
Proceedings of COBEM 2011         21st Brazilian Congress of Mechanical Engineering 
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 
  

OBJECT ORIENTED PROGRAMMING IN FORTRAN 
 

André Teófilo Beck, atbeck@sc.usp.br 
Felipe Alexander Vargas Bazán, favb@sc.usp.br 
Department of Structural Engineering, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador Sãocarlense 
400, 13566-590, São Carlos, SP, Brazil 
 
Abstract. This paper presents fundamental concepts for object oriented programming (OOP) in FORTRAN. In general, 
FORTRAN users are not familiar with these concepts since, until recently, there was no support for object oriented 
programming in FORTRAN compilers. Recently, version 11.1 of the Intel Visual Fortran compiler was released, 
incorporating support for most object oriented features of the FORTRAN 2003 standard. Hence, FORTRAN users can 
now update their practice with this important programming methodology. The main purpose of this paper is to show 
that FORTRAN can be used with a level of abstraction much higher than observed in practice (in particular, in 
engineering), by using OOP concepts. The article presents the state of the art in FORTRAN compilers and standards, 
with respect to OOP. The article discusses the concepts of data abstraction, encapsulation and information hiding, 
classes and objects. Concepts are presented independently of implementation language, but their implementation is 
illustrated in FORTRAN 90/95/2003. The article illustrates construction of polymorphic classes, by type-extension and 
inheritance, using the Intel Visual FORTRAN compiler version 11.1. The article also shows that polymorphism can be 
emulated, by the appropriate use of pointers, using older compilers and FORTRAN 90/95. Implementation of concepts 
is illustrated by means of an academic and didactic example, involving a university management system, which 
manipulates persons, students, professors, courses and dates. 
 
Keywords: computer programming, object oriented programming, OO programming, FORTRAN 

 
1. INTRODUCTION 

 
This paper aims to disseminate concepts of object oriented programming (OOP) for FORTRAN language users. 

Such concepts will make it possible to take best advantage of resources of OOP introduced by FORTRAN 2003 
standard and recently implemented in Intel Visual FORTRAN compiler version 11.1 (Intel, 2009). The article shows 
that the language can be used with a level of abstraction much higher than observed in practice in the scientific 
environment (in particular, in engineering). 

When it was created by John Backus in the 50’s, FORTRAN – FORmula TRANslator – was considered as a high-
level language, in comparison with other machine languages of that time (e.g., ASSEMBLER). Thus, FORTRAN had a 
fast dissemination and gained thousands of users. FORTRAN played a fundamental role in making computer 
programming accessible to the scientific community. In consequence, a large number of programs was developed in this 
language, over many years. FORTRAN is, until today, extremely popular among scientists. 

Since its creation, FORTRAN users developed several “dialects” of the language. With the objective of 
standardizing the language, in 1966 the first standard of a programming language was created, namely, FORTRAN 66. 
Later, in 1977, a new standard (FORTRAN 77) was created to standardize the language, incorporating some of the 
many resources developed independently by different groups. During this development, FORTRAN always exploited 
hardware resources very well, making it, until these days, one of the fastest programming languages.. 

In the decades 60 to 80, new programming languages appeared. Several of them surpassed FORTRAN in terms of 
resources, mainly those resources enabling a more abstract programming level. The FORTRAN 90 standard (Adams et 
al., 1992) was created not to standardize existing practices, but to incorporate in FORTRAN resources already present 
in other languages. This means that the standard (the paper) began to specify resources to be implemented in compilers. 
The FORTRAN 90 standard was a major revision. Some of the main new features introduced to the language were: 
operations with matrices, many intrinsic functions, dynamic matrix allocation, user-defined data types, modules, 
module procedures, operator overloading, interfaces, operations with pointers, and free-form programming. Many of 
these resources are not extensively employed, for example, by engineering students programming in FORTRAN. In this 
article, some of these resources, needed to implement OOP, are addressed. The FORTRAN 95 standard (Adams et al., 
1997) did not incorporate great resources to the language, but made it compatible with HPF – High Performance 
FORTRAN – for parallel processing. 

The FORTRAN 2003 standard (Adams et al., 2009) introduced several concepts of OO programming, such as type 
extension, the CLASS keyword, resources for inheritance and polymorphism, and type-bound procedures, as described 
in this paper. During many years, this standard was ahead of the compilers, since until very recently no FORTRAN 
compilers did support most of the resources introduced by FORTRAN 2003. In October 2009, Intel released the Intel 
Visual FORTRAN compiler version 11.1 (Intel, 2009), which offers support for a large part (but not all) of the object 
orientation resources of FORTRAN 2003. Until then, some OO programming techniques could be emulated in older 
compilers using FORTRAN 90/95 resources (Akin, 2003; Decyk et al., 1997; Decyk et al., 1998). 



Proceedings of COBEM 2011         21st Brazilian Congress of Mechanical Engineering 
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 
  
 

This article is organized as follows. Section 2 presents definition, objectives and components of OO programming. 
Section 3 describes the concept of data abstraction. In Section 4 the concepts of class and object are presented. In 
Section 5 construction of classes by composition, using FORTRAN 90/95/2003, is illustrated. Section 6 presents 
construction of polymorphic classes by using inheritance according to FORTRAN 2003 standard. Section 7 shows how 
polymorphic classes can be created by emulation, using the FORTRAN 90/95 standard. In Section 8 some conclusions 
are presented. 

Since the article deals with compiler instructions and code excerpts, the following syntax is used: 
CODE INSTRUCTIONS – programming instructions and program excerpts appear exclusively in capital letter and Courier 

New reduced font (size 7). 
LARGE CODE PORTIONS – large program portions appear within a chart, with a corresponding figure numeration. 

Programming instructions follow the syntax above, with capital letters and Courier New reduced font. 
 

2. OO PROGRAMMING: DEFINITION, OBJECTIVES AND COMPONENTS 
 
The philosophy of object orientation is based on the construction of software as a structured collection of classes. 

Focus of the development is not on the tasks which the software must execute, but on the objects (from the real world or 
not) which the software must handle. In other words, the focus of the development is not on what the program does, but 
on which objects it manipulates. 

The main objectives of OO programming are expansibility, reusability, and compatibility. Expansibility is the 
capability of adapting or extending a piece of software due to changes in specifications. Reusability is the capability of 
using programs or software elements which have been previously programmed, in order to construct new applications. 
Compatibility is the capability of combining together software elements developed by different parts. In addition to 
these objectives, other internal factors (only realized by those involved in code development) are code legibility and 
capability of developing large programs in a logical and objective manner. 

Object oriented programming has four fundamental components: data abstraction, classes, inheritance, and 
polymorphism. Data abstraction consists of extracting the essential features of the objects to be manipulated by the 
program. A class consists of the implementation of such features in an independent program unit, equipped with the 
data structure and the functions needed to manipulate objects. An object is a portion of information created (or 
instantiated) from a class at run-time. Development of the basic unit (the class) is based on encapsulation and 
information hiding: essential aspects of the object behavior are visible from outside the class, but implementation details 
remain hidden. Inheritance is the property by which specific (sub-)classes can be created by inheriting features from 
more general classes. Inheritance gives rise to families of classes and to polymorphism. Polymorphism is the capability 
of developing software which manipulates, generically, any object originated from a family of classes. This includes 
construction of software which is able to manipulate objects instantiated from classes developed later than the actual 
software. 

