators which present 2 cusps points on internal envelopment. In the case of 

domain 4, the manipulators have 4 points of cusp and 4 nodes. The surface C3, which separates the manipulators of the 
domains 3 and 4, is given by: 

 

( )
2 2

3 4 3 3 3 2: /( 1). 1C d d d d r= − − + , with d3 > 1                (4) 

 
Finally, the domain 5 corresponds to manipulators that have no cusp points. Unlike of manipulators of the type 1, 

the internal envelope is not defined by a toroidal cavity, but by a region with 4 solutions in IKM. The surface of 
separation C4, between the domains 3 and 5, is: 

 

 ( )
2 2

4 4 3 3 3 2: /(1 ). 1C d d d d r= − − + , with d 3< 1             (5) 

 
Summarizing, the space of parameters (d3, d4 and r2) of a 3R orthogonal manipulator is divided into 5 domains 

separated by surfaces C1, C2, C3 and C4, defined by Eqs. (2), (3), (4) and (5), respectively. 
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The Figure 2a) shows the curves of separation in a plane section (d3, d4) of the space of parameters, resulting in 5 
domains, adopting a fixed value for r2 =1. The Figure 2b) shows the space of parameters divided according to the 
number of cusps points and nodes points. The domains according to the number of cusps points are divided into sub-
domains that contain the same number of nodes. Each sub-domain defines a topology of the workspace denoted   
WTi(α, β), where α represents the number of cusp points and β the number of nodes points. 
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Figure 2. Division of parameters space considering r2 = 1: 
(a) According to the surface of separation of topologies;  ( b) According to the number of points of cusps and nodes 

 
As explained previously, the manipulators of the domain 1 have a toroidal cavity and do not have cusps and nodes 

points. The manipulator represented in Fig. 3a) characterize the first type of manipulator, whose topology is known as 
WT1(0, 0). 
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(d) Type 2, WT4 (4,2) (e) Type 3, WT5 (2,1) (f)  Type 3, WT6 (2,3) 
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(g) Type 4, WT7 (4,4) (h) Type 5, WT8 (0,0) (i) Type 5, WT9 (0,2) 
 

Figure 3. Radial section for 3R orthogonal manipulators, showing the 5 types of manipulators 
 
The manipulators that belong to domain 2 have 4 points of cusp. This region can be subdivided into 3 sub-domains 

through the surfaces E1  and E2. The topology of the workspace WT2(4, 2), represented by Fig. 3b), has 4 cusp points, 2 
nodes, a toroidal cavity, two regions with 4 solutions and a region with 2 solutions in IKM. The topology WT3(4, 0) 
contains manipulators with 4 cusp points, zero node, without toroidal cavity, a region with 4 solutions and other with 2 
solutions in IKM, as illustrated in Fig. 3c). The transition between the topologies WT2 and WT3 is the boundary 
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between the manipulators containing a toroidal cavity in its workspace and those that do not contain. According to Baili 
(2004), the surface of separation between these topologies is given by the expression: 

 
E1 : d4 = 0.5 (A - B), where A and B are given in Eq. (2).     (6) 

 
In domain 2 is still possible to characterize the topology represented in the Fig. 4d), denoted by WT4(4, 2), 

containing 4 points of cusp and 2 nodes. These nodes are different from nodes of WT2 since not delimit a toroidal cavity 
but a region of 4 solutions in IKM. In this case, the surface of separation E2, between topology WT3 and WT4 is defined 
by: 

 
E2 : d4 = d3   (7) 
 
The domain 3 is composed by manipulators which have 2 cusp points and can be divided into 2 sub-domains 

through the surface E3. The manipulators described by WT5(2, 1) have 2 cusps points on internal envelope, a node point 
and has the shape of a fish, as shown the radial section presented in Fig. 3e). Moreover, the Fig. 5f) presents a radial 
section of a manipulator that belongs to the topology WT6(2, 3), it has 2 points of cusp and 3 nodes. The Eq. (8) defines 
the separation surface between the topology WT5 and WT6. Besides, this surface also separates the topology of the 
workspace WT8 and WT9 that are contained in the domain 5.  

