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Abstract. A meta-heuristic algorithm known as harmony search (HS), mimicking the improvisation process of music 

players, has been recently developed. This approach does not require derivative information and uses stochastic 

random search instead of a gradient search. In addition, the HS algorithm exhibits simple concept, few parameters to 

handle, and easy implementation. In this paper, the Self-adaptive Harmony Search (SHS) algorithm proposed by Pan 

et al. (2010) is used in engineering system design. In this approach, a new improvisation scheme is developed so that 

the good information captured in the current global best solution can be well utilized to generate new harmonies. The 

harmony memory consideration rate and pitch adjustment rate are dynamically adapted by learning mechanisms that 

have been included in the optimization strategy. The distance bandwidth is dynamically adjusted to favor exploration 

in the early stages and exploitation during the final stages of the search process. The results obtained are compared 

with those obtained from other classical evolutionary approaches, namely Genetic Algorithms and Particle Swarm 

Optimization. 
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1. INTRODUCTION 

 
The Harmony search (HS) algorithm is a meta-heuristic approach inspired by the natural musical performance 

process that occurs when a musician searches for a better state of harmony. In this algorithm, proposed by Geem et al. 
(2001), the solution vector is analogous to the harmony in music, and the local and global search schemes are analogous 
to musicians’ improvisations. According to Mahdavi et al. (2007) and Omran and Mahdavi (2008), the HS algorithm, in 
comparison to several meta-heuristics, requires fewer mathematical requirements and can be easily adapted for solving 
various kinds of engineering optimization problems. In addition, numerical comparisons demonstrated that the 
evolution of the HS algorithm is faster than other heuristics so that the genetic algorithms, for example (Lee and Geem, 

2005; Lee et al., 2005).  
Various applications using the HS algorithm are found in the literature, such as structural optimization (Lee and 

Geem, 2005; Lee et al., 2005), design optimization of water distribution networks (Geem, 2006), vehicle routing (Geem 

et al. 2005), combined heat and power economic dispatch (Vasebi et al., 2007), and transport energy modeling (Ceylan 
et al., 2008). 

According to Mahdavi et al. (2007), the main disadvantage of the HS algorithm is its difficulty in performing local 
search. In this sense, a new mechanism to increase its ability for enhancing solution accuracy and convergence rate has 
been proposed. Mahdavi et al. (2007) presented an improved HS algorithm, the so-called Improved Harmony Search 
(IHS), by introducing a strategy to dynamically tune the key parameters. Omran and Mahdavi (2008) proposed a global 
HS algorithm, denoted as Global Harmony Search (GHS), by borrowing the concept of swarm intelligence from other 
techniques. The numerical experiments revealed that both improved variants of the method could find better solutions 
as compared to the basic HS algorithm. Particularly, the GHS algorithm outperformed the IHS algorithm.  

It is important to emphasize that in spite of the performance and the number of applications encompassed when 
fixed parameters are used by meta-heuristic approaches, there is no guarantee that premature convergence will be 
avoided (Coelho and Mariani, 2006). In this context, the Self-Adaptive Harmony Search (SAHS) algorithm proposed by 

Pan et al. (2010) is used in engineering system design. This work is organized as follows. Section 2 provides a brief 
literature overview of both of the HS and the SAHS algorithms. The results and discussions are described in Section 3.  
Finally, the conclusions and suggestions for future work conclude the paper. 

  

2. SELF-ADAPTIVE HARMONY SEARCH 

 
This section describes the proposed Self-Adaptive Harmony Search (SAHS) algorithm. First, a brief overview of the 

HS is provided, and finally the modification procedures of the proposed SAHS algorithm are presented. 
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2.1. Harmony Search 
 

In the HS canonical algorithm each solution is called a ‘‘harmony” and is represented by an N-dimension real 
vector. An initial population of harmony vectors are randomly generated and stored in a harmony memory (HM). Then 
a new harmony candidate is generated from all the solutions in the HM by using a memory consideration rule, a pitch 
adjustment rule and a random re-initialization. Finally, the HM is updated by comparing the new harmony candidate 

with the worst harmony vector in the HM. The worst harmony vector is replaced by the new candidate vector if it is 
better than the worst harmony vector in the HM. The above process is repeated until a given termination criterion is 
met. The basic HS algorithm consists of three basic phases, namely, initialization, improvisation of a harmony vector 
and updating the HM. The main steps are described below (Lee and Geem, 2005). 