 
3. DATA ABSTRACTION (ABSTRACT DATA TYPES) 

 
A fundamental aspect in OO programming is the identification and characterization of the objects (from the real 

world or not) which the program to be developed has to manipulate. Data abstraction is the capability of extracting the 
essential features of these objects. The features are defined from behavior; implementation is secondary and remains 
hidden. Description of the objects must be such that any user is capable of using parts of the program without knowing 
internal details about how they were programmed. The term Abstrac Data Type (ADT) is employed, but this 
nomenclature does not correspond to a data type of FORTRAN compiler. The concept of data abstraction is 
independent from language, so it can be applied to any programming language. 

Proper description of an ADT has to be precise and unambiguous, has to be as complete as needed, and should not 
be over-specifying (Meyer, 2000). Focus is placed on the operations to be executed on the object. In order to perform a 
specification which is independent from implementation, it is suitable to employ a system of signatures, as illustrated in 
the following example. 

 
3.1. Specification of an ADT CALENDAR_DATE 

 
Any program which manipulates dates can use an ADT CALENDAR_DATE. Description of this ADT must be such that its 

use does not depend on the data system chosen by the user, i.e., it has to work properly either in system 
DAY/MONTH/YEAR or in the system MONTH/DAY/YEAR. The example is simple, but serves the purpose of 
illustrating the concept. 

 
a. Type specification: TYPE(CALENDAR_DATE) DATE 
b. List of functions: 

For any I:integer, R:real, L:logical and DATE:TYPE(CALENDAR_DATE) 
CREATE:      → DATE 



Proceedings of COBEM 2011         21st Brazilian Congress of Mechanical Engineering 
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 
  

SET_DAY:       DATE x I → DATE      GET_DAY:      DATE → I 
SET_MONTH:     DATE x I → DATE      GET_MONTH:    DATE → I 
SET_YEAR:      DATE x I → DATE      GET_YEAR:     DATE → I 
DATE1_LESS_THAN_DATE2:    DATE x DATE → L 
DATE1_GREATER_THAN_DATE2: DATE x DATE → L 
DATE_DIFFERENCE:          DATE x DATE → DATE 
CONVERT_TO_DAYS:          DATE → I 
PRINT_DATE_DMY_FORMAT:    DATE → Ø 
PRINT_DATE_MDY_FORMAT:    DATE → Ø 

c. Axioms: 
For any I:integer, R:real, L:logical and DATE:TYPE(CALENDAR_DATE) 
DATE = CREATE_DATE() 
SET_DAY(DATE,I)   = DATE            GET_DAY(DATE)   = I 
SET_MONTH(DATE,I) = DATE            GET_MONTH(DATE) = I 
SET_YEAR(DATE,I)  = DATE            GET_YEAR(DATE)  = I 
DATE1_LESS_THAN_DATE2(DATE,DATE) = L 
DATE1_GREATER_THAN_DATE2(DATE,DATE) = L 
DATE_DIFFERENCE (DATE,DATE) = DATE 
CONVERT_TO_YEARS(DATE) = R 
PRINT_DATE_DMY_FORMAT(DATE) 
PRINT_DATE_MDY_FORMAT(DATE) 

d. Pre-conditioners: 
SET_DAY(DATE,I)     requires: 1 ≤ I ≤ number of days of each month 
SET_MONTH(DATE,I)   requires: 1 ≤ I ≤ 12 
SET_YEAR(DATE,I)    requires: 0 ≤ I  ? 

 
In the list of functions (sub-section b. above) a nomenclature of signatures is used, which is independent from 

programming language and similar to that used for mathematical functions. In the list above, functions where DATE 
appears on the right of the arrow are creation functions, i.e., they produce an instance of DATE from another type or from 
no argument. When DATE appears on the left of the arrow, the function is an inquiry function (query), which returns 
properties of one (or more) instance(s) of DATE. Functions in which DATE appears on both sides of the arrow are command 
(action) functions, which modify a certain instance of DATE. 

It can be observed that the description above is to work correctly, no matter the date format the user is thinking, i.e., 
DAY/MONTH/YEAR or MONTH/DAY/YEAR. As a counter-example, any function that permits simultaneous 
specification of the three parameters, e.g., CREATE_DATE(DAY,MONTH,YEAR)=DATE, would give rise to run-time errors if 
parameters DAY/MONTH were interchanged. 

 
3.2. Implementation of DATA TYPES in FORTRAN 

 
The concept of data abstraction presented above is, by definition, independent of programming language. For 

purposes of illustration, we present in this section one possible implementation of ADT CALENDAR_DATE in FORTRAN. 
ADTs can be implemented in FORTRAN by use of user-defined data types. This resource allows creation of data 

structures more complex than the so-called intrinsic data types, i.e., integer, real, double-precision real, logical 
variables, etc. In FORTRAN syntax, one possible implementation of ADT CALENDAR_DATE is: 

 
TYPE CALENDAR_DATE 
   INTEGER :: DAY=1, MONTH=1, YEAR=1 
END TYPE CALENDAR_DATE 

 
Variables DAY, MONTH and YEAR are called the components of the data type. Declaration of a data type CALENDAR_DATE in 

the main program or in a subroutine creates an instance of this data type. A variable to store the date of birth of a 
person, e.g., is created with the statement: 

 
TYPE(CALENDAR_DATE) :: BIRTH_DATE 

 
In FORTRAN, components of a data type are accessed by the character %. Thus, the year of birth of this person is 

BIRTH_DATE%YEAR. A vector to store the date of birth of 10 people is created as: 
 
TYPE(CALENDAR_DATE) :: BIRTH_DATE(10) 

 
The eighth component of vector BIRTH_DATE is accessed as BIRTH_DATE(8). The year of birth of this person is 

BIRTH_DATE(8)%YEAR. The day of birth of all the 10 people is accessed with the syntax BIRTH_DATE(1:10)%DAY. Vector 
BIRTH_DATE can also be created with allocatable dimensions: 

 
TYPE(CALENDAR_DATE),ALLOCATABLE :: BIRTH_DATE(:) 

 
The components of a data structure can also be vectors. In Compaq Visual FORTRAN compiler, version 6.6.0 and 

later, these components can also be allocatable. As an example, consider a data structure to store information about a 



Proceedings of COBEM 2011         21st Brazilian Congress of Mechanical Engineering 
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 
  
 
person, like names and date of birth. To store strings with the exact number of characters needed, this data type could be 
written as: 

 
TYPE PERSON 
   CHARACTER, ALLOCATABLE :: NAME(:),MIDDLENAME(:),SURNAME(:) 
END TYPE PERSON 

 
An instance of this data type is created with the statement: 
 
TYPE(PERSON) :: PROFESSOR 

 
After the number of characters of each name is known (by reading a temporary string, for example), the allocation 

statement is executed for each component: 
 
