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Abstract. Discrete dynamic vibration absorbers (DVAs) are mechanical devices developed in the beginning of the last 
century used normally to attenuate the vibration level of different structures and machines. They have been used in 
several engineering applications, such as ships, power lines, aeronautic structures, civil engineering constructions 
subjected to seismic induced excitations, etc. In the literature, different approaches based on optimization methods 
have been proposed to design dynamic vibration absorbers. The present work focuses the theoretical study and 
numerical simulations of a two degree-of-freedom nonlinear damped system, constituted of a primary mass attached to 
the ground by a linear spring and the secondary mass attached to the primary system by a nonlinear spring (nDVA). 
The sensitivity analysis of suppression bandwidth, namely, the frequency range over which the ratio of the main mass 
displacement amplitude to the amplitude of the forcing function is less than unity, with respect to design variables that 
characterize the nonlinear system based on the first order finite differences is proposed. The application is associated 
to the suppression bandwidth, where the interest is to maximize this bandwidth using two bio-inspired optimization 
methods recently proposed: Bees Colony Algorithm and Firefly Algorithm. 
 
Keywords: Nonlinear dynamic vibration absorber, suppression band, nonlinear vibration, bio-inspired optimization 
methods. 

 
1. INTRODUCTION  
 
The use of discrete dynamic vibration absorbers (DVAs) in the problem of vibration attenuation constitutes an 
important subject in modern engineering. The application of DVAs to reduce noise and vibration levels in various types 
of engineering systems such as compressors systems, robots, ships, power lines, airplanes, helicopters, etc., has been 
intensively investigated lately. Much of the knowledge available to date is compiled in the original patent by Frahm 
(1911), in the books by Den Hartog (1934) and Koronev and Reznikov (1993) and in some review papers such as those 
by Steffen Jr. and Rade (2001). In the last two decades, a great deal of effort has been devoted to the development of 
mathematical models for characterizing the mechanical behavior of nonlinear dynamic vibration absorbers (nDVAs) 
accounting for its typical dependence on parameters that control the nonlinearities. A particular type of nDVA is the so-
called viscoelastic neutralizer as studied by Espíndola and Bavastri (1997). Different techniques have been proposed to 
design viscoelastic vibration absorbers, as shown by Espíndola et al. (2008, 2009).  Besides the well-known complexity 
of the modeling strategy involved in nonlinear dynamics, which constitutes a simple and straightforward means of 
representing the dynamic behavior of nDVAs, some general methodologies have been suggested and have been shown 
to be particularly suitable to be used in combination with structural systems discretization. This aspect makes them very 
attractive for the modeling of nonlinear dynamic vibration absorbers. Among these strategies, it should be mentioned 
the theoretical study proposed by Nissen (1985) and Pai and Schulz (1998), in which some techniques to improve the 
stability and efficiency of nDVAs into a frequency band of interest have been proposed, leading to refined nDVAs. 
Also, Rice and McCraith (1987) and Shaw (1989), suggested optimization strategies to be applied to the design of 
nDVAs by applying an asymmetric nonlinear Duffing-type element incorporated in the suspension for narrow-band 
absorption applications. 

In this context, different approaches based on optimization methods have been proposed to dynamic absorbers 
design. In this context, nature-inspired systems have contributed significantly to the development of new optimization 
techniques. Among the most recent bio-inspired strategies stands the Bees Colony Algorithm - BCA (Lucic and 
Teodorovici, 2001) and Firefly Algorithm – FA (Yang, 2008) for solving combinatorial optimization problems.  

The BCA is based on the behavior of bees’ colonies in their search of raw materials for honey production. 
According to Lucic and Teodorovici (2001), in each hive groups of bees (called scouts) are recruited to explore new 
areas in search for pollen and nectar. These bees, returning to the hive, share the acquired information so that new bees 
are indicated to explore the best regions visited in an amount proportional to the previously passed assessment. Thus, 
the most promising regions are best explored and eventually the worst end up being discarded. Every iteration this cycle 
repeats itself with new areas being visited by scouts.  

The FA mimics the patterns of short and rhythmic flashes emitted by fireflies in order to attract other individuals to 
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its vicinities. This optimization algorithm is formulated by assuming that: all fireflies are unisex, so that one firefly will 
be attracted to all other fireflies; attractiveness is proportional to their brightness, and for any two fireflies, the less 
brighter one will attract (and thus move) to the brighter one; however, the brightness can decrease as their distance 
increases and if there are no fireflies brighter than a given firefly, it will move randomly. The brightness is associated 
with the objective function.  