 
E3 : d4 = 0.5 (A + B) (8) 
 
In domain 4, the manipulators are of type 4, represented by WT7(4, 4), have 4 cusp points and 4 nodes, as can be 

seen in Fig. 3g). The 4 points of cusp are shared between the internal and external singularity surfaces. 
Finally, the domain 5 corresponds to manipulators that have no cusp points. Unlike of manipulators of the type 1, 

the internal envelopment is not defined by a toroidal cavity, but by a region with 4 solutions in IKM. 
The domain 5 corresponds to manipulators of type 5 and do not have cusp points. This region is divided into 2 sub-

domains through the surface E3. In the Fig. 3h), the topology represented by WT8 (0, 0) does not have cusp points and 
nor nodes. As mentioned earlier, its internal envelope is not defined by a toroidal cavity, but by a region with 4 
solutions in IKM. Finally, Fig. 3i) features a manipulator which belongs to the topology WT9 (0, 2), with 0 cusp points 
and 2 nodes points obtained by the intersection of internal and external envelopment. 

 
2. WORKSPACE OF 3R MANIPULATORS  

 
According to Bergamaschi et al. (2006), the workspace W  is the set of all attainable points for a point P of the end-

effector when the joint variables sweep its definition interval entire. Point P  is usually chosen as the center of the end-
effector, or the tip of a finger, or even the end of the manipulator itself. The first procedure to investigate the workspace 
is to vary the angles θ1, θ2 and θ3 in their interval of definition and to estimate the coordinates of point P with respect to 
the manipulator base frame. The workspace of this robot is a solid of revolution. Thus, it is natural to imagine that the 
workspace is the result of rotation around the z axis of a radial plane section. 

 

 
 

Figure 4. (a) A scheme for evaluating the workspace volume of 3R manipulators;  (b) Discretization of radial section 
area by using a rectangular mesh 

 
The workspace of a three-revolute open chain manipulator can be given in the form of the radial reach r and axial 

reach z with respect to the base frame, according to Bergamaschi et al. (2006). For this representation, r is the radial 
distance of a generic workspace point from the z-axis, and z is the distance of this same point at the XY-plane (see, Fig. 
4b). Thus, using Eq. (1), the parametric equations (of parameters θ2 and θ3) of the geometrical locus described by point 
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P on a radial plane are: 
 
r

2 = x2 + y2   and   z, where  x, y and  z are given in (1).  (9) 
 
The workspace volume V can be evaluated by the Pappus-Guldin Theorem, using the following equation (see Fig. 

4a): 
 

V = 2πrg Ar, where Ar  is the cross section area, which is formed by the family of curves given by Eq. (1).  (10) 

 
This research proposes numerical formulation to approximate the cross section area, through its discretization within 

a rectangular mesh. Initially, the extreme values of vectors r and z should be obtained as:    
 

rmin = min {r},   rmax = max{r},   zmin = min {z}   and   zmax = max{z}      (11) 
 

Adopting nr and nz as the number of intervals chosen for the discretization along the r and z axis, the sizes of the 
elementary areas of the mesh can be calculated: 

 

max min( ) /
r

r r r n∆ = −    and   max min( ) /
z

z z z n∆ = −   (12) 

 

The nr and nz values must be adopted so that the sizes of the elementary areas (∆r or ∆z) are at least 1% of the total 
distances considered in the discretization (rmax - rmin  or  zmax - zmin ). Every point of the family of curves form the cross 
section of the workspace is calculated by Eq. (9).  Using this equation, varying the values of θ2 and θ3 in the interval [–π 
, π], it is possible to obtain the family of curves of the workspace.  Given a certain point (r, z), its position inside the 
discretization mesh is determined through the following index control: 

 

minint [( ) / ] 1i r r r= − ∆ +    and  minint [( ) / ] 1j z z z= − ∆ + ,  (13) 

  
where i and j are computed as integer numbers. As shown in Fig. 4b), the point of the mesh that belongs to the 
workspace is identified by Pij = 1, otherwise Pij = 0, which means: 
 