ALLOCATE(PROFESSOR%NAME(5),PROFESSOR%MIDDLENAME(7),PROFESSOR%SURNAME(4)) 

 
Components can be allocated within a creation function, belonging to a class, as will be shown later. After the 

components are allocated, values may be assigned to them: 
 
PROFESSOR%NAME(1:5)       = (/’A’,’N’,’D’,’R’,’E’/) 
PROFESSOR%SURNAME(1:4)    = (/’B’,’E’,’C’,’K’/) 

 
Data structures can also have allocatable dimensions. An allocatable vector of students is created with the statement: 
 
TYPE(PERSON), ALLOCATABLE :: STUDENT(:) 

 
Thirty instances of this data type (i.e., a vector of 30 students) are created with the statement: 
 
ALLOCATE(STUDENT(30)) 

 
Obviously, this allocation has to occur before allocation of anyone of the components. If the name of the first 

student has 6 letters, allocation of the component is: 
 
ALLOCATE(STUDENT(1)%NAME(6)) 

 
The clear and concise syntax of a data structure helps to significantly improve code legibility, as well as to construct 

complex programs at a high level of abstraction. 
 

3.3. Operator overloading 
 
Operator overloading allows standard operators for intrinsic data types ( + , – , < , > , ≤ , == , .EQ. , .LT. , etc.) to be 

extended also for more complex data structures. As an example, in order to sort a set of dates in chronological order, or 
simply to compare the chronological order of two dates, operators < and >  may be overloaded in such a way as to 
operate on CALENDAR_DATE data types. A function which performs the comparison between the dates, and returns a logical 
variable with the result of this comparison, is created first. A function to perform the comparison DATE1 < DATE2 is 
illustrated in Fig. 1. Operator overloading is done using the following statement: 

 
INTERFACE OPERATOR (.LT.) 
   MODULE PROCEDURE DATE1_LESS_THAN_DATE2 
END INTERFACE 

 
This declaration must be contained within a module, as illustrated in Fig. 3. 
 

!---------------------------------------------------------------------------- 
! VERIFIES IF DATA1 IS LESS THAN DATA2. RESULT IS A LOGICAL VARIABLE (T OR F) 
!---------------------------------------------------------------------------- 
FUNCTION DATE1_LESS_THAN_DATE2(DATE1,DATE2) RESULT(LESS) 
   TYPE(CALENDAR_DATE), INTENT(IN) :: DATE1,DATE2 
   LOGICAL :: LESS = .FALSE. 
   IF(DATE1%YEAR.LT.DATE2%YEAR) THEN 
      LESS = .TRUE. 
   ELSE IF ((DATE1%YEAR.EQ.DATE2%YEAR).AND.(DATE1%MONTH.LT.DATE2%MONTH)) THEN 
      LESS = .TRUE. 
   ELSE IF ((DATE1%YEAR.EQ.DATE2%YEAR).AND.(DATE1%MONTH.EQ.DATE2%MONTH).AND. & 
                                           (DATE1%DAY.LT.DATE2%DAY)) THEN 
      LESS = .TRUE. 
   ENDIF 
END FUNCTION DATE1_LESS_THAN_DATE2 

Figure 1. FORTRAN code illustrating a function to compare two dates, overloaded with operator < (less than). 



Proceedings of COBEM 2011         21st Brazilian Congress of Mechanical Engineering 
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 
  

4. CLASSES AND OBJECTS 
 

4.1. Classes 
 
Following Meyer (2000), the implementation of an ADT through a particular form of representation and the 

codification in computer language is known as a class. Classes are constructed in such a way as to encapsulate all 
variables, functions and subroutines needed to manipulate an object. In FORTRAN, encapsulation is performed by 
using modules. Modules are the only tool available in FORTRAN to create blocks of statements isolated from the rest 
of the program. 

Every class must have a public part and a secret part, as illustrated in Fig. 2. The public part, which must be known 
by the users of the class, corresponds to the specifications of the ADT. The secret part corresponds to the particular 
choice of representation and implementation chosen by the programmer. Based on the public part and on the correct 
identification of the ADT features, any user can use a class without knowing the specific implementation details. In 
FORTRAN, by default, components of a user-defined data type, as well as functions and subroutines of a class, are 
public, unless otherwise specified. The concept of data hiding, fundamental in OO programming, implies that data type 
components should be declared as private. Only functions and subroutines (but not all) should be public. Figure 3 
illustrates an implementation of the class CALENDAR_DATE with private components. 

 

 
Figure 2. Illustration of public and secret parts of a class. 

 
When the components of a data type are private, they cannot be accessed from outside the class. Thus, any part of 

the main program which uses TYPE(CALENDAR_DATE) will not be able to directly access the day through the statement 
DATE%DAY. This means that specific functions must be created with this objective, such as the function GET_DAY(DATE)=DAY, 
illustrated in Fig. 3. This implies the programming of several functions which, in principle, could appear to be 
unnecessary. However, these same functions will later allow polymorphism of the class. 

 
!------------------------------------------------------------------------------------- 
!   IMPLEMENTATION OF AN ABSTRACT DATA TYPE CALENDAR_DATE IN FORTRAN 90/95/2003 
!------------------------------------------------------------------------------------- 
MODULE CLASS_CALENDAR_DATE 
   IMPLICIT NONE 
   TYPE, PUBLIC :: CALENDAR_DATE 
      PRIVATE 
      INTEGER :: DAY=1, MONTH=1, YEAR=0001 
   END TYPE CALENDAR_DATE 
   INTEGER, PARAMETER :: DAYS_PER_MONTH(12) = (/31,29,31,30,31,30,31,31,30,31,30,31/) 
!------------------------------------------------------------------------------------- 
!  OVERLOADING OPERATOR ‘LESS THAN’ OR .LT. TO COMPARE DATES 
!------------------------------------------------------------------------------------- 
   INTERFACE OPERATOR (.LT.) 
      MODULE PROCEDURE DATE1_LESS_THAN_DATE2 
   END INTERFACE 
                     ! OTHER OPERATOR OVERLOADING DEFINITIONS FOLLOW 
!------------------------------------------------------------------------------------- 
CONTAINS 
!------------------------------------------------------------------------------------- 
!  SET_DAY(CD,I) ! FUNCTION WHICH VERIFIES AMD ASSIGNS A DAY NUMBER TO A DATE 
!------------------------------------------------------------------------------------- 
   SUBROUTINE SET_DAY(CD,X) 
      INTEGER,INTENT(IN) :: X                      ! DAY TO BE ASSIGNED 
      TYPE(CALENDAR_DATE),INTENT(INOUT) :: CD      ! DATE 
      IF(X.LT.1 .OR. X.GT.DAYS_PER_MONTH(CD%MONTH)) THEN 
            PRINT *, 'INVALID DAY!' 
      ELSE 
            CD%DAY = X 
      ENDIF 
   END SUBROUTINE SET_DAY 



Proceedings of COBEM 2011         21st Brazilian Congress of Mechanical Engineering 
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 
  
