Proceedings of COBEM 2011 21th International Congress of Mechanical Engineering
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil

IDENTIFICATION OF HYBRID ARX- FUZZY MODEL FOR THREE -
DIMENSIONAL SIMULATION OF A VIBRATION-ACOUSTIC SYST EM

Edmilton Roméao da Silva, romao@ufba.br

Robson da Silva Magalhdes RobsonM@cimatec.fieb.org.br

Cristiano Hora de Oliveira Fontes, cfontes@ufba.br

Luis Alberto Luz de Almeida, lalberto@ufba.br

Marcelo Embirucu, embirucu@ufba.br

Programa de Pés-Graduagao em Engenharia Industial, Escola Politécnica, Rua Aristides Novis,Federacdo, EP-UFBA,
CEP 40.210-630. Telefone: (71) 3283-9800 , E-npail@ufba.brywww.pei.ufba.br

Abstract - Acoustic noise in industrial areas, typically generated by compressors and vacuum pumps, may be
mitigated with the combined use of passive and active noise control strategies. Despite its widespread use, the
traditional Active Noise Control (ANC) technique has been proven to be effective only within a small delimited spatial
area. When the movement of human operators in a relatively large area around the noisy equipment is required, new
canceling strategies have to be devised to achieve acceptable levels of spatial coverage. In the pursuit of this goal, this
paper proposes a model for predicting acoustic pressure levels in a fixed rectangular tridimensional region inside a
closed room that resembles an industrial warehouse. From the signal of an accelerometer physically attached to the
noise source to a single point in a regularly spaced grid of the corresponding region, an empirical second order model
(phenomenologically inspired) with delay to represent the estimated sound pressure level is proposed. The discrete
proposed model, which uses the estimated sound travel time differences between one point on the grid to another,
transforms the proposed second order linear model into a variable structure model. We used a real experimental
system with a relatively fine grid which produced a large quantity of points to cover the whole tridimensional region.
The proposed methodology generated hundreds of parameters for the entire region during each individual model
simulation procedure. Therefore, to accommodate the observed large variation in the values of each set of parameters
for each point inside the region, represented as X, Y and Z, Cartesian coordinates, a fuzzy model was used to calculate
the model parameters for any given point in the region defined by its set of 3D Cartesian coordinates (fuzzy model
inputs), which reduced the net number of model parameters. Thus, the modeling approach is a novel one for vibration
to acoustic predictions, where the fuzzy model is not directly used to represent a dynamic model, rather to approximate
the tridimensional set of parameters of a variable structure ARX model. When compared with other models, good
agreement between experimental data and simulation is demonstrated, and results attest to the potential of the
developed model in the design of effective ANC strategies for larger regions than those found in the literature.
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1. INTRODUCTION

In an industrial environment, the noise emittedditating equipment housed in rooms can be distgraimd even, if
the level is too high, harmful to operating perseinfAppropriate attenuation for this noise may lbmamed by
associating a simulation model for the acoustidatéah caused by machine vibrations to an ActivassoControl
(ANC) system. ANC requires the introduction, in @soustic arrangement, of a controlled secondarysiimsource
driven in such way that the acoustic field genetrdtg this source interferes destructively overftblel caused by the
original primary acoustic source (Elliattal., 1987).

The waveform found in the acoustic field producgdabrotating machine is almost periodic and thedamental
frequency and noise level can be estimated by proppate model. Therefore, a previous knowledgéhefacoustic
field behavior of the primary source in a vibratengd acoustic radiating environment system is vsgful for effective
noise level control. Through the adjustment of éingplitude and phase of the output signal predibted model, the
secondary source must be driven so that the figdhated by the primary acoustic source is cardetiut. Information
about the pressure and the acoustic power of thatimg and acoustic radiating environment systethérefore very
useful in the early stage of effective noise cdngither by passive or active means.

The modeling of the phenomenon involved is not s&ngnd different numerical methods of varying coemjly
have been developed. Many theoretical and expetahstudies have been performed to identify the@miate model
for simulation of acoustic radiations in a vibratiand acoustic radiating environment in three dgim@rs. Some
methods require boundaries or domain division large number of elements or sections where vew®y fireshes are
needed to solve excitations at high frequenciesh s the infinite element method (IEM; Autriquedadagouls,
2006/7) and the boundary element method (BEM; Kird &, 1996; Soares and Mansur; 2006; Qateal., 2007).