 0, i f ( ) 1, f ( )

ij ij ij
P P W P or i P W P= ∉ ∈ ; where W(P) indicates workspace region.    (14) 

 
In this way, the total area is obtained by the sum of every elementary areas of the mesh that are totally or partially 

contained in the cross section. In Eq. (14), it is observed that only the points that belong to the workspace contribute to 
the calculation of the area AT. The coordinate rg of the center of the mass is calculated considering the sum of the center 
of the mass of each elementary area, divided by the total area, using the following equation: 

   

 ( )
max max

1 1

i j

T ij

i j

A P r z
= =

= ∆ ∆∑∑      and      
( ) ( )

max max

min
1 1

( 1) ( / 2)
i j

ij

i j

g

T

P r z i r r r

r
A

= =

 
∆ ∆ − ∆ + ∆ + 

 =

∑∑
 (15) 

 
Finally, after the calculation of the cross section area and the coordinate of the center of the mass, given by Eqs. (14) 

and (15), respectively, the workspace volume of the manipulator can be evaluated by using Eq. (10).  
 

3. SYSTEM STIFFNESS 
 
From the viewpoint of mechanics, the stiffness is the measurement of the ability of a body or structure to resist 

deformation due to the action of external forces. The stiffness of a serial mechanism at a given point of its workspace 
can be characterized by its stiffness matrix. This matrix relates the forces and torques applied at the gripper link in 
Cartesian space to the corresponding linear and angular Cartesian displacements (Rivin, 1999). 

Two main methods have been used to establish mechanism stiffness models, namely: matrix analysis of structures, 
that deals with structures as a combination of elements and nodes (Deblaise et al., 2006; Gonçalves, 2009) and the 
methods based on the calculation of the serial mechanism's Jacobian matrix (El-Khasawneh and Ferreira, 1999; 
Company et al., 2005 ) which is adopted in this work.  

The matrix J is usually termed Jacobian matrix and it is described in Eq. (16), according to Khalil and Dombre, 
1999. For the 3R manipulator with orthogonal axes in study, its determinant is given by Eq. (17).   
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3 2 4 2 2 3 4

3 2 4 2 2 3 3 4

2 3 2 3 4 2 3 4

sin cos cos 0 sin

[ ] sin sin sin cos 0

cos cos cos 0 cos

d r d

J d r d d

d d d d

θ θ θ θ

θ θ θ θ

θ θ θ θ

− − − 
 

= + + 
 + + 

                      (16) 

 

( ) ( )( )4 3 4 3 2 3 3 3 3 3 2 3 2det( ) cos sin sin sin cos cosJ d d d d d d rθ θ θ θ θ θ = + + + −          (17) 

 
The stiffness matrix of the mechanism in the Cartesian space is then given by the Eq. (18), where Kj is the joint 

stiffness matrix of the mechanism, with Kj=[k1, k2, k3]. In this case, each actuator of the mechanism is modeled as an 
elastic component. ki is a scalar representing the joint stiffness of each actuator, being  modeled as linear spring: 

 

[ ] [ ]T

C jK J K J=               (18) 
 

Particularly, in the case where the actuators have the same stiffness, i.e., k=k1=k2=k3, then Eq. (18) will be reduced 
to:  

 

[ ] [ ]T

CK k J J=                (19) 
 

Furthermore, the diagonal elements of the stiffness matrix are used as the system stiffness values. These elements 
represent the pure stiffness in each direction, and they reflect the rigidity of machine tools more clearly and directly. 
The objective function for system stiffness optimization can be written as Eq. (20). In this case, the stiffness index S 
must be maximized: 

 

11 22 33S K K K= + +                          (20) 

 
4. DEXTERITY  

 
The performance index of a robotic mechanical system is a scalar quantity that measures how good the system 

behaves regarding the transmission of motion and strength. This index can be defined for all types of robotic 
mechanical systems, particularly, serial manipulators. 