 
!------------------------------------------------------------------------------------- 
!  I = GET_DAY(CD) ! FUNCTION WHICH RETURNS THE DAY OF A DATE OBJECT 
!------------------------------------------------------------------------------------- 
   FUNCTION GET_DAY(CD) RESULT(X) 
      INTEGER X                                    ! DAY 
      TYPE(CALENDAR_DATE),INTENT(IN) :: CD         ! DATE 
      X = CD%DAY 
   END FUNCTION GET_DAY 
!------------------------------------------------------------------------------------- 
!  DATE1_LESS_THAN_DATE2(DATE,DATE) = L 
!------------------------------------------------------------------------------------- 
   FUNCTION DATE1_LESS_THAN_DATE2(DATE1,DATE2) RESULT(LESS) 
                       ! IMPLEMENTATION AS IN FIG. 1 
   END FUNCTION DATE1_LESS_THAN_DATE2 
                       ! OTHER FUNCTIONS AND SUBROUTINES 
END MODULE CLASS_CALENDAR_DATE 

Figure 3. Implementation of class CALENDAR_DATE in FORTRAN 90/95/2003. 
 

4.2. Objects 
 
Objects are instances of classes, created at run-time from the molds (the classes themselves). Therefore, all the OO 

programming is, in fact, based on ADTs and classes; objects are only created (or instantiated) at run-time. The 
relationship between ADTs, classes and objects is illustrated in Fig. 4. The objects instantiated at run-time are the same 
objects characterized trough the abstract data type (ADT) definition. 

 

 
 

Figure 4. “Temporal” relationship between ADTs, classes and objects. 
 

5. CONSTRUCTION OF CLASSES BY COMPOSITION 
 
There are two ways to construct (more complex) classes from other classes: composition and inheritance. 

Inheritance is described in Section 6. 
In composition, an existing class is employed in the construction of a new class. Thus, the new class uses all the 

components and methods of the existing class, as if it were a client of the latter. As an example, Fig. 5 illustrates the 
construction of a class PERSON using the data type CALENDAR_DATE, whose implementation was illustrated in Fig. 3. 

 
!------------------------------------------------------------------------------------- 
!   CLASS PERSON – IMPLEMENTATION OF A CLASS PERSON (FORTRAN 90/95/2003) 
!------------------------------------------------------------------------------------- 
MODULE CLASS_PERSON 
USE CLASS_CALENDAR_DATE 
IMPLICIT NONE 
!------------------------------------------------------------------------------------- 
   INTEGER, PARAMETER :: NS = 20 
   CHARACTER(NS), PARAMETER :: BLANK = '                    ' 
   TYPE PERSON 
      PRIVATE 
      CHARACTER(NS) ::       NAME = BLANK     ! FIRST NAME 
      CHARACTER(NS) :: MIDDLENAME = BLANK     ! MIDDLE NAME 
      CHARACTER(NS) ::    SURNAME = BLANK     ! FAMILY NAME 
      INTEGER       :: CPF = 0         ! PERSONAL REGISTRATION NUMBER (SOCIAL SECURITY) 
      INTEGER       ::  RG = 0         ! PERSONAL IDENTIFICATION NUMBER 
      INTEGER       :: AGE = 0         ! AGE 
      TYPE(CALENDAR_DATE) :: DOB       ! DATE OF BIRTH 
   END TYPE PERSON 
!------------------------------------------------------------------------------------- 
CONTAINS 
!------------------------------------------------------------------------------------- 
!  UPDATE_AGE(PE) – DETERMINES THE AGE OF A PERSON FROM THE CURRENT DATE 
!------------------------------------------------------------------------------------- 
   SUBROUTINE UPDATE_AGE(PE) 
      USE DFLIB 
      TYPE(PERSON)        PE 
      TYPE(CALENDAR_DATE) TODAY 
      INTEGER(2)          D,M,Y 
      CALL GETDAT(Y,M,D)  ! FUNCTION OF LIBRARY DFLIB RETURNS CURRENT YEAR, MONTH AND DAY 
      CALL SET_YEAR(TODAY,Y) 
      CALL SET_MONTH(TODAY,M) 
      CALL SET_DAY(TODAY,D) 
      PE%AGE = INT(CONVERT_TO_YEARS(TODAY-PE%DOB)) 
   END SUBROUTINE UPDATE_AGE 



Proceedings of COBEM 2011         21st Brazilian Congress of Mechanical Engineering 
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 
  

!------------------------------------------------------------------------------------- 
!  C = GET_PERSON_FULL_NAME(PE) ! RETURNS A STRING WITH THE FULL NAME 
!------------------------------------------------------------------------------------- 
   FUNCTION GET_PERSON_FULL_NAME(PE) RESULT(FULL_NAME) 
      TYPE(PERSON) PE 
      CHARACTER(3*NS)   FULL_NAME 
      IF(PE%MIDDLENAME.EQ.BLANK) THEN 
         FULL_NAME = TRIM(PE%NAME)//' '//TRIM(PE%SURNAME)//BLANK//BLANK 
      ELSE 
         FULL_NAME = TRIM(PE%NAME)//' '//TRIM(PE%MIDDLENAME)//' '//TRIM(PE%SURNAME) 
      ENDIF 
   END FUNCTION GET_PERSON_FULL_NAME 
!------------------------------------------------------------------------------------- 
!  I = GET_PERSON_ID(PE)        ! RETURNS ID NUMBER (RG) OF A PERSON 
!------------------------------------------------------------------------------------- 
   FUNCTION GET_PERSON_ID(PE) RESULT(ID) 
      TYPE(PERSON) PE 
      INTEGER ID 
      ID = PE%RG 
   END FUNCTION GET_PERSON_ID 
END MODULE CLASS_PERSON 

Figure 5. Illustration of composition: construction of class PERSON using class CALENDAR_DATE. 
 
In the example illustrated in Fig. 5, class PERSON is a client of class CALENDAR_DATE, since it uses methods of the latter 

to manipulate dates. The statement USE_CLASS_CALENDAR_DATE allows using elements of this class. To compare the age of 
two persons, class PERSON can employ directly the function DATE1_LESS_THAN_DATE2 or the overloaded operator “<” 
(illustrated in Fig. 3). The date of birth of a person is defined by using functions SET_ of class CALENDAR_DATE (Fig. 3). 

In the example, the function which updates the age of a person, UPDATE_AGE, employs functions of the class 
CALENDAR_DATE, in the bold face statement (Fig. 5). One of these is the function difference between dates, overloaded on 
the subtraction operator “–” and which also results in a data type date (difference in years, months and days). The other 
function is CONVERT_TO_YEARS, which converts a date (in fact, the difference between two dates) in years. The syntax 
becomes extremely legible: the statement in bold face shows explicitly that the age of a person is calculated in integer 
years, from the difference between the current date and the date of birth of this person. 

Functions GET_PERSON_FULL_NAME and GET_PERSON_ID, showed in Fig. 5 for purposes of illustration, are used later in this 
article. 