 
Step 1. Initialize the problem and algorithm parameters. Consider the following optimization problem: 
 

( ) ( )min   subject to  =1, 2, ...,i if x x X i N∈  (1) 

 
where f(x) is the objective function, x is the design variable vector, N is the number of design variables, xi is the set of 
the possible range of values for each design variable, i.e., xi

L ≤ Xi ≤ xi
U and xi

L and xi
U are the lower and upper bounds 

for each design variable. The HS algorithm parameters are also specified in this step, as follows: harmony memory size 
(HMS) - or the number of solution vectors in the harmony memory; harmony memory considered rate (HMCR); pitch 
adjusting rate (PAR); and the number of improvisations (NI) - or stopping criterion. 

The harmony memory (HM) is a memory location where all the solution vectors (sets of decision variables) are 

stored. This HM is similar to the genetic pool in the GA (Geem et al., 2002). Here, HMCR and PAR are parameters that 
are used to improve the solution vector. Both are defined in Step 3. 
 
Step 2. Initialize the harmony memory. In this step, the HM matrix is filled with as many randomly generated 

solution vectors as the HMS 
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 (2) 

 
Step 3. Improvise a new harmony. A new harmony vector, x´=(x1´ x2´ x3´ … xN´), is generated based on three rules: 

(1) memory consideration, (2) pitch adjustment and (3) random selection. Generating a new harmony is called 
improvisation.  

In the memory consideration, the value of the first decision variable (x1´) for the new vector is chosen from any of 
the values in the specified HM range (x1´– x1

HMS). Values of the other decision variables (x2´ x3´ … xN´) are chosen in 
the same manner. The HMCR, which varies between 0 and 1, is the rate of choosing a value from the historical values 
stored in the HM, while (1–HMCR) is the rate of randomly selecting a value from the possible range of values.  

 

{ }1 HMS  with probability HMCR,     

                 with probability (1-HMCR)

'

i i i'

i
'

i i

x x , , x
x

x X

 ∈
← 

∈

⋯
 (3) 

 
For example, a HMCR of 0.85 indicates that the HS algorithm will choose the decision variable value from 

historically stored values in the HM with an 85% probability or from the entire possible range with a (100–85)% 
probability. Every component obtained by the memory consideration is examined to determine whether it should be 
pitch-adjusted. This operation uses the PAR parameter, which is the rate of pitch adjustment, as follows: 

 

Yes with probability PAR,     
Pitch adjusting decision for 

No with probability (1-PAR)

'

ix


← 


 (4) 

 

The value of (1–PAR) sets the rate of doing nothing. If the pitch adjustment decision for xi´ is YES, xi´ is replaced as 
follows: 

 

rand()' '

i i wx x b← ± ×  (5) 
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where bw is an arbitrary distance bandwidth and rand( ) is a random number between 0 and 1. 

In step 3, HM consideration, pitch adjustment or random selection is applied to each variable of the new harmony 
vector. 
 
Step 4. Update harmony memory. If the new harmony vector, x´=(x1´ x2´ x3´ … xN´), is better than the worst harmony 

in the HM, judged in terms of the objective function value, the new harmony is included in the HM and the existing 
worst harmony is excluded from the HM. 
 
Step 5. Check stopping criterion. If the stopping criterion (maximum number of improvisations) is satisfied, 

computation is terminated. Otherwise, Steps 3 and 4 are repeated. 