There are several performance indices defined in the literature, this paper uses the condition number Cond(J) of the 
Jacobian matrix to measure the dexterity of the 3R manipulators (Angeles, 2003). The index Cond(J) is defined as the 
ratio of the largest singular value λmax of J to the smallest one, λmin, i.e., 

  

max min( ) | ( ) / ( ) |Cond J J Jλ λ=            (21) 

 
Note that Cond(J) can attain values from 1 to infinity. The condition number attains its minimum value of unity for 

matrices with identical singular values; such matrices are, thus, called isotropic. On the other side, singular matrices 
have a smallest singular value that vanishes, and hence, their condition number is infinity. The condition number of J 
can be thought of as indicating the distortion in the space of joint variables. The larger this distortion, the greater the 
Cond(J). Therefore, for optimization of the dexterity, the condition number must to be minimized. 

 
5. NUMERICAL SIMULATIONS 

 
The optimization problem is formulated with the objective of obtaining the optimal geometric parameters of the 3R 

manipulator to maximize the workspace and the system stiffness and to optimize the dexterity such as the topologies 
specified by the designer are obeyed. Since the problem have several objectives, it deals with a multi-objective 
optimization problem, and it is required to find all possible tradeoffs among multiple objective functions that are usually 
conflicting with each other. The constraints depend on the topology chosen for the robot, according to Fig. 3. In this 
work, the optimization is investigated using a Sequential Quadratic Programming (SQP), the Differential Evolution 
(DE) and Genetic Algorithms (AG).  

The evolutionary algorithms were developed for unconstrained problems. So, in the case of constrained optimization 
problems, it is necessary to introduce modifications in this method. This work uses the concept of Penalty Function 
(Nocedal and Wright, 2000). In this technique, the problems with constrains are transformed in unconstrained problems 
adding a penalty function P(x) to the original objective function to limit constraint violations. This new objective 
function is penalized, according to a factor rp, every time that meets an active constraint. The scalar rp is a multiplier 
that quantifies the magnitude of the penalty. For the efficiency of the evolutionary method, a large value of the penalty 
factor rp should be used to ensure near satisfaction of all constraints, in this paper, was adopted rp=1000. Then, the 
problem can be rewrite as follows: 
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Maximize  F(x) = f(x) + rp P(x),  where f(x) = [V, Cond(J), S] and P(x) = max (0, gj(x) )2 (22) 

Subject to:    gj(x) ≤ 0; j=1,..,k   and  xl ≤  xi  ≤  x
u
 , i=1, 2, 3 

The geometric parameters are the design variables given by x = (d3, d4, r2)
T . The lower and upper bounds adopted 

for the arm length (side constraints) are: 0.1 ≤ xi ≤ 3.0,  i = 1,2,3. 
In this simulation, two methods of multi-objective optimization are utilized: Weighting Objectives Method and 

Global Criterion Method (L2r-metric and L3r-metric) presented on Oliveira and Saramago (2010). 
The weighted sum strategy converts the multi-objective problem vector f(x) into a scalar optimization problem by 

building a weighted sum of all the objectives as Eq. (23). The weighting coefficients wi represent the relative 
importance of each criterion. Thus, 

 

Maximize 1 1 2 2 3 3( ) ( ) ( )pF x w Vc w Cond J c w Sc r P x= − + − , where 
3

1
1ii

w
=

=∑                   (23) 

 
where the workspace volume V is given by Eq. (10), the stiffness S  is calculated using the Eq. (20) and the condition 
number Cond(J) is represented in the Eq. (21).   

Objective weighting is obviously the most usual substitute model for vector optimization problems. The trouble here 
is attaching weighting coefficients to each of the objectives. The weighting coefficients do not necessarily correspond 
directly to the relative importance of the objectives or allow trade-offs between the objectives to be expressed. For the 
numerical methods for seeking the optimum of  (23) so that wi can reflect closely the importance of objectives, all the 
functions should be expressed in units of approximately the same numerical values. The best results are usually 
obtained if ci = 1/fi

o, where fi
o represents the ideal solution, that indicates the minimum value of each i-th function. To 

determine this solution, one must find the minimum attainable for all the objective functions separately. In this case, the 
vector fo

 = [Vid,, Sid , Cond(J)id]
T is ideal for a multi-objective optimization problem. 