 
6. INHERITANCE AND POLYMORPHISM IN FORTRAN 2003 

 
One of the most important resources in an OO language is inheritance (Meyer, 2000). With inheritance, it is possible 

to create derived classes (offsprings) which inherit their main features from the base class (the parent class). OO 
languages are able to automatically create polymorphic classes, based on the extension of data types. Polymorphism 
allows a program to manipulate, in a generic form, objects instantiated from different classes, which have been (or will 
be) generated from different extensions of the same general class. Polymorphism is fundamental to obtain expansibility 
and reusability of parts of the program. 

Inheritance and polymorphism were incorporated in FORTRAN through the FORTRAN 2003 standard. However, 
until recently there were no commercial compilers with support for these language resources. Only in October 2009, 
Intel Visual FORTRAN compiler version 11.1 (Intel, 2009) was released, supporting inheritance and polymorphism. 
The example presented in this section must be run in this compiler or in a later version. 

Consider the specification of the class PERSON in Fig. 5. To construct an university management program, it is 
important to distinguish between two fundamental types of persons: professors and students. Both are persons, hence 
both have name, surname, identity documents, date of birth, etc. However, professors and students are particular types 
of persons, at least within the university environment. A student has associated to him/her, for example: a program (e.g., 
graduate in civil engineering), a scholar identification number, a date of enrolment in the program, a date of exit 
(graduation), and a school transcript containing  information about courses such as name, year, semester and final grade. 
On the other hand, a professor has, associated to him/her, a date of hiring, the monthly salary, a bank account,  
information about his/her dependents, etc. 

Professors and students are particular types of persons, hence the classes STUDENT and PROFESSOR can be constructed 
based on class PERSON (parent class). Figure 6 illustrates the construction of class STUDENT by inheritance, in FORTRAN 
2003, using the keyword EXTENDS. When class PERSON is “extended”, class STUDENT inherits its components and methods. 
Therefore, objects of class STUDENT also have components NAME, MIDDLENAME, SURNAME, AGE, etc. The age of a student, e.g., is 
the component STUDENT%AGE. In a similar manner, as illustrated in Fig. 6, a class PROFESSOR can be constructed. 

 
!------------------------------------------------------------------------------------- 
! IMPLEMENTATION OF CLASS STUDENT IN FORTRAN 2003 (INTEL VISUAL FORTRAN V. 11.1.048). 
! BY INHERITANCE, TYPE STUDENT INHERITS COMPONENTS AND METHODS FROM CLASS PERSON. 
! BY COMPOSITION, TYPE STUDENT USES COMPONENTS AND METHODS OF CLASS CALENDAR_DATE. 
!------------------------------------------------------------------------------------- 
MODULE CLASS_STUDENT 
   USE CLASS_PERSON 



Proceedings of COBEM 2011         21st Brazilian Congress of Mechanical Engineering 
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 
  
 
!  USE CLASS_TRACK_RECORD ! CLASSES IMPLEMENTING SCHOOL TRANSCRIPT FIELDS SUCH AS 
!  YEAR/SEMESTER, FREQUENCE, OBTAINED NOTE, FINAL RESULT (APPROVED OR REPPROVED) 
   IMPLICIT NONE 
   TYPE, PUBLIC, EXTENDS(PERSON) :: STUDENT 
      PRIVATE 
      INTEGER             :: ID = 1       ! NUMBER OF SCHOLAR IDENTITY 
      TYPE(CALENDAR_DATE) :: ENROLMENT    ! DATE OF ENROLMENT IN THE PROGRAM 
      TYPE(CALENDAR_DATE) :: CONCLUSION   ! DATE OF COMPLETION OF THE PROGRAM 
!     TYPE(TRACK_RECORD)  :: TR(50)       ! HISTORY OF UP TO 50 COURSED MATTERS 
      CONTAINS 
         PROCEDURE,PUBLIC :: GET_STUDENT_ID 
   END TYPE STUDENT 
!------------------------------------------------------------------------------------- 
   CONTAINS 
!------------------------------------------------------------------------------------- 
!  I = GET_STUDENT_ID(ST)  ! RETURNS NUMBER OF SCHOLAR IDENTITY OF THE STUDENT 
!------------------------------------------------------------------------------------- 
   INTEGER FUNCTION GET_STUDENT_ID(ST) RESULT(ID) 
      TYPE(STUDENT) :: ST 
      ID = ST%ID 
   END FUNCTION GET_STUDENT_ID 
END MODULE CLASS_STUDENT 

Figure 6. Implementation of class STUDENT by type extension using FORTRAN 2003. 
 
The complete dimension of the power of a class is given by the polymorphism obtained from type extensions. A 

program can be written to manipulate persons, in a generic form, no matter if they are students, professors or 
dependents of these. Certainly, there are some functions which are specific to each of the specialized classes. Following 
the example, only students receive grades, and only professors receive salaries. However, still as an example, consider a 
program for library management. The library lends books to students, professors, or dependents of these (persons in 
general). Hence, a user of the library may belong to any of the discussed classes. In the library management program, a 
user can be declared as: 

 
CLASS(PERSON),POINTER :: USER 

 
This FORTRAN syntax makes clear that USER is a pointer. The CLASS keyword, in this case, indicates that this pointer 

will be able to point to objects of class PERSON or of any of its derived classes. Therefore, declaring the possible targets 
of this pointer: 

 
TYPE(PERSON ),   TARGET :: PE 
TYPE(STUDENT),   TARGET :: ST 
TYPE(PROFESSOR), TARGET :: PR 

 
the program will be able, at run-time, to decide which type of library users the pointer USER has to point to. For example, 
USER=>ST creates, at run-time, an association to an object of class STUDENT. PERSON is said to be the declared data type of 
the variable USER, and STUDENT and PROFESSOR are said to be the dynamic data types. 

The library management program is written in such a way as to generically manipulate users, no matter if they are 
PERSON, STUDENT, PROFESSOR or even a data type created a posteriori (e.g., an employee). For this purpose, a small 
“correction” is needed in the code presented in Fig. 5 (which is written in FORTRAN 90/95 standard): in the definition 
of the functions of class PERSON, the statement TYPE(PERSON) has to be replaced by CLASS(PERSON). This allows all the 
derived classes to use functions of the parent class (UPDATE_AGE, GET_PERSON_FULL_NAME, GET_PERSON_ID, etc.). Therefore, the 
full name of the generic user USER above is obtained with the statement GET_PERSON_FULL_NAME(USER). For the Intel version 
11.1 FORTRAN compiler, functions UPDATE_AGE and GET_PERSON_FULL_NAME are automatically polymorphic, since they can 
operate with arguments of class PERSON or of any of the derived sub-classes. 