 

2.2. Self-Adaptive Harmony Search 
 

In the HS algorithm, three control parameters HMCR, PAR and bw are closely related to the problem being solved 
and the phase of the search process that may be either exploration or exploitation. In this work the Self-Adaptive 
Harmony Search (SAHS) is proposed, where the parameters are dynamically adapted with respect to the favorable 
evolution of the search process, as presented below. 

According to Lee and Geem (2005) and Pan et al. (2010), HMCR describes the probability of choosing one value 
from the historic values stored in the HM. A large HMCR value is in favor of local search thereby increasing the 
convergence rate of the algorithm, while a small HMCR value increases the diversity of the harmony memory. A large 
PAR value favors passing the information of xi´ to next generation thereby enhancing the local exploitation ability of 
the algorithm around xi´, whereas a small PAR value enables the new harmony vector to select its dimensional values 
by perturbing the corresponding values in the harmony memory, thus enlarging the search area and diversity of the 
harmony memory. Since local exploitation and global exploration are always twisted together in the search process, it is 
difficult to fix the values for HMCR and PAR. 

In this paper, HMCR and PAR are dynamically adapted to a suitable range by recording their historic values 
corresponding to generated harmonies entering the HM, as proposed by Pan et al. (2010). We assume that the HMCR 
(PAR) value is normally distributed in the range of [0.9, 1.0] ([0.0, 1.0]) with mean HMCR (PAR) and standard 
deviation 0.01 (0.05). Initially, HMCR (PAR) is set at 0.98 (0.9), and then SAHS starts with a HMCR (PAR) value 
generated according to the normal distribution. During the evolution, the HMCR (PAR) value associated with the 
generated harmony successfully replacing the worst member in the HM is recorded. After a specified number of 
generations, HMCR (PAR) is recalculated by averaging all the recorded HMCR (PAR) values during this period. With 
the new mean and the given standard deviation of 0.01 (0.05), new HMCR (PAR) value is produced and used in the 
subsequent iterations. The above procedure is repeated. As a result, an appropriate HMCR (PAR) value can be 
gradually learned to suit the particular problem and the particular phases of the search process. 

The parameter bw is a distance bandwidth for the continuous design variable. As observed by Pan et al. (2010), a 
large value is in favor of the algorithm searching in a large scope, while a small value is appropriate for fine-tuning of 
the best solution vectors. To well balance the exploration and exploitation of the proposed SGHS algorithm, the bw 
value decreases dynamically with increasing generations (igen) as follows: 

 

if  < 0.5

                      if 0.5

wmax wmin

wmax gen

genw

wmin gen

b b
b i i

ib

b i i

−
− ×

← 
 ≥ ×

 (6) 

 
where bwmax and bwmin are the maximum and minimum distance bandwidths, respectively, and i is the current generation. 
It should be emphasized that other strategies to parameters update can be found in the literature, for instance, Wang and 
Huang (2010), Sarvari and Zamanifar (2010) and Hasançebi et al. (2010). 
 

3. RESULTS AND DISCUSSION 
 
For evaluating the methodology used in this work, some practical points should be emphasized: 

• In all case studies the following parameters for the HS were used: N equal to 20; HMCR equal to 0.9; PAR 
equal to 0.3; 10000 generations (improvisations), and penalization parameter equal to 108 (designed to 
penalize any constraint violation). In the SAHS bwmin and bwmax were considered equal to 0.005 and 100, 
respectively.   

• In this paper, all case studies were run 20 times independently to obtain the values and standard deviations 
shown in the upcoming tables.  

 



Proceedings of COBEM 2011         21
st
 Brazilian Congress of Mechanical Engineering 

Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 

  
 

 

3.1. Welded beam design problem 
 
The welded beam design problem is taken from Rao (1996) and He and Wang (2007), in which a welded beam is 

designed for minimum cost subject to constraints on shear stress (τ), bending stress in the beam, buckling load on the 
bar (Pc), end deflection of the beam (δ), and side constraints. There are four design variables as shown in Fig. 1, i. e., h 
(x1), l (x2), t (x3), and b (x4).  