In Global Criterion Method, the multi-objective optimization problem is transformed into a scalar optimization 
problem by using a global criterion. The function that describes this global criterion must be defined such as a possible 
solution close to the ideal solution is found. In this case, the L2r-metric and L3r-metric, are given respectively by: 

 

Minimize 

1
22 2 2

( ) ( )
( ) ( )

( )
id id id

p

id id id

V V Cond J Cond J S S
F x r P x

V Cond J S

      − − −
 = + + +            

 (24) 

Minimize 

1
33 3 3

( ) ( )
( ) ( )

( )
id id id

p

id id id

V V Cond J Cond J S S
F x r P x

V Cond J S

 − − −
 = + + +
 
 

 (25) 

 
The computational code of the DE was developed in MATLAB® by the authors. The parameters used were: number 

of population individuals Np = 15; 100 generations, representation of individuals by real vectors using multiplier of the 
difference vector F = 0.8 and crossover probability CR = 0.5. 

The Genetic Algorithms Optimization Toolbox (GAOT) program developed by Houck et al. (1985) has been used to 
perform the GA, adopting Np = 80 individuals, 100 generations, crossover and mutation probabilities: 0.60 and 0.02. 

The Sequential Quadratic Programming (SQP) it was performed by using the toolbox fmincon of the MATLAB®. 
 

5.1 Example 1 - WT1(0, 0) 
 
In this example, is considered an application where the manipulator must belong to the topology WT1 (see Fig. 2b). 

In this case, the following constraints must be obeyed:  
 
Side limits: 0.1 < d3 < 3.0;  0.1 < d4 < 3.0  e  0.1 < r2 < 3.0  [u.l.] and    (26) 
Points below the curve C1, given by Eq. (2). 

 
The ideal solutions calculated using DE were: Vid =315.2980 [u.v.];  Cond(J)id =1.1822 Sid =35.5516 [u.s.].  
It is worth noting that when SQP is applied the optimum depends on the initial estimate provided by the user. Thus, 

tests were performed for different initial values resulting in different answers. This behavior clearly indicates the 
presence of several local minima. Several starting points were tested: the upper and lower limits of the search space, the 
midpoint of the range and the optimal solution obtained by DE. In the results presented in the tables from 1 to 4 the 
starting points were the solutions obtained by DE. 

The optimal results obtained through the optimization procedure Weighting Objectives Method, Eq. (23), are 
showed in Tab. 1.  Observing this table one can be noted that the best solution depends on interest of the designer 
because each objective function is conflicting with other. In this example, when was adopted the weighting coefficients 
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equal to 0.8 for the volume (w1) or for the stiffness (w3) it was obtained similar results. This is due to the fact that both 
are maximized and presented a similar behavior. But giving the weighting coefficient equal to 0.8 for the condition 
number (w2) it is observed that was obtained a different result and the dexterity was significantly improved.  The results 
indicate that this problem is sensitive to the dexterity value. When this function is prioritized, the optimal volume and 
stiffness are strongly modified. 

 
Table 1. Optimal results obtained with the Weighting Objectives Method for Example 1. 

 
weighting 

coefficients wi 
Technique 

d3       d4       r2 

(u.l.) 
Volume 

(u.v.) 
Cond(J) 

Stiffness 
(u.s) 

Time 
(min) 

DE 0.97    0.73   0.10 58.63 1.87 10.72 67.34 
GA 0.65    0.44   0.52 25.46 1.19 6.05 117.7 

w1=0.33 
w2=0.33 
w3=0.33 SQP 0.64    0.44    0.52 25.32 1.19 6.03 4.92 

DE 0.96    0.75   0.10 59.59 1.91 10.85 49.22 
GA 1.01    0.44   0.62 42.88 1.54 8.72 87.54 

w1=0.80 
w2=0.10 
w3=0.10 SQP 0.97    0.73   0.10 58.64 1.87 10.72 1.75 

DE 0.60    0.43   0.48 22.68 1.18 5.63 60.88 
GA 0.60    0.43   0.49 22.64 1.18 5.63 89.12 

w1=0.10 
w2=0.80 
w3=0.10 SQP 0.60    0.40   0.47 22.66 1.18 5.62 1.94 

DE 0.97    0.74   0.10 59.14 1.89 10.79 56.39 
GA 1.00    0.44   0.61 42.57 1.51 8.65 121.9 

w1=0.10 
w2=0.10 
w3=0.80 SQP 0.97    0.74   0.10 59.01 1.88 10.78 1.14 

 
Table 2. Optimal results obtained with the Global Criterion Method for Example 1. 