In this sense, the present work is dedicated to presenting alternative optimization techniques for the design of 
nDVAs. For this aim, this contribution focuses on the theoretical study and numerical simulations of a two degree-of-
freedom nonlinear damped system, constituted of a primary mass attached to the ground by a linear spring and the 
secondary mass attached to the primary system by a nonlinear spring (nDVA). The optimization techniques presented 
are applied to a nDVA for illustration purposes, however they are intended to be general in the sense that they can be 
applied to design different types of nonlinear mechanical systems.  This work is organized as follows. The mathematical 
formulation of non-linear dynamic system and sensibility analysis are presented in Sections 2 and 3, respectively. A 
review of the BCA and the FA are presented in Section 4. The results and discussion are described in Section 5.  
Finally, the conclusions and suggestions for future work conclude the paper.  
 
2. MATHEMATICAL MODELING OF NON-LINEAR DYNAMIC SYST EM 
 

Consider the two degree-of-freedom (d.o.f.) model shown in Fig. 1. 
 

 

Figure 1: Two degree-of-freedom damped system. 

 
This device consists of a damped primary system attached to the ground by a suspension that includes either a linear 

or a nonlinear spring, and a damped secondary mass coupled to the primary system by a spring with nonlinear 
characteristics. The external force applied to the primary system is given by the following expression:  
 
       )cos()(1 tptF ω=                                                                                                                                                           (1) 

 
The constitutive forces of the springs are given by:  

 
       ( ) 21;3 toixkxkxr i

nl
iiiii =+=                                                                                                                                        (2) 

 
where 1x  represents de displacement of the primary system with respect to the ground, and 2x  is the displacement of the 

DVA with respect to the primary system. In the model above, the dampers are linear, however springs have nonlinear 
characteristics, where ik  and nl

ik  represent, respectively, the linear and nonlinear coefficients of the springs. 

With the aim of obtaining the dimensionless normalized equations of motion for the nonlinear system, the 
displacements are normalized with respect to the length of a given vectorcx (Zhu, 1992), according to the following 

expression: 
 
      cii xxy =                                                                                                                                                                      (3) 

 
In addition, one introduces the following relations to the system:  
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By applying the Newton’s second law, and after some algebraic manipulations, the following normalized equation 

of motion of the nonlinear dynamic system can be expressed under the following matrix form: 
 
        ( ) ( ) ( ) ( )tttt fKyyCyM =++ &&&                                                                                                                                            (5) 
 
where the normalized mass, damping and stiffness matrices are expressed, respectively, by the following relations: 
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The normalized displacement and force vectors are given by: 
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2.1. Steady-State Response of the Nonlinear System 
 

In this paper, the Krylov-Bogoliubov method (Nayfeh, 2000) will be used to integrate the matrix equation of motion 
(Eq. (1)). This method leads to an approximate solution of nonlinear differential equations. The process is based on the 
following transformation of variables: 
 
        ( ) ( ) ( ) τττττ sincos vuy +=                                                                                                                                             (8) 
 
where τ=ωt;  the time dependence of T)( 21 uuu = and T)( 21 vv=v  is assumed to be small for high order terms, such as 

the vectors u and v.  
After mathematical manipulation, we obtain a nonlinear algebraic system with four equations and four variables u1, 

u2, v1 and v2 is obtained: 
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The system represented by Eq. (9) should be numerically solved. Then, the values of n u1, u2, v1 and v2 can be 

calculated and the vibration amplitudes of the primary and secondary masses of the nonlinear DVA are obtained. The 
amplitude values are given by r1 and r2, according to the following equation: 
 

         .2to1,22 =+= ivur iii                                                                                                                                        (10) 

 
3. SENSITIVITY ANALYSIS OF STRUCTURAL RESPONSES 

 
In a mechanical system, the parameters of mass, stiffness and damping, establish the dependence with respect to a 

set of design parameters, which include physical and geometrical characteristics and the parameters that control the 
nonlinearities (Haug, 1986). Such functional dependence can be expressed in a general form as follows: 
 
         ( ) ( ) ( )( )pKpCpMrr ,,=                                                                                                                                            (11) 

 
where r  and p  designate vectors of structural responses and design parameters, respectively. 