 

F

t

b

h

l
14

 
 

Figure 1: Welded beam design problem. 
 
Mathematically, the problem can be formulated as follows (Rao, 1996): 
 

( ) ( )2

1 2 3 4 2min  1.10471 0.04811 14= + +f x x x x x x  (7) 

 
subject to 

 

( ) ( )1 -13000 0= ≤g x xτ  (8) 

 

( ) ( )2 -30000 0= ≤g x xσ  (9) 

 

( )3 1 4 0= ≤g x x - x                                                                                                                                                                        (10) 

 

( ) ( )2

4 1 3 4 21.10471 0.04811 14 5 0= + + − ≤g x x x x x                                                                                                                  (11) 

 

( )5 10.125 0= ≤g x - x                                                                                                                                                                  (12) 

 

( ) ( )6 0.25 0= ≤g x x -δ    (13) 

 

( ) ( )7 6000 0= ≤cg x - P x    (14) 

 
where   

 

( ) ( ) ( )2 22
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δ , ( ) ( ) 3

3 3 464746.022 1 0.028234=cP x - x x x . 

 
The approaches applied to this problem include genetic algorithm with binary representation and traditional penalty 

function (Deb, 1991), a GA-based co-evolution model (Coello, 2000), and a co-evolutionary particle swarm 
optimization (He and Wang, 2007). 
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The following design space is adopted (He and Wang, 2007): 0.1 in ≤ x1 ≤ 2 in, 0.1 in ≤ x2 ≤ 10 in, 0.1 in ≤ x3 ≤ 10 
in, 0.1 in  ≤ x4 ≤ 2 in. The best solutions obtained by the above mentioned approaches are listed in Table 1. In this table, 
it can be seen that the best solution found by HS and SAHS has the same quality than the best solutions found by other 
techniques (Deb, 1991; Coello, 2000), but slightly inferior to the result obtained by He and Wang (2007). In addition, it 
is important to observe that the SAHS yields better results in terms of the number of objective function evaluations as 
compared with the HS algorithm. This characteristic demonstrates the efficacy of the methodology proposed.  

 
Table 1. Comparison of the best solutions for the welded beam design problem using different techniques (Neval is the 

number of objective function evaluations). 
 

Design  

variables 
Deb (1991) 

Coello 

(2000) 

He and Wang 

(2007) 

HS (standard 

deviation) 

SAHS (standard 

deviation) 

x1 (in) 0.248900 0.208800 0.202369 0.208796 (0.00026) 0.208795 (0.00011) 

x2 (in) 6.173000 3.420500 3.544214 3.412588 (0.00004) 3.412585 (0.00009) 

x3 (in) 8.178900 8.997500 9.048210 8.910008 (0.00005) 8.910004 (0.00001) 

x4 (in) 0.253300 0.210000 0.205723 0.210000 (0.00002) 0.210001 (0.00001) 

g1 (psi) -5758.607 -0.337812 -12.839796 -23896.252 -23896.252 

g2 (psi) -255.5769 -353.9026 -1.247467 -230.95874 -230.95874 

g3 (in) -0.004400 -0.001200 -0.001498 -0.001204 -0.001204 

g4 ($) -2.982866 -3.141865 -3.429347 -3.384378 -3.384378 

g5 (in) -0.123900 -0.083800 -0.079381 -0.083796 -0.083796 

g6 (in) -0.234160 -0.235649 -0.235536 -0.235222 -0.235222 

g7 (lb) -44.65270 -363.2323 -11.681355 -808.56989 -808.56989 

f ($) 2.433116 1.748309 1.728024 1.7318117 (0.0001) 1.7318116 (0.0001) 

Neval Unavailable Unavailable Unavailable 10020 8820 

 
 

3.2. Tension/compression string design problem 
 

This problem is from Arora (1989), Belegundu (1982) and He and Wang (2007). It is devoted to the minimization of 
the weight of a tension/compression spring as shown in Fig. 2. The design variables are the wire diameter d (x1), the 
mean coil diameter D (x2), and the number of active coils P (x3). 