" The co-author is also with SENAI (Servigo NaciodalAprendizagem Industrial) — CIMATEC (Centro biado de
Manufatura e Tecnologia), Av. Orlando Gomes,184&t&2 CEP: 41650-010, Salvador-BA.
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These methods have not been widely used to conpat@ropagation of sound due to the high computagitfort
involved, hampering real-time applications and mgkheir use unfeasible for ANC.

Methods based on geometric acoustics are also witseld in room acoustic prediction. Among thesehou, the
Image Source Method (ISM; Allen and Berkley, 19Dance and Shield, 1997; Anténgbal., 2008a) requires a large
amount of virtual sources which can limit its apption. The Ray Tracing Technique (RTT; Kulowsl885) is valid
in high frequency ranges and includes a certaimegegf uncertainty, since it is not assured thathal necessary rays
will be included in the output signal response.

The Method of Fundamental Solutions (MFS) is aglile when a fundamental solution of the differdraguation
that describes the sound propagation in the acoastingement analyzed is available (Antdtial., 2008b).

The Room Transfer Function (RTF) method, which dbss the sound transmission characteristics betveee
source primary and a receiver in a room (Haretdd, 1999), plays a very important role in acoustgnal processing
and sound field control, especially when an ANCsuseerse filters based on RTFs to reduce noise/d8hii and
Kaneda, 1988). A multi-input multi-output sound trehsystem has recently been investigated usirsgniethod (Wen
et al., 2006). In such a system, multiple RTFs betweensiburces and receivers were used. An efficientetimogl
method called common-acoustical-pole-zero (CAPZ3 maposed for multiple RTFs (Hanegtaal., 1999). However,
even when the CAPZ model is used, the RTF has tmdeesured for every source-receiver due to thertdigmee on
the zeros from the source and receiver positions.

This paper proposes the machine-room transfer iinm¢MRTF), a method that includes the machine atibn
(primary source) in the dynamic modeling of RTFReTMRTF method models the vibrating and acoustitatang
between a primary source and a receiver in a rddma.prediction of the acoustic field inside thelesed space is the
main objective. As well as the RTF in the CAPZ nipdee MRTF has to be measured for every sourceirec
setting. Given the difficulty and feasibility ofightask, this work also propose$uazy model procedure to estimate an
unknown MRTF at an arbitrary position between knoMRTFs. Thefuzzy model is applied over the model
parameters, mapping the relationship between MRJdfameters and Cartesian coordinates’ and Z, providing
model predictions at any given position.

2. MODELLING AND METHODOLOGY
2.1. The ARX model

Consider that an ARX model can appropriately regmethe acoustic field formed by a primary sourtarty room-
cloistered system, then:

Aa)5y(n) = g™ B(g) w(n) + () (1)

Alg)=1+a " +a,[ + . .+a, G "™

B(q)=by +b [G™ +b, (0" +...+b, (g™

whereu(n) is the system input signal sample at instary(n) is the system output signal sample at instaefn) is
white noise at instam, d is the delay (dead time) of the system output wéthrard to input, q is the forward shift

operator anchb < na. In this work, the ARX model is applied to predieé output in a simulation fashion (or long step
ahead prediction), and a least square recursiveegdue is be used to estimate the parameters.

(@)

2.2. The fuzzy Systems

Fuzzy system (Zadeh, 1965, 1988) (Jang, 1995),lwigeed as a tool in various techniques to solablems, have
wide applicability, especially in the areas of sifisation, control and optimization, due to itsilap to represent
uncertainty. Fuzzy systemis a superset of conventional (Boolean) logic tieg been extended to handle the concept of
partial truth - truth values between “completelyett and “completely false” Fuzzy system can process both numerical
and linguistic information (Zhang and Gan, 2004jhwihe aim to build a fuzzy system to approximateoatrol
information based on inference or heuristic knogkedLiu, 2002).Fuzzy system has been used in control systems
where the behavior of physical systems modeledobyialists is representelfiuzzy systems are capable to approximate
any continuous function defined in compact domaiite any degree of accuracy (Dickerson and Kosk®61 Kosko,
1992, Laukonen and Passino, 1994, Lewis et al, 18&5g and Singh, 1995).