Functions of the parent class which operate with arguments CLASS(PERSON) can be directly used by the derived 
classes. However, in specific situations, it could be necessary to redefine the behavior of certain functions for some of 
the derived classes. A student, for example, has two personal identifications (RG and CPF) and a university 
identification number. For an university management program, the student identification number could be more relevant 
than the RG or CPF. Therefore, it could be necessary to reformulate function GET_PERSON_ID, such that it returns the the 
student identification number if the argument is from class STUDENT. This is known as procedure overriding. When a 
derived sub-class is created by type extension, some functions are rewritten, using the same name but operating 
exclusively with arguments of the derived class. This procedure is already foreseen in FORTRAN 2003 standard 
(Chapman, 2007) but, apparently, it is not yet supported by Intel Visual Fortran compiler version 11.1. It is supposed 
that this resource will be available soon, in new versions of the compiler. In the meantime, this compiler limitation can 
be overcome by using the construct SELECT_TYPE (only FORTRAN 2003). Figure 7 illustrates this procedure the function 
GET_PERSON_ID. Statement SELECT TYPE is able to identify the data type of the argument, making explicitly the selection of 
the proper function to be used for each argument. It is noted that, in this case, the function GET_PERSON_ID has to be 
rewritten, with different names, for each one of the possible arguments. If the procedure overriding construct were 



Proceedings of COBEM 2011         21st Brazilian Congress of Mechanical Engineering 
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 
  

available, the functions would be rewritten with the same name (e.g., GET_ID) and polymorphism would be automatically 
made by the compiler. 

 
!------------------------------------------------------------------------------------- 
! P = POINTER TO TYPE PERSON OR TO ANY OF ITS DERIVED TYPES. 
! FUNCTIONS GET_TYPE AND GET_ID WILL BE ABLE TO BE IMPLEMENTED BY OVERRIDING IN 
! LATER VERSIONS OF THE COMPILER. 
!------------------------------------------------------------------------------------- 
MODULE CLASS_PERSON_POINTER 
   USE CLASS_PERSON 
   USE CLASS_STUDENT 
   USE CLASS_PROFESSOR 
   IMPLICIT NONE 
   TYPE :: PERSON_POINTER 
      CLASS(PERSON), POINTER :: P 
   END TYPE PERSON_POINTER 
!------------------------------------------------------------------------------------- 
   CONTAINS 
!------------------------------------------------------------------------------------- 
!  C = GET_TYPE(PE) ! RETURNS A STRING IDENTIFYING THE TYPE OF PERSON 
!------------------------------------------------------------------------------------- 
   CHARACTER(LEN=12) FUNCTION GET_PERSON_TYPE(X) RESULT(NAME) 
      CLASS(PERSON)   X 
      SELECT TYPE(X) 
      TYPE IS (PROFESSOR) 
         NAME = '   PROFESSOR' 
      TYPE IS (STUDENT) 
         NAME = '     STUDENT' 
      CLASS IS (PERSON) 
         NAME = '      PERSON' 
      END SELECT 
   END FUNCTION GET_PERSON_TYPE 
!------------------------------------------------------------------------------------- 
!  I = GET_ID(PR) ! RETURNS IDENTIFICATION NUMBER OF PERSON, STUDENT, OR PROFESSOR 
!------------------------------------------------------------------------------------- 
   INTEGER FUNCTION GET_ID(X) RESULT(ID) 
      CLASS(PERSON) :: X 
      SELECT TYPE(X) 
      TYPE IS (PROFESSOR) 
         ID = GET_PROFESSOR_ID(X) 
      TYPE IS (STUDENT) 
         ID = GET_STUDENT_ID(X) 
      CLASS IS (PERSON) 
         ID = GET_PERSON_ID(X) 
      END SELECT 
   END FUNCTION GET_ID 
END MODULE CLASS_PERSON_POINTER 

Figure 7. Complementation of class PERSON using FORTRAN 2003. 
 
Another new feature of FORTRAN 2003 (but not yet available in the Intel compiler v. 11.1) is that methods 

(functions or subroutines) can also be components of a user-defined data type. Methods which are components of a 
certain class are declared by using the CONTAINS keyword within the definition of the type (Fig. 6). In the illustrated 
example, function GET_STUDENT_ID could be accessed by the syntax I=ST%GET_STUDENT_ID, in addition to the traditional 
form I=GET_STUDENT_ID(ST). This functionality, together with the resource of function overriding, would permit the more 
natural and more compact syntax I=ST%GET_ID or I=PE%GET_ID. These two functionalities will surely be available soon, in 
new versions of the Visual Intel FORTRAN compiler. 

Figure 8 shows a library management program, constructed to manipulate, generically, persons, professors and/or 
students. The program employs a vector of persons (USER) in order to store information about the users. However, a 
vector declared as CLASS(PERSON),POINTER cannot point to different data types. This limitation is outlined by creation of a 
data type PERSON_POINTER, which may point indifferently to objects of class PERSON or of any sub-class (Fig. 7). A vector 
of these objects (USER(:)), with allocatable dimension, is created in the main program (Fig. 8). At run-time, the main 
program obtains the number of users of each type, calculates the total number of users, and allocates the vectors. Then, 
the program assigns to each component of the vector USER one of the available data types: PERSON, PROFESSOR or STUDENT, 
as illustrated. This assignment is made through pointers, i.e., each component of the vector USER points to a different 
data type. From this point on, the program acts on the vector USER independently from the component data types, as long 
as the function is applicable to class PERSON, i.e., to persons in general. 

 
!------------------------------------------------------------------------------------- 
! PROGRAM LIBRARY USERS (FORTRAN 2003, INTEL VISUAL FORTRAN COMPILER V. 11.1.048 
!------------------------------------------------------------------------------------- 
PROGRAM LIBRARY_USERS 
   USE CLASS_PERSON_POINTER 
   IMPLICIT NONE 
   INTEGER I 
   INTEGER N_USERS, N_PR, N_ST, N_PE 
   TYPE(PERSON_POINTER),ALLOCATABLE :: USER(:) 
   TYPE(PERSON)   ,TARGET,ALLOCATABLE :: PE(:) 



Proceedings of COBEM 2011         21st Brazilian Congress of Mechanical Engineering 
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 
  