The sensitivity of the structural responses with respect to a given parameter pi, evaluated for a given set of values of 
the design parameter p0 is defined as the following partial derivative: 
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where ip∆  is an arbitrary variation applied to the current value of parameter pi
0, while all other parameters remain 

unchanged. The sensitivity with respect to pi can be estimated by finite differences by computing successively the 
responses corresponding to pi = pi

0 and pi = pi
0+∆ pi. 

Such procedure is an estimated approach enabling to calculate the sensitivity of the dynamic system responses with 
respect to small modifications introduced in the design parameters. Moreover, the results depend upon the choice of the 
value of the parameter increment ∆ pi. Another strategy consists in computing the analytical derivatives, as possible, of 
the structural responses with respect to the parameters of interest. This approach is not considered herein because of the 
numerical procedures used to solve the nonlinear equations. 

 
 
4. BIO-INSPIRED ALGORITHMS 
 
4.1. Bee Colony Algorithm 

 
This optimization algorithm is based on behavior of colony of honey bees. It can extend itself over long distances 

and in multiple directions simultaneously to exploit a large number of food sources. In addition, the colony of honey 
bees presents as characteristic, the capacity of memorization, learning and transmission of information in colony, so 
forming the swarm intelligence (von Frisch, 1976). 

In a colony the foraging process begins by scout bees being sent to search randomly for promising flower patches. 
When they return to the hive, those scout bees that found a patch which is rated above a certain quality threshold 
(measured as a combination of some constituents, such as sugar content) deposit their nectar or pollen and go to the 
“waggle dance”. 

This dance is responsible by the transmission (colony communication) of information regarding a flower patch: the 
direction in which it will be found, its distance from the hive and its quality rating (or fitness) (von Frisch, 1976). This 
dance enables the colony to evaluate the relative merit of different patches according to both the quality of the food they 
provide and the amount of energy needed to harvest it (Camazine et al., 2003).  

After waggle dancing on the dance floor, the dancer (i.e., the scout bee) goes back to the flower patch with follower 
bees that were waiting inside the hive. More follower bees are sent to more promising patches. This allows the colony 
to gather food quickly and efficiently. While harvesting from a patch, the bees monitor its food level. This is necessary 
to decide upon the next waggle dance when they return to the hive (Camazine et al., 2003). If the patch is still good 
enough as a food source, then it will be advertised in the waggle dance and more bees will be recruited to that source. 

In this context, Pham and co-workers (Pham et al., 2006) proposed an optimization algorithm inspired by the natural 
foraging behavior of honey bees (Bees Colony Algorithm - BCA) and presented in Fig. 2.  

 
Basic steps of the Bees Colony Algorithm 
1. Initialize population with random solutions. 
2. Evaluate fitness of the population. 
3. While (stopping criterion not met) 
4. Select sites for neighborhood search. 
5. Recruit bees for selected sites (more bees for the best e 
sites) and evaluate fitnesses. 
6. Select the fittest bee from each site. 
7. Assign remaining bees to search randomly and 
evaluate their fitnesses. 
8. End while. 

Figure 2. Bees Colony Algorithm (Pham et al., 2006). 
 

The BCA requires a number of parameters to be set, namely, the number of scout bees (n), number of sites selected 
for neighborhood search (out of n visited sites) (m), number of top-rated (elite) sites among m selected sites (e), number 
of bees recruited for the best e sites (nep), number of bees recruited for the other (m-e) selected sites (ngh), and the 
stopping criterion. 

The BCA starts with the n scout bees being placed randomly in the search space. The fitnesses of the sites visited by 
the scout bees are evaluated in step 2. 

In step 4, bees that have the highest fitnesses are chosen as “selected bees” and sites visited by them are chosen for 
neighborhood search. Then, in steps 5 and 6, the algorithm conducts searches in the neighborhood of the selected sites, 
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assigning more bees to search near to the best e sites. The bees can be chosen directly according to the fitnesses 
associated with the sites they are visiting. 

Alternatively, the fitness values are used to determine the probability of the bees being selected. Searches in the 
neighborhood of the best e sites, which represent more promising solutions, are made more detailed by recruiting more 
bees to follow them than the other selected bees. Together with scouting, this differential recruitment is a key operation 
of the BCA. 

However, in step 6, for each patch only the bee with the highest fitness will be selected to form the next bee 
population. In nature, there is no such a restriction. This restriction is introduced here to reduce the number of points to 
be explored. In step 7, the remaining bees in the population are assigned randomly around the search space scouting for 
new potential solutions. 