 

 Technique 
D3       d4       r2 

(u.l.) 
Volume 

(u.v.) 
Cond(J) 

Stiffness 
(u.s) 

Time 
(min) 

DE 0.95   0.45   0.59   40.87 1.42 8.35 65.17 
GA 0.97   0.45   0.59 41.73 1.45 8.46 87.39 L2r-metric  
SQP 0.95   0.45    0.59      40.85 1.42 8.34 3.41 
DE 0.97   0.73   0.10 58.64 1.87 10.72 41.52 
GA 0.92   0.54   0.41 44.33 1.67 8.66 75.45 L3r-metric 
SQP 0.94   0.71   0.16      55.95 1.78 10.31 1.22 

 
Table 2 shows the results obtained by using the Global Criterion Method, given in Eqs. (24) and (25). In this 

technique the idea is to minimize the relative error of functions in relation to ideal values. The solutions obtained 
represent a compromise between the three objective functions.  

Observing the Tab. 1 and Tab. 2 one can check that the sequential and random techniques obtained similar values, 
differing only in the computational cost. In the case of SQP, the results were good because the initial estimate was the 
optimal obtained by DE. Using sequential programming, the computational cost was significantly small, but this 
technique has some limitations, for example: if the model is multimodal, it can "get stuck" in some local solutions; it 
only handles real variables; the objective function and the constraints must be continuous. 

Considering the L2r-metric, the optimal point obtained by Differential Evolution is marked in Fig. 5a). The optimal 
radial section area of the workspace is presented in Fig. 5b). Comparing the radial section of Fig. 5b) to Fig. 3a), one 
can observe that the parameters of project result in a manipulator with a bigger volume (the void of the workspace was 
reduced). The optimal manipulator belonging to the topology WT1 (d2 = 1, r3 = 0) is represented in Fig. 5c). 
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(a) Parameters space with d2 = 1, r3 = 0 (b) Radial section area of the workspace (c)  Scheme for 3R Robot  

Figure 5. The optimum design of a 3R Robot, considering the L2r-metric by Differential Evolution – Example 1 
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5.2 Example 2 – WT3(4, 0) 
 

Now, considering a manipulator that belongs to the topology WT3, the following constraints are adopted:   
 
Side limits: 0.1 < d3 < 3.0;  0.1 < d4 < 3.0  e  0.1 < r2 < 3.0  [u.l.];  (27) 
Points above the curve E1, given by Eq. (6) and  Points below the curve E2, given by Eq. (7). 
 
The ideal solutions calculated using DE were: Vid =1896.784 [u.v.]; Cond(J)id =1.018 and Sid =105.66 [u.s.].  For this 

case, the optimal results obtained by Weighting Objectives Method are showed in Tab. 3.  The Tab. 4 shows the results 
obtained by using Global Criterion Method. As observed in Example 1, the best solution depends on interest of the 
designer.   

 
Table 3. Optimal results obtained with the Weighting Objectives Method for Example 2. 

 
weighting 

coefficients 
wi 

Technique 
d3       d4       r2 

(u.l.) 
Volume 

(u.v.) 
Cond(J) 

Stiffness 
(u.s) 

Time 
(min) 