 
   TYPE(STUDENT)  ,TARGET,ALLOCATABLE :: ST(:) 
   TYPE(PROFESSOR),TARGET,ALLOCATABLE :: PR(:) 
   ! N_USER = INQUIRE_NUMBER_OF_USERS() ! OBTAINS NUMBER OF USERS (NOT IMPLEMENTED) 
   N_PE = 1; N_ST = 2; N_PR =1; N_USERS = N_PE + N_ST + N_PR 
   ALLOCATE(USER(N_USERS), PE(N_PE), ST(N_ST), PR(N_PR)) 
!------------------------------------------------------------------------------------- 
!  CREATES BINDING TO DIFFERENT DECLARED AND DYNAMIC DATA TYPES 
!------------------------------------------------------------------------------------- 
   USER(1)%P => ST(1)   ! 1º USER IS A STUDENT 
   USER(2)%P => PE(1)   ! 2º USER IS A COMMON PERSON 
   USER(3)%P => ST(2)   ! 3º USER IS A STUDENT 
   USER(4)%P => PR(1)   ! 4º USER IS A PROFESSOR 
!------------------------------------------------------------------------------------- 
!  ACTS ON THE POLYMORPHIC DATA TYPE INDEPENDENTLY FROM DECLARED AND DYNAMIC DATA TYPES 
!------------------------------------------------------------------------------------- 
   CALL SET_FULL_NAME(USER(1)%P,'GREGORIO ','DENER ','DONATO') 
   CALL SET_FULL_NAME(USER(2)%P,'JOSE',' ','MONTEIRO') 
   CALL SET_FULL_NAME(USER(3)%P,'LUI','CHENG','LIU') 
   CALL SET_FULL_NAME(USER(4)%P,'ANDRE','TEOFILO','BECK') 
   DO I=1,N_USERS 
      CALL SET_DOB(USER(I)%P,9,4,1969+I) 
      CALL UPDATE_AGE(USER(I)%P) 
   ENDDO 
   WRITE(*,10) ' ' 
   WRITE(*,10) 'LIBRARY USERS: ' 
   WRITE(*,10) ' ' 
   WRITE(*,20) 'TYPE','NAME                  ','ID ','AGE' 
   DO I=1,N_USERS 
      WRITE(*,100) GET_PERSON_TYPE(USER(I)%P),GET_FULL_NAME(USER(I)%P), & 
                   GET_ID(USER(I)%P),GET_AGE(USER(I)%P) 
   ENDDO 
   PAUSE 
!------------------------------------------------------------------------------------- 
   DEALLOCATE(USER, ST, PE, PR) 
10 FORMAT(A) 
20 FORMAT ('  ',A12,' ',A22,' ',A3,' ',A5) 
100 FORMAT('  ',A12,' ',A22,' ',I3,' ',I5) 
END PROGRAM LIBRARY_USERS 

Figure 8. Program illustrating use of polymorphic class PERSON in FORTRAN 2003. 
 

7. POLYMORPHISM BY EMULATION IN FORTRAN 90/95 
Resources of inheritance and polymorphism, obtained in Intel compiler version 11.1 through the EXTENDS keyword 

(type extension), neither are available in older compilers nor are a part of FORTRAN 90/95 standards. Hence, there are 
no resources for object oriented programming in these standards or in older compilers. Even so, it is possible to emulate 
(i.e., to mimic) polymorphism in such compilers, following (Akin, 2003; Decyk et al., 1997, 1998). 

Examples presented in Section 6 are constructed again in this section, but using FORTRAN 90/95 standard and 
Compaq Visual Fortran compiler version 6.6.0. Taking into account the availability of polymorphism resources in the 
new Intel compiler, there are two reasons to illustrate emulation of these resources in older compilers: 

a. to address users which have no access to the new Intel compiler and; 
b. to show general FORTRAN users, in a very explicit form, how the new resources are implemented, 

automatically, in the new compiler. 
This illustration will likely be elucidative for users familiar with FORTRAN 90/05 standard. However, it will be 

apparent that the emulation of polymorphism in older compilers requires a significantly larger number of code lines. 
In the absence of type extension and inheritance, the STUDENT derived data type has to be created exclusively by 

composition, as illustrated in Fig. 9. In this case, the STUDENT type does not inherit parent components; these become 
sub-components if the derived data type: 

 
STUDENT%PERSON%NAME 
STUDENT%PERSON%MIDDLENAME 
STUDENT%PERSON%SURNAME 

 
The syntax is not so natural as that obtained with the type extension resource. The example in Fig. 9 illustrates only 

one of the many functions of the type STUDENT. Function GET_STUDENT_FULL_NAME returns a string with the full name of the 
student, by using the function GET_PERSON_FULL_NAME (illustrated in Fig. 5). It is noted that the function 
GET_STUDENT_FULL_NAME only acts as a mask to call the original function GET_PERSON_FULL_NAME with the correct parameter. 

 
!------------------------------------------------------------------------------------- 
! IMPLEMENTATION OF CLASS STUDENT IN FORTRAN 90/95 (COMPAQ VISUAL FORTRAN V. 6.6.0). 
! BY COMPOSITION, TYPE STUDENT USES COMPONENTS AND METHODS OF CLASSES DATE AND PERSON 
!------------------------------------------------------------------------------------- 
MODULE CLASS_STUDENT 
   USE CLASS_PERSON 
   IMPLICIT NONE 
   TYPE STUDENT 
      PRIVATE 
      TYPE(PERSON)        :: PERSON 



Proceedings of COBEM 2011         21st Brazilian Congress of Mechanical Engineering 
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 
  

      INTEGER             :: ID = 1     ! NUMBER OF SCHOLAR IDENTITY 
      TYPE(CALENDAR_DATE) :: ENROLMENT  ! DATE OF SCHOOL REGISTRATION 
      TYPE(CALENDAR_DATE) :: CONCLUSION ! DATE OF COMPLETION OF PROGRAM 
   END TYPE STUDENT 
!------------------------------------------------------------------------------------- 
   CONTAINS 
!------------------------------------------------------------------------------------- 
! C = GET_STUDENT_FULL_NAME(ST) ! RETURNS FULL NAME 
!------------------------------------------------------------------------------------- 
   FUNCTION GET_STUDENT_FULL_NAME(ST) RESULT(FULL_NAME) 
      TYPE(STUDENT) ST 
      CHARACTER(3*NS) FULL_NAME 
      FULL_NAME(1:3*NS) = GET_PERSON_FULL_NAME(ST%PERSON) 
   END FUNCTION GET_STUDENT_FULL_NAME 
END MODULE CLASS_STUDENT 

Figure 9. Implementation of class STUDENT by composition using FORTRAN 90/95. 
 
Polymorphic data type PERSON (in fact, PERSON_POINTER) is created, in FORTRAN 90/95, with pointer components, as 

illustrated in Fig. 10. Data type PERSON_POINTER has one component which can point to each one of the derived data 
types. In run-time, the association (dynamic binding) is done with respect to one of these data types, and undone with 
respect to all the others. Function ASSOCIATE_TO_PERSON(PE), for example, associates polymorphic data type 
PERSON_POINTER to a data type PERSON. The same function eliminates any eventual association to other data types through 
the statement NULLIFY(). 

In addition to the association functions, it is necessary to create a mask for each one of the functions of the parent 
class. Figure 10 shows function GET_FULL_NAME(PT), which, according to the associated dynamic data type, calls the 
proper function with the correct parameters. It is noted that this function plays the role of the statement SELECT TYPE in 
FORTRAN 2003 (Fig. 7). 