In the literature, various applications using this bio-inspired approach can be found, such as: modeling combinatorial 
optimization transportation engineering problems (Lucic and Teodorovic, 2001), engineering system design (Yang, 
2005; Lobato et al., 2010), transport problems (Teodorovic and Dell’Orco. 2005), mathematical function optimization 
(Pham et al., 2006), dynamic optimization (Chang, 2006), optimal control problems (Afshar et al., 2001), parameter 
estimation in control problems (Azeem and Saad, 2004), among other applications (http://www.bees-algorithm.com/). 

 
4.2. Firefly Algorithm 

 
The Firefly Algorithm is based on the characteristic of the bioluminescence of fireflies, insects notorious for their 

light emission. According to Yang (2008), biology does not have a complete knowledge to determine all the utilities 
that firefly luminescence can bring to, but at least three functions have been identified: (i) as a communication tool and 
appeal to potential partners in reproduction, (ii) as a bait to lure potential prey for the firefly, (iii) as a warning 
mechanism for potential predators reminding them that fireflies have a bitter taste. 

The bioluminescent signals are known to serve as elements of courtship rituals (in most cases, the females are 
attracted by the light emitted by the males), methods of prey attraction, social orientation or as a warning signal to 
predators (Lukasik and Zak, 2009). 

It were idealized some of the flashing characteristics of fireflies so as to develop firefly-inspired algorithms. For 
simplicity the following three idealized rules are used (Yang, 2010):  

1) all fireflies are unisex so that one firefly will be attracted to other fireflies regardless of their sex;  
2) attractiveness is proportional to their brightness, thus for any two flashing fireflies, the less brighter one will 

move towards the brighter one. The attractiveness is proportional to the brightness and they both decrease as 
their distance increases. If there is no brighter one than a particular firefly, it will move randomly;  

3) the brightness of a firefly is affected or determined by the landscape of the objective function. For a 
maximization problem, the brightness can simply be proportional to the value of the objective function.  

According to Yang (2008), in the firefly algorithm, there are two important issues: the variation of light intensity 
and formulation of the attractiveness. For simplicity, it is always assumed that the attractiveness of a firefly is 
determined by its brightness which in turn is associated with the encoded objective function. 

This swarm intelligence optimization technique is based on the assumption that solution of an optimization problem 
can be perceived as agent (firefly) which “glows” proportionally to its quality in a considered problem setting. 
Consequently each brighter firefly attracts its partners (regardless of their sex), which makes the search space being 
explored more efficiently. The algorithm makes use of a synergic local search. Each member of the swarm explores the 
problem space taking into account results obtained by others, still applying its own randomized moves as well. The 
influence of other solutions is controlled by value of attractiveness (Lukasik and Zak, 2009). 

According to Lukasik and Zak (2009), the FA is presented as follows. Consider a continuous constrained 
optimization problem where the task is to minimize cost function f(x), find x* such as: 
 
         *( ) min ( )

x S
f x f x

∈
=                                                                                                                                                     (13) 

Assume that there exists a swarm of m agents (fireflies) solving above mentioned problem iteratively and xi 
represents a solution for a firefly i in algorithm’s iteration k, whereas f(xi) denotes its cost. Initially, all fireflies are 
dislocated in S (randomly or employing some deterministic strategy). Each firefly has its distinctive attractiveness τ 
which implies how strong it attracts other members of the swarm. As the firefly attractiveness one should select any 
monotonically decreasing function of the distance rj=d(xi,xj) to the chosen firefly j, e.g. the exponential function: 

         
0

jre−= γτ τ                                                                                                                                                                 (14) 

where τo and γ are predetermined algorithm parameters: maximum attractiveness value and absorption coefficient, 
respectively. Furthermore every member of the swarm is characterized by its light intensity Ii which can be directly 
expressed as a inverse of a cost function f(xi).To effectively explore considered search space S it is assumed that each 
firefly i is changing its position iteratively taking into account two factors: attractiveness of other swarm members with 
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higher light intensity, i.e., Ij > Ii, ∀ j=1, …, m, j≠i which is varying across distance and a fixed random step vector ui. It 
should be noted as well that if no brighter firefly can be found only such randomized step is being used. 