 

d

P P

D

 
 

Figure 2: Tension/compression string design problem. 
 

The mathematical formulation of this problem can be described as follows: 

  

( ) ( ) 2

3 2 1min  2= +f x x x x    (15) 

 
subject to constraints on minimum deflection - Eq. (16), shear stress - Eq. (17), surge frequency - Eq. (18), limits on 

the outside diameter - Eq. (19), and on the side constraints: 
 

( )
3

2 3
1 4

1

1 0
71785

= ≤
x x

g x -
x

   (16) 

 

( )
( )
3

2 1 2
2 23 4

12 1 1

4 1
1 0
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= + − ≤

−

x x x
g x

xx x x
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( ) 1
3 2

3 2

140.45
1 0= − ≤

x
g x

x x
   (18) 

 

( ) 1 2
4 1 0

1.5

+
= − ≤

x x
g x    (19) 

 

The approaches applied to this problem include eight different numerical optimization techniques (Belegundu, 
1982), a numerical optimization technique called constraint correction at constant cost (Arora, 1989), a GA-based co-
evolution model (Coello, 2000), and a co-evolutionary particle swarm optimization (He and Wang, 2007). 

The following design space is adopted (He and Wang, 2007): 0.05 in ≤ x1 ≤ 2 in, 0.25 in ≤ x2 ≤ 1.3 in, 2 in ≤ x3 ≤ 15 

in. Table 2 presents the best solutions obtained by the above mentioned approaches. In this table, it can be seen that the 
best solution found by HS and SAHS has the same quality of those obtained by other techniques.  

 
Table 2. Comparison of the best solutions for the tension/compression spring design problem using different methods 

(Neval is the number of objective function evaluations). 
 

Design 
variables 

Belegundu 
(1982) 

Arora 
(1989) 

He and Wang 
(2007) 

HS (standard 
deviation) 

SAHS (standard 
deviation) 

x1 (in) 0.050000 0.053396 0.051728 0.053513 (0.00002) 0.053528 (0.00001) 

x2 (in) 0.315900 0.399180 0.357644 0.402208 (0.00037) 0.402210 (0.00033) 

x3 (in) 14.25000 9.185400 11.244543 9.047566 (0.01082) 9.047565 (0.01090) 

g1 (in) -0.000014 0.000019 -0.000845 -0.000020 -0.000010 

g2 (ksi) -0.003782 -0.000018 -1.260E-05 -0.000000 -0.000000 

g3 (-) -3.938302 -4.123832 -4.051300 -4.135091 -4.135099 

g4 (in) -0.727090 -0.698283 -0.727090 -0.696185 -0.696100 

f (lb) 0.012674 0.012730 0.012674 0.012724 (0.00001) 0.012725 (0.00001) 

Neval Unavailable Unavailable Unavailable 10020 7820 

 
 

3.3. Pressure vessel design problem 
 
The pressure vessel design problem was proposed by Kannan and Kramer (1994) and is devoted to the minimization 

of the total cost of the specimen, including the cost of the material, forming and welding. A cylindrical vessel is capped 

at both ends by hemispherical heads as shown in Fig. 3. There are four design variables: Ts (x1, thickness of the shell), 
Th (x2, thickness of the head), R (x3, inner radius) and L (x4, length of the cylindrical section of the vessel, not including 
the head). Among the four variables, Ts and Th are integer multiples of 0.0625 in (corresponding to the available 
thicknesses of rolled steel plates), and R and L are continuous variables. 

 

L

R

Ts

R

Th

 
Figure 3: Pressure vessel design problem. 