 
!------------------------------------------------------------------------------------- 
! IMPLEMENTATION OF “POLYMORPHIC” CLASS PERSON_POINTER IN FORTRAN 90/95 (COMPAQ VISUAL FORTRAN VERSION 6.6.0) 
!------------------------------------------------------------------------------------- 
MODULE CLASS_PERSON_POINTER 
   USE CLASS_PERSON 
   USE CLASS_STUDENT 
   USE CLASS_PROFESSOR 
   IMPLICIT NONE 
   TYPE PERSON_POINTER 
      PRIVATE 
      TYPE(PERSON   ),POINTER :: PERSON    ! POINTER TO A PERSON TYPE 
      TYPE(STUDENT  ),POINTER :: STUDENT   ! POINTER TO A STUDENT TYPE 
      TYPE(PROFESSOR),POINTER :: PROFESSOR ! POINTER TO A PROFESSOR TYPE 
   END TYPE PERSON_POINTER 
!------------------------------------------------------------------------------------- 
   CONTAINS 
!------------------------------------------------------------------------------------- 
!  PT = ASSOCIATE_TO_PERSON(PE) ! ASSOCIATES POLYMORPHIC TYPE TO A PERSON TYPE 
!------------------------------------------------------------------------------------- 
   FUNCTION ASSOCIATE_TO_PERSON(PE) RESULT(PT) 
      TYPE(PERSON),TARGET,INTENT(IN) :: PE 
      TYPE(PERSON_POINTER)           :: PT 
      PT%PERSON => PE                ! ASSOCIATION OF POINTER TO PERSON TYPE 
      NULLIFY(PT%STUDENT) 
      NULLIFY(PT%PROFESSOR) 
   END FUNCTION ASSOCIATE_TO_PERSON 
!------------------------------------------------------------------------------------- 
                         ! ASSOCIATION FUNCTIONS FOR STUDENT AND PROFESSOR FOLLOW 
!------------------------------------------------------------------------------------- 
! C = GET_FULL_NAME(PT)  ! RETURNS A STRING WITH THE FULL NAME 
!------------------------------------------------------------------------------------- 
   FUNCTION GET_FULL_NAME(PT) RESULT(FULL_NAME) 
      TYPE(PERSON_POINTER) :: PT 
      CHARACTER(3*NS)         FULL_NAME 
      IF(ASSOCIATED(PT%PERSON))   FULL_NAME(1:3*NS)=GET_PERSON_FULL_NAME(PT%PERSON) 
      IF(ASSOCIATED(PT%STUDENT))  FULL_NAME(1:3*NS)=GET_STUDENT_FULL_NAME(PT%STUDENT) 
      IF(ASSOCIATED(PT%PROFESSOR))FULL_NAME(1:3*NS)=GET_PROFESSOR_FULL_NAME(PT%PROFESSOR) 
   END FUNCTION GET_FULL_NAME 
END MODULE CLASS_PERSON_POINTER 

Figure 10. Implementation of “polymorphic” class PERSON_POINTER in FORTRAN 90/95. 
 
The syntax of the program LIBRARY_USERS in FORTRAN 90/95 is very similar to that of FORTRAN 2003 version 

(Fig. 8). The major difference is the dynamic association in run-time, which, in this case, is done through association 
routines, such as: 

 
USER(I) = ASSOCIATE_TO_PERSON(PE(J)) 
 



Proceedings of COBEM 2011         21st Brazilian Congress of Mechanical Engineering 
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 
  
 

From this association on, the program manipulates generically USER objects, independently of the data type of its 
components. Therefore, most additional statements, necessary to “emulate” polymorphism in FORTRAN 90/95, remain 
hidden in the implementation of the derived classes and of the “generic” class PERSON_POINTER. 

 
8. CONCLUSIONS 

 
In this article, some concepts of oriented object programming were presented: data abstraction, classes, objects, 

encapsulation and data access restriction, polymorphism, and construction of classes by composition and inheritance. 
The implementation of these concepts using FORTRAN 90/95/2003 was also presented. It was shown in the paper that 
object-oriented programming resources of FORTRAN 2003 standard are available in Intel Visual FORTRAN compiler 
version 11.1, released recently. With these resources, it is already possible to create polymorphic classes and to develop 
FORTRAN programs following  the object orientation paradigm. 

The concept of abstract data types is, by definition, independent from programming language. In FORTRAN, the 
so-called user-defined data types make it possible to implement ADTs in construction of classes. FORTRAN modules 
allow encapsulation of class contents, thus protecting information. Specific resources for object oriented programming, 
such as inheritance and polymorphism, were introduced by FORTRAN 2003 standard and are available in Intel Visual 
FORTRAN compiler version 11.1. 

The article also showed that, by the use of pointers and by composition, it is possible to mimic the behavior of 
polymorphic classes in FORTRAN 90/95, even though it results in additional lines of code. Emulation of polymorphism 
through pointers gives an explicit idea about how the automatic polymorphism was implemented in the new Intel 
compiler. 

It is important to note that the concepts presented in this paper are perfectly applicable in practice and were already 
incorporated into a number of programs developed by the first author and collaborators. This includes a program for 
structural reliability analysis, having thirteen thousand lines of code, developed in FORTRAN 90/95 and already 
extensively tested. The two versions of the university management program, used to illustrate OOP concepts throughout 
this article, are incomplete but are perfectly functional. The FORTRAN 90/95 version of this program performs the 
management of university classes and already reached two thousand three hundred lines of code. 

The experience of the first author shows that, with the resources available in Intel Visual FORTRAN compiler 
version 11.1, and even with the resources existing in FORTRAN 90/95, it is possible to reach the main objectives of 
object oriented programming, that is: expansibility, reusability, and compatibility of programs developed in FORTRAN. 
The object oriented programming paradigm allows us to develop large computer programs in a clear, logical and 
consistent form. 

 
9. ACKNOWLEDGEMENTS 

 
Sponsorship of this research project by the Brazilian National Council for Research and Development (CNPq), the 

Brazilian National Council for Higher Degree Education (CAPES) and the São Paulo Research Foundation (FAPESP) 
is greatly acknowledged. 

 
10. REFERENCES 

 
Adams, J.C., Brainerd, W.S., Martin, J.T., Smith, B.T. and Wagener, J.L., 1992, “Fortran 90 Handbook: Complete 

ANSI/ISO Reference”, Intertext Publications, McGraw-Hill, New York, USA. 
Adams, J.C., Brainerd, W.S., Martin, J.T., Smith, B.T. and Wagener, J.L., 1997, “Fortran 95 Handbook: Complete 

ISO/ANSI Reference”, MIT Press, USA. 
Adams, J.C., Brainerd, W.S., Hendrickson, R.A., Maine, R.E., Martin, J.T. and Smith, B.T., 2009, “The Fortran 2003 

Handbook: The Complete Syntax, Features and Procedures”, Springer, London, England. 
Akin, E., 2003, “Object Oriented Programming via FORTRAN 90/95”, Cambridge University Press. 
Chapman, S.J., 2007, “Fortran 95/2003 for Scientists and Engineers”, 3rd Edition, McGraw-Hill, USA. 
Decyk, V.K., Norton, C.D., Szymanski, B.K., 1997, “Expressing object-oriented concepts in Fortran 90”, ACM Fortran 

Forum, Vol. 16, No. 1 (April), New York, NY, USA, pp. 13-18. 
Decyk, V.K., Norton, C.D., Szymanski, B.K., 1998. “How to support inheritance and run-time polymorphism in Fortran 

90”. Computer Physics Communications, Vol. 115, No. 1, pp. 9-17. 
Intel, 2009, “Intel® Visual Fortran Compiler Professional Edition 11.1 for Windows*, Instalation Guide and Release 

Notes”, October. 
Meyer, B., 2000, “Object-Oriented Software Construction”, 2nd edition, Prentice-Hall. 

 
11. RESPONSIBILITY NOTICE 

 
The authors are the only responsible for the printed material included in this paper. 