Thus, moving at a given time step t of a firefly i toward a better firefly j is defined as: 

( )1 1 1 1

2
t t t t
i i j ix x x x rand− − −  = + − + − 

 
τ α                                                                                                                          (15) 

 
where the second term on the right side of the equation inserts the factor of attractiveness, τ while the third term, 
governed by α parameter, governs the insertion of certain randomness in the path followed by the firefly, rand is a 
random number between 0 and 1.  

In the literature, few works using the FA can be found. In this context, is emphasized application in multimodal 
optimization (Yang, 2009), continuous constrained optimization task (Lukasik and Zak, 2009), solution of singular 
optimal control problems (Pfeifer and Lobato, 2010) and economic emissions load dispatch problem (Apostolopoulos 
and Vlachos, 2011). 

 
5. RESULTS AND DISCUSSION 

 
The following numerical example is presented to illustrate the application of the proposed methodology to obtain a 

robust design of a nDVA. Figure 1 depicts the test structure consisting of a primary mass attached to the ground by a 
nonlinear spring and coupled with a nDVA. The nominal values of the design parameters used to generate the dynamic 
responses of the nonlinear system are illustrated on Tab. 1. The computations performed consist in obtaining the driving 
point frequency responses associated to the displacement 1x .  

 
Table 1 – Nominal Values of design variables. 

Parameters ε1 ε2 β ζ1 ζ2 µ ρ 
Nominal Values 0.001 0.01 0.1 0.01 0.01 0.05 1.0 

 
5.1. Sensitivities of the frequency response with respect to structural parameters. 
 

To illustrate the computation procedure for the sensitivity of dynamic responses, numerical tests were performed by 
using the system configuration illustrated in Fig. 1. As previously mentioned, the computations are devoted to obtaining 
the sensitivities of the driving point frequency responses, which are given by the elements of( )pω,H . 

In this example, the normalized structural parameters ζ1, ζ2, ε1, ε2, β, µ and ρ, are considered as the design variables 
in the computation of the normalized sensitivities of the frequency responses with respect to a given parameter p, 

( )p,N ωHS . The normalized real parts of the approximated complex sensitivity functions calculated by finite differences 

(according to Eq. (16)) are shown in Figs. 2 to 5, for which a variation of 20% of the nominal values of each design 
parameter was adopted. Also, in the same figures, the real parts of the frequency responses( )pω,H , multiplied by 

convenient scale factors (SF), are shown. The sensitivity functions, denoted by ( )p,N ωHS , have been normalized 

according to the following scheme: 
 

         ( ) ( )
( ) ( )0p,
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p
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0 ω
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∂
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Based on the amplitudes and signs of the sensitivity functions one can evaluate the degree of influence of the design 

variables upon the suppression bandwidth, in the frequency band of interest. In addition, the sensitivity analysis enables 
to decide among the design parameters those that will be retained in the optimization process. The parameters ζ1 and ζ2 
and ε1 do not have a significant influence on the evaluation of the suppression bandwidth (Borges, et al. 2010).  
Consequently, these parameters are not considered as design variables in the optimization run. However, as shown in 
Figures 3 and 4, the degrees of influence of the parameters ε2, µ, and ρ on the suppression bandwidth are significant and 
will be considered as design variables in the optimization process. 
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Figure 3 - Sensitivities of ( )pω,H  with respect to ρ  (a) and 2ε  (b). 

             
Figure 4 - Sensitivities of ( )pω,H  with respect to β  (a) and µ  (b). 

 
After having verified the influence of each design variable on the dynamic response of the nonlinear system, the 

interest now is to maximize the suppression bandwidth, as illustrated in Figure 5, using the bio-inspired algorithms.  
 

 
Figure 5 - Representation of the objective function (maximize the suppression bandwidth). 

 
In these simulations, the following ranges to design parameters are considered: 0.9 ≤ ρ ≤ 1.2, 0.04 ≤ µ ≤ 0.06, 0.09 ≤ 

β ≤ 1.2 and 0.009 ≤ ε2 ≤ 0.012.  
In order to evaluate the performance of the BCA to estimate both, the three test cases listed in Tab.(2) have been 

performed. 
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Table 2. Parameters used in bio-inspired algorithm to design of a nonlinear vibration absorber. 
 