DE 3.00   3.00  3.00 1896.78 1.018 105.66 12.87 
GA 3.00   3.00  3.00 1896.78 1.018 105.66 55.03 

w1=0.33 
w2=0.33 
w3=0.33 SQP 3.00   3.00  3.00 1896.80 1.523 94.00 0.46 

DE 3.00   3.00  3.00 1896.78 1.018 105.66 66.37 
GA 3.00   3.00  3.00 1896.78 1.018 105.66 114.02 

w1=0.80 
w2=0.10 
w3=0.10 SQP 3.00   3.00  3.00 1896.78 1.018 105.66 0.96 

DE 3.00   3.00  2.99 1892.50 1.017 105.59 9.80 
GA 3.00   2.97  2.94 1850.93 1.010 104.12 114.56 

w1=0.10 
w2=0.80 
w3=0.10 SQP 3.00   2.97  2.94 1850.96 1.010 104.12 19.08 

DE 3.00   3.00  3.00 1896.78 1.018 105.66 55.21 
GA 3.00   3.00  3.00 1896.78 1.018 105.66 119.84 

w1=0.10 
w2=0.10 
w3=0.80 SQP 3.00   3.00  3.00 1896.78 1.018 105.66 1.13 

 
Considering the L2r-metric, the optimal point obtained by Differential Evolution is marked in Fig. 6a). The scheme 

of the optimal manipulator belonging to the topology WT3 is illustrated in Fig. 6b). 
 

Table 4. Optimal results obtained with the Global Criterion Method for Example 2. 
 

 Technique 
d3       d4       r2 

(u.l.) 
Volume 

(u.v.) 
Cond(J) 

Stiffness 
(u.s) 

Time 
(min) 

DE 3.00   3.00  3.00 1896.78 1.018 105.66 13.35 
GA 3.00   3.00  3.00 1896.78 1.018 105.66 59.78 L2r-metric  
SQP 3.00   3.00  3.00 1891.68 1.018 105.56 17.03 
DE 3.00   3.00  3.00 1896.78 1.018 105.66 11.93 
GA 3.00   3.00  3.00 1896.77 1.018 105.66 66.28 L3r-metric 
SQP 3.00   3.00  3.99 1888.96 1.016 105.45 14.78 
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(a)Parameters space with d2=1, r3=0 
(b) Radial section area of the 

workspace 
(c)  Scheme for 3R Robot  

Figure 6. The optimum design of a 3R Robot, considering the L2r-metric by Differential Evolution – Example 2 
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The optimal radial section area of the workspace is presented in Fig. 6b). Comparing the radial section of Fig. 6b) to 
Fig. 3c), one can observe that the workspace is increased. Furthermore, the manipulators of this type of topology remain 
with  4 cusp points, a region with 4 solutions and other with 2 solutions in IKM.  

In Example 1, note that the low values found in relation to ideal values, are due to the difficulties imposed by the 
constraint C1. In example 2, the values do not suffer many changes because the restrictions are simpler. 

Is important to note that the applied methodologies were effective to obtain optimal solutions obeying the topology 
constraints. 

 

5.3 Input and Output Window Program  
 
A input data window and a output optimal results window was developed to facilitate the use of computational code, 

as shown in Fig. 7a) and 7b), respectively.  
In the input window the designer can choose the multi-objective optimization method, the type of topology and 

define the side constraints. In the output window can be seen the volume, stiffness and dexterity optimal values. 
Moreover, it presents the optimal dimensions and the cross section area of the workspace. 

 

 
(a) 

 
(b) 

Figure 7.  (a)  Input data window;    (b) Output optimal results window  
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6. CONCLUSIONS  
 
In this work, a suitable formulation of the optimal design of manipulators with three orthogonal rotational joints was 

used. The aim is to obtain the optimal dimensions of the manipulators so that the maximum volume of the workspace, 
the maximum stiffness of the mechanism and the optimization of dexterity are considered simultaneously. 

In addition, were imposed constraints according to the type of workspace topology by using appropriate equations 
written according to the separation surfaces of the domains. The solutions were obtained by means of two evolutionary 
techniques and one sequential. 

The authors developed a computational code in MATLAB®, easy to be used by the designer, allowing the optimum 
design of manipulations can be calculated considering the most appropriate topology for the tasks.  

The main contributions of this work were: to verify that the dexterity has a great influence on the optimal 
dimensions of the manipulators;  enable the designer to choose one type of topology to obtain the best design that 
matches the desired application. 

In the future work other examples with different topology constraints will be studied and the general case for the 3R 
manipulator, adopting the parameter r3 ≠ 0, will be considered. 
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