The input-output mapping is accomplished by theyunference mechanism. The main approaches ircttss are
the Mamdani and Takagi-Sugeno-Kang (TSK) modelsdifter in the shape of the consequent of rulagheSugeno
inference system the rule consequent is a fundfanputs and the Mamdani model has fuzzy sethénconsequents
(Kothamasu and Huang, 2007).
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2.3. System impulse response and model structure

Consider a vibrating and acoustic radiating envitent system that comprises a centrifugal pump lbirsa room
(Fig. 1). The centrifugal pump is the primary noiseurce in this system. In the experimental promedthe
microphone was positioned at each the grid podimstilated in Fig.1(c). With this procedure, the mbdield generated
by primary source was mapped. The Fig. 1 alsotilitiss a specific position of the microphone atrdomtesX=07,
Y=06 andz=03.

(b)

Figure 1. Acoustic field mapping generated by ating machine operating in a closed room. Systgmtirpump
accelerometer (100 mV/g) signal. System outputrapicone (50 mV/PA) signal in all points consideasd identified
by coordinate¥, Y, Z. X =1, 2, ..., 744 cm),Y=1, 2, ..., 1044 cm) andZ =1, 2, ..., 5 {44 cm). Microphone
displacement (passive sensor): (a) horizontal €plical (c) mesh of the 350 collected data (7x1paSitions assumed
by the passive sensor).

Placing the accelerometer in the pump and a micghat any given point in the room (identified kg i
coordinates, Y, Z), the Machine-Room Transfer Function of the vilmgand acoustic radiating environment signal-
transmission channel between the accelerometealsigt) and the microphone signg(t), denoted byH(s), can be
identified. This model represents the vibrating acgdustic radiating environment system betweerptirap and any
given point in the room.

Applying an impulse input in the accelerometer. (ugt) = J(t)), the responsgyt) of the system would present a

profile that could be represented by an under-dansgeond order system. Therefore, a second omtesféar function,
H(s), can be considered to describe the experimeatat d

AR )
H(s)=k3 I 3
(S) S +2[7 s+ )

wherek, o, {, andty are model gain, characteristic frequency, damgaagor and time delay, respectively. A
discrete-time model equivalent to Eq. (3) is:
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y(n)=-a y(n-1)-a, H(n-2)+b, fu(n-d)-u(n-d -1} d =0 @)
or, using Eq. (1):

Alg)=1+a [0 +a, 0 -
B(q)=b, f1-q)

In order to improve model predictions the ordeBgiolynomial was varied keeping the same qualitabehavior,
and a second order model was selected:

Ag)=1+a [0 +a, 0
B(q) = (b, + by o +b, %) fi-q )

2.4. Methodology for data gathering

(6)

The environment in which the experiment was carided is a room 7.5 x 3.5 meters and 3.2 meters, high
composing the acoustic mesh presented in Fig. & rbom houses a centrifugal pump powered by artriglalc
asynchronous motor, two ICP sensors, an acceleesmgdtich receives the dynamic generated by thegsgirsource
and a microphone that receives the sound pressueach point in the mesh previously defined. A p@&ectric
accelerometer of 100 mV/g was adopted.

During each measurement the passive sensor waopedi with its axis parallel to the wall (lengththe room)
and to the floor’s plane, in front of the primausce. The data was collected by a CMXA50 Micratoglector (SKF)
which relies upon a compact collecting data devidee signal treatment is composed of an ICP integréont linked
with a pass-band filter (10-1000 Hz), adjusted teample frequency of 2560 Hz with a collect spametiof 1.6
seconds. A collection of 4096 points per channaddoh mesh of sampling was carried out for eaclabierdata. The
nominal rotation of the centrifugal pump (primagusce) is 29 Hz. Since the highest level of powebelow 200 Hz
band, the collected signal underwent a tenth peeguction prior to the identification of each MRTF.

3. RESULTS

Applying the least square algorithm using the daésh, 350 MRTFs were identified describing the dyica and
spatial behavior of the acoustic pressure in tlwenréhrough its relationship with the vibration sigifrom the pump.
Each machine-room transfer function (MRTF) computiaa ARX model according to Eqs 1 to 6.