BCA parameters 
Number of scout bees 10 
Number of bees recruited for the best e sites 5 
Number of bees recruited for the other selected sites 5 
number of sites selected for neighborhood search 5 
number of top-rated (elite) sites among m selected sites 5 
Neighborhood search (ngh) [10-3 10-4 10-6] 
Generation Number 50 
FA parameters 
Number of fireflies 15 
Maximum attractiveness value  0.9 
Absorption coefficient  [0. 7 0.9 1.0] 
Generation Number 50 

 
The stopping criterion used was the maximum number of iterations. Each case study was computed 20 times before 

calculating the average values. It should be emphasized that is necessary, with the parameters listed in this table, 1510 
objective function evaluations in each algorithm. 

In Table 3 the results (best, average and worst) obtained to design of nonlinear vibration absorber are presented.  
 

Table 3. Results obtained by BCA and FA to design of nonlinear vibration absorber. 
   ρ (??) µ (??) β (??) ε2 (??) Objective Function 

Best 1.165047 0.053215 0.110475 0.017384 0.236363 
Average 1.189594 0.055915 0.102757 0.015343 0.230303 ngh=10-3 
Worst 1.027717 0.058962 0.091711 0.011162 0.218181 
Best 1.099421 0.056000 0.103077 0.010199 0.230304 
Average 1.134470 0.058684 0.095935 0.011151 0.224242 ngh=10-4 
Worst 0.916268 0.045893 0.103029 0.011061 0.224255 
Best 1.134469 0.058680 0.095952 0.011141 0.224233 
Average 0.981351 0.046040 0.095621 0.010047 0.218181 

BCA 

ngh=10-6 
Worst 0.961863 0.050917 0.105860 0.011697 0.218185 
Best 1.158006 0.054298 0.110800 0.017410 0.230767 
Average 1.158007 0.054258 0.110883 0.017400 0.230769 γ=0.7 
Worst 1.157047 0.053205 0.110533 0.017399 0.228762 
Best 1.148089 0.055678 0.110122 0.018988 0.230769 
Average 1.148089 0.055678 0.110122 0.018988 0.230769 γ=0.9 
Worst 1.148091 0.055680 0.110123 0.018989 0.230770 
Best 1.156679 0.056758 0.111422 0.017777 0.232775 
Average 1.148089 0.055678 0.110122 0.018988 0.230769 

FA 

γ=1.0 
Worst 1.151179 0.057998 0.109898 0.015767 0.214715 

 

In this table can be observed that both the algorithms presented good estimates for the unknown parameters. When 
the BCA is analyzed in terms of the neighborhood search parameter, the best result is obtained using 10-3, i. e., a search 
region with smaller distances to exploit a large number of food sources. When the FA is analyzed in terms of the 
absorption coefficient, the best result is found using γ=1.0, i. e, this emphasized local search. 
 
6. CONCLUSIONS 

 
In this work, the Bees Colony Algorithm and the Firefly Algorithm were applied to design of a nonlinear vibration 

absorber. The nonlinearity was introduced in the springs that connect the primary mass to the ground and the absorber 
to the primary mass, respectively.  

 As observed in Tab. (3), both algorithms are able to obtain satisfactory results, in terms of the effectiveness of the 
nDVA configuration and the number of objective function evaluations. Although the results obtained, both through 
BCA and FA needs yet to be better studied, so that more definitive conclusions can be drawn, i.e., new mechanisms to 
diversity exploration should be proposed. 



Proceedings of COBEM 2011         21st Brazilian Congress of Mechanical Engineering 
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 
  

The choice of the design variables is based on previous knowledge regarding their sensitivities with respect to the 
suppression bandwidth.  It is worth mentioning that these parameters are directly associated with the effectiveness of 
the nDVA. 

In terms of the system resolution, the equations of motion of the nonlinear two d.o.f. system were numerically 
integrated by using the so-called average method that provides an approximate solution to nonlinear dynamic problems. 
The nonlinear algebraic equations obtained were solved numerically enabling to determine the roots of the nonlinear 
algebraic equations.  

The nonlinearity factor is an important parameter to be investigated during the design procedure of nonlinear 
dynamic systems, due to its contribution to the reduction of the vibration level. However, care must be taken with high 
values of the nonlinearity because of the instabilities introduced in the nonlinear systems. This point motivates an 
important aspect regarding the proposed methodology: obtaining the optimal spring nonlinear coefficient that 
guarantees the best stable solution for a given system. 

As further work, we intend to extend the algorithms to the multi-objective context and assess the sensitivity of the 
parameters with respect to the effectiveness of the solution.  
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