 
The problem can be formulated as follows (Kannan and Kramer, 1994): 

 

( ) 2 2 2

1 3 4 2 3 1 4 1 3min  0.6224 1.7781 3.1661 19.84= + + +f x x x x x x x x x x    (20) 

 
subject to 
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( )1 1 30.0193 0= − + ≤g x x x    (21) 
 

( )2 2 30.00954 0= − + ≤g x x x    (22) 

 

( ) 2 3

3 3 4 3

4
1296000 0

3
= − − + ≤g x x x xπ π    (23) 

 

( )4 4 240 0= ≤g x x -    (24) 

 

In the literature, this problem has been solved by using an augmented Lagrangian multiplier approach (Kannan and 
Kramer, 1994), a genetic adaptive search (Deb, 1997), and a co-evolutionary particle swarm optimization (He and 
Wang, 2007).  

In the present work, the following design space is adopted (He and Wang, 2007): 1 in ≤ x1 ≤ 99 in, 1 in ≤ x2 ≤ 99 in, 

10 in ≤ x3 ≤ 200 in, 10 in ≤ x4 ≤ 200 in. The best solutions obtained by the above mentioned approaches are shown in 
Table 3. From Table 3, it can be seen that the best solution found by HS and SAHS is better than the best solutions 
found by other techniques (Kannan and Kramer, 1994; Deb, 1997), and exhibits the same quality as the one obtained by 
He and Wang (2007).  

 
Table 3. Comparison of the best solutions for the pressure vessel design problem using different methods (Neval is the 

number of objective function evaluations). 
 

Design 

variables 

Kannan and 

Kramer (1994) 
Deb (1997) 

He and Wang 

(2007) 

HS (standard 

deviation) 

SAHS (standard 

deviation) 

x1 (in) 1.125000 0.937500 0.812500 0.812500 (0.0059) 0.812500 (0.0008) 

x2 (in) 0.625000 0.500000 0.437500 0.437500 (0.0050) 0.437500 (0.0005) 

x3 (in) 58.29100 48.32900 42.09126 42.09127 (0.0026) 42.09127 (0.0006) 
x4 (in) 43.69000 112.6790 176.7465 176.7466 (0.0147) 176.7466 (0.0077) 
g1 (in) 0.000016 -0.004750 -0.000139 -0.000139 -0.000139 

g2 (in) -0.068904 -0.038941 -0.035949 -0.035949 -0.035949 

g3 (in
3) -21.22010 -3652.876 -116.3827 -116.3827 -116.3827 

g4 (in) -196.3100 -127.3210 -63.25350 -63.25350 -63.25350 

f ($) 7198.0428 6410.3811 6061.0777 6061.0778 (0.0066) 6061.0778 (0.0089) 

Neval Unavailable 200000 Unavailable 10020 7020 

 

3.4. Binary distillation column design problem 
 
Next case study is a binary distillation system from the MINOPT User’s Guide (Schweiger et al., 1997) and Bansal 

et al. (2003). The column has a fixed number of trays and the objective is to determine the optimal feed location 
(discrete decision), vapour boil-up, V, and reflux flow rate, R (continuous decisions), in order to minimize the integral 
square error (ISE) between the bottoms and distillate compositions and their respective set-points. The superstructure of 
the system is depicted in Fig. 4.  

The following modeling assumptions were used by Schweiger et al. (1997): (i) constant molar overflow; (ii) 
constant relative volatility, a; (iii) phase equilibrium; (iv) constant liquid hold-ups, equal to m for each tray and 10m for 
the re-boiler and condenser; (v) no tray hydraulics; (vi) negligible vapour hold-ups; and (vii) no pressure drops. The 
system is initially at steady-state; at t=0 there is a step change in the feed composition, zf; and the inequality constraints 

are that the distillate composition must be greater than 0.98, and the bottoms composition must be less than 0.02, at the 
end of the time horizon of 400 min. The problem can be stated mathematically as: 

 