Considering 350 models and 5 parametarsa;, by, b; andb,) for each one, the acoustic pressure mappingen th
entire room uses a total of 1750 parameters. Tunisber of parameters is too high for real-time aggtions. This paper
proposes a hybrid approach (ARX-fuzzy inference atjothat combines the machine-room transfer func(’dRTF)
in the dynamic modeling of RTFs, together with azfyiinference system to estimate the model parameteer the
space.
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Figure 2. Fuzzy inference system
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This paper also aims to compare the results foyntMagalhdes et al (2009), which was developed sinalar
experiment using a hybrid system-ARX Neural Networ&del. Each one of the five fuzzy models has thinpets
(cartesian coordinates X, Y and Z) and two Gaussiambership functions (small and large, see FigeXe defined
for each input.

The Mamdani model was adopted and Gaussian menipdtsittion was also considered in the consequehts
each rule. Eight rules were adopted as shown below.

Rule 1: if X is small and Y is small and Z is sntalkn the parameter is small

Rule 2: if X is small and Y is small and Z is larthpen the parameter is small medium
Rule 3:if X is small and Y is large and Z is lardpen the parameter is medium large
Rule 4: if X is large and Y is small and Z is snthkn the parameter is small medium
Rule 5: if X is large and Y is large and Z is smh#n the parameter is medium large
Rule 6: if X is small and Y is large and Z is sntakn the parameter is small medium
Rule 7: if X is small and Y is large and Z is lathen the parameter is medium large
Rule 8: if X is large and Y is large and Z is lathen the parameter is large

Considering two linguistic variables (small or laygor each one of the three cartesian coordiratesthe same
rule base for each parametex,(a,, by, by andhb,, Fig. 3), this hybrid approach comprises 100 patans to be
estimated all of them associated to the fuzzy @rfee system (mean and deviation of each Gaussianbenship
function).

2
Hirs Mamdani
Fuzzier Inference  Defuzzifie o
Chutput

—
@

Input

pararniers

S TR S ¥

1

Figure 3. Complete hybrid model. |

Both ARX and fuzzy structures are used together #imultaneous optimization procedure in orderepneggate the
final model. The parameters estimated were the raednstandard deviation of each membership funciefimed for
the antecedents and consequents presented inlésehase. Therefore, the final model has only l8@Gmeters (a
reduction of 94%) which represent a notable redacin computational cost allowing its implementatia real-time
control systems.

The spatial distribution of the estimated paransetan be represented through surfaces which asemges in
Tab.1 through Tab. 3. Each table presents theaddathavior of model parametei,(by, b,) in a specificZ plane
(indicated in each corresponding tabl@) the other parameters,( by,), not presented in the tables, have the same
behaviors. Therefore, each surface shows parameeiegions in bothiX andY directions. The parameter values in a
specific point are related to the physical-acoufs#tures of this point such as the distance frahe primary acoustic
source or the wave sound reflection measured frenpoint.

The first column of Tab.1 — Tab. 3 presents thdases obtained using the parameter values of téstifced
models using all input-output data (350 in the wehgppace considered and 70 for eagdlane) according to Fig.1. The
second column presents the results obtained bgpghtal Neural Network approach (Magalhdes et @092 and the
third column presents the results obtained by gagia hybrid ARX-fuzzy model procedure, both applied he same
350 points.
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Table 1. Model parameters spatial distributionnBla= 1 (0.44 m)

Plane Z=0.44 m

Parameters Identified Grid Neural Netwok Grid Fuzzy Model Grid
(Magalhées et al, 2009) (Magalhées et al, 2009)

a1
bo
b,
L o
xm " o Y(im)
Worst Adjustments Fuzzy Models Best Adjustments Fuzzy Models
Z=1(-0.44 m), X=1(-:0.44 m) and Y7(-0.44 m Z=1(-0.44 m), X=6(-0.44 m) and Y3(-:0.44 m
2 . ‘ ‘ 2 ; ; ;
: i
1h 3 A a R s , n i
VLN AR R A Al
a £ Mf
ab ¥ ¥
i
% 20 40 60 80 100 % 20 40 60 80 100
Sample Sample
.. Measured output y (n) .. Measured output y (n)

— Estimated output yp(n) - ARX identified models

— Estimated output yp(n) - ARX identified models
—— Estimated output yp(n) - Fuzzy Logic System

—— Estimated output y (n) - Fuzzy Logic System

Figure 4. Best and worst adjustments for platrek (0.44 m): time response of identified and neoedlvork models.
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Table 2. Model parameters spatial distributionnBla= 3 (1,32 m)

Plane Z=1.32 m

Parameters Identified Grid
(Magalhées et al, 2009)

Neural Netwok Grid

Fuzzy Model Grid
(Magalhaes et al, 2009)

il Y(m)

Worst Adjustments Fuzzy Models Best Adjustments Fuzzy Models
Z=3(-0.44 m, X=1(-0.44 m) and Y7(-:0.44 m Z=3(-0.44 m), >»=5(-0.44 m) and Y3(-0.44 m

Pascal

Pascal

0 20 40 60 80
Sample

100 % 20 40 60 80 100

- Measured output y (n)
— Estimated output yp(n) - ARX identified models
— Estimated output yp(n) - Fuzzy Logic System

- Measured output y (n)
— Estimated output yp(n) - ARX identified models
— Estimated output yp(n) - Fuzzy Logic System

Figure 5. Best and worst adjustments for plate3 (0.44 m): time response of identified and nenedlvork models.
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Table 3. Model parameters spatial distributionnBla=5 (2,20 m)

Plane Z=2.20 m

Parameters Identified Grid Neural Netwok Grid Fuzzy Model Grid

(Magalhées et al, 2009) (Magalhaes et al, 2009)

a
bo
b,
Worst Adjustments Fuzzy Models Best Adjustments Fuzzy Models

Z=5(-0.44 m), X=1(-:0.44 m) and Y8(-0.44 m Z=5(-0.44 m), X=3:0.44 m) and Y1(-0.44 m
. . , 2 . . ,

0 20 40 60 80 100 0 20 40 60 80 100

Sample Sample
. Measured output y (n) . Measured output y (n)
— Estimated output yp(n) - ARX identified models — Estimated output yp(n) - ARX identified models
—— Estimated output yp(n) - Fuzzy Logic System —— Estimated output yp(n) - Fuzzy Logic System

Figure 6. Best and worst adjustments for plagws (0.44 m): time response of identified d&adzy model models.
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......... Estimated output yp(n) - ARX identified models \
.. Estimated output yp(n) - ARX neural network models

| —— Estimated output yp(n) - Fuzzy Logic System

= — — ——

0 20 40 60 80 100 120
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Figure 7. Average PSD for the output.

Two main conclusions must be highlighted regardhegspatial distribution of model parameters shoimefiab.1 —
Tab.3. First, in all cases the fuzzy model (thimdumn) agree with the general trends of the Nedtetwok Grid
(second column), achieved a satisfactory performamaescribing the dominant behavior of systemadtyies without
degradation of output prediction, with the sameelewof quality (as can be seen in Fig. 4 to Fig.d)esting the
potentiality and efficiency of the modeling proceslyproposed in this work. Second, a supposed syroni®thavior
expected with respect to the central poinXadxis is not verified. This fact is associated vtttk physical features of
the room that does not assure a uniformity condlitioall space and mainly due to the pump displas#nsince its
driving shaft is not aligned witk direction, but withX direction

Fig. 7 presents the average PSD (Power Spectraieof the 350 mesh points. Thezy model provides a good
description of system dominant dynamic (PSD peaksere most of the energy signal is concentratedhowi
degradation of output prediction (both amplitudd &nequency features of thiuzzy mode fit those of the identified
models well).

4. CONCLUSIONS

This paper presents the development of a Machir@¥Roransfer Function (MRTF) to describe the vibrgtand
acoustic radiating environment transmission betwaegrimary source and a receiver in a room. Idiedtiimodels
perform satisfactorily in describing system behavieurthermore, in order to provide model reductzom to describe
the whole spatial behavior,fazzy model procedure was applied to the parametric modeiss procedure resulted in
significant model reduction of up to 94%, keepinggaod description of system dominant dynamics witho
degradation of output prediction and allowing fealrtime model implementation in control systems.

The resultant models were used to simulate therdimbehavior of the microphone output signal. Figg& show
the best and worst mean square error models foeplZ=1, 3 and 5. It can be seen that even thet wmdel results
provide a suitable description of the experimedtdh, capturing the main trends of system behagitiver when using
identified orfuzzy model.

In comparison with the work of Magalhées et al @0@his study proposes a reduction of computatieffart and
processing time since it reduced the number oftigawameters from 105 to 100, maintaining the s#awels of
quality.
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