( ) ( )fmin  =f x ISE t    (25) 

 
where 
 

( ) ( ) ( )2 2

b b N+1 N+1= − + −* *
d ISE

x x x x
dt

   (26) 
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Figure 4: Binary distillation column. 
 

subject to component balances - Eqs. (27)-(30), overall balances - Eq. (31)-(34), vapour-liquid equilibrium - Eqs. (35)-
(36), and step disturbance – Eq. (37):  
 

b b
1 1 o b10     0

=

= − − =
t 0

dx dx
m L x Vy Bx ,

dt dt
   (27) 

 

( )i i
i+1 i+1 i i i-1 i     0,     i=1, ..., N-1

=

= − + − + =i f

t 0

dx dx
m L x L x V y y Fyf z ,

dt dt
   (28) 

 

( )N N
N N N-1 N N+1     0

=

= − + − + + =N f

t 0

dx dx
m L x V y y Fyf z Rx ,

dt dt
   (29) 

 

( )N+1 N+1
N N+110     0

=

= − =
t 0

dx dx
m V y x ,

dt dt
   (30) 

 

10= − −L V B    (31) 
 

i+1 i i0=      i=1, ..., N-1− +L L F yf ,    (32) 
 

N0=  + + +- L V F yf R    (33) 
 

0= − −V D R    (34) 
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( )
b

o

b

=
1+ 1

x
y

- x

α
α

   (35) 

 

( )
i

i

i

=     i=1, ..., N
1+ 1

x
y ,

- x

α
α

   (36) 

 

( )f =0.54 0.09exp 10z - - t    (37) 
 

The following design space is adopted (Bansal et al., 2003): 0.05 kmol/min ≤ V ≤ 2 kmol/min, 0.25 kmol/min ≤ R ≤ 

1.3 kmol/min, 1 ≤ yf ≤ 30. Model parameters (Bansal et al., 2003): number of trays (N) equal to 30; relative volatility, α 

equal to 2.5; tray liquid hold-up equal to 0.175 kmol; feed flow rate (F) equal to 1 kmol/min; distillate set-point ( N+1

*x ) 

equal to 0.98 and bottoms set-point ( b

*x ) equal to 0.02. 

Table 4 presents the results obtained by BFOA and by other competing techniques. In this table, it can be seen that 
the best solution found by HS and SAHS are similar to the results found by Bansal et al. (2003). 

 

Table 4. Comparison of the best solutions for the binary distillation column design problem (Neval is the number of 
objective function evaluations). 

 

Design variables Bansal et al. (2003) HS (average) SAHS (average) 

Feed tray 25 25 (25) 25 (25) 

V (kmol/min) 1.5426 1.5426 (0.0019) 1.5426 (0.0001) 

R (kmol/min) 1.0024 1.0024 (0.0068) 1.0024 (0.0001) 

f (-) 0.1817 0.18179 (0.0001) 0.18179 (0.0002) 

Neval Unavailable 10020 6020 

 
 

4. CONCLUSIONS 
 

In the present contribution, the Self-Adaptive Harmony Search (SAHS) algorithm, inspired by the natural musical 
performance process that occurs when a musician searches for a better state of harmony and dynamic update of 

parameters, was applied to solve different design problems in engineering. The simulation results were compared with 
those obtained from other competing evolutionary algorithms. Besides, the results showed that the methodology is 
configured as a promising alternative for a number of engineering applications. In addition, it is important to observe 
that the SAHS yields better results, in terms of the number of objective function evaluations, as compared with the HS 

algorithm.  
Consequently, considering the number of objective function evaluations, the present approach needs yet to be better 

studied, so that final conclusions can be drawn. This particular characteristic is inherent to the methodology used due to 
the large number of loops to be performed. Consequently, it is expected that a high number of objective function 
evaluations is necessary in the present version of the algorithm. 

Further research work will be focused on the study of other mechanisms to update the parameters required by HS to 
improve the quality of the solution. 
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