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Abstract. The conversion of flow-excited vibrations into electrical energy is a scalable option for energy harvesting. 

Stable aeroelastic LCO of acceptable amplitude can provide an important source of persistent electrical power. 

Therefore, a nonlinear aeroelastic system might be useful configuration for wind energy harvesting over a wide range 

of airflow speeds. In a previous work, the modeling and analysis of a piezoelectric energy harvester with two degrees 

of freedom (DOF), i.e. pitch and plunge, was presented. A combined nonlinearity (free play and cubic hardening) was 

modeled in the pitch DOF. Bounded flutter over a wide range of airflow speeds (ranging from velocities slightly below 

the linear flutter speed up to 1.5 of the linear flutter speed) was obtained, providing a useful piezoaeroelastic 

harvester. However, LCO below the linear flutter speed would be the most interesting case for practical applications 

(natural wind). In this paper, a piezoaeroelastically coupled lumped-parameter model for wind energy harvesting is 

presented. An airfoil with three DOF, i.e. pitch, plunge and control surface rotation, is investigated. Piezoelectric 

coupling is introduced to the plunge DOF and a resistive load is considered in the electrical domain of the problem. 

The unsteady aerodynamic loads are obtained from Jones’ approximation of Wagner’s indicial function. The 

piezoaeroelastic equations are cast in the state-space form. Two case studies are presented in this work for energy 

harvesting from aeroelastic oscillations. First the interaction between piezoelectric power generation and linear 

aeroelastic response of the typical section is investigated. Time domain predictions for pitch, control surface and 

plunge DOF as well as electrical power output are presented. In the second case, free play nonlinearity is modeled in 

the control surface DOF. The piezoaeroelastic behavior is investigated over a wide range of airflow speeds and a set 

of load resistances in the electrical domain (ranging from short-circuit to open-circuit condition). A useful 

configuration leading to oscillations over a wide range of airflow speeds (from 18% to 94% of the linear flutter speed) 

is presented. 

 

Keywords: broadband harvester, energy harvesting, aeroelasticity, piezoelectricity 

 

1. INTRODUCTION 

 

Scavenging vibration energy with piezoelectric materials is a novel solution for applications where traditional 

powering is prohibitive (expensive or impracticable). Anton and Sodano (2007) present a review of vibration power 

harvesting using piezoelectric materials. They recall that electrochemical batteries have limited life and thus periodic 

replacement must be performed. This is an issue for devices placed on remote locations as an arctic monitoring station 

(Pimentel, Musilek and Knight, 2010). 

Cook-Chennault, Thambi and Sastry (2008) present an extensive discussion about non-regenerative and regenerative 

power supplies for microelectromechanical systems. They mention that regenerative technologies can be implemented 

for both standalone and hybrid power systems and include microphotovoltaic arrays, microthermophotovoltaic cells, 

electromagnetic and inductively coupled plasmas, acoustic noise, thermoelectric, electrostatic and piezoelectric devices. 

The authors also point out that vibration-based energy harvesting devices have power densities comparable to thin- and 

thick-film lithium and lithium-ion batteries. This fact explains the increasing attention that piezoelectric energy 

harvesters have received. 

Recently the concept of self-charging structures (Anton, Erturk and Inman, 2010) has been introduced to improve 

multifunctionality in UAVs (unmanned air vehicles). The proposed multilayer structure is composed of piezoceramic 

layers for vibration-to-electric energy conversion, thin-film battery layers for storing the generated energy and a 

metallic substructure layer as the original load-bearing layer. An electromechanically coupled finite element (FE) model 

(De Marqui et al., 2009) has been successfully verified against the analytical results obtained from the closed-form 

solution for a unimorph harvester under base excitation (Erturk and Inman, 2008) and also against the analytical and 

experimental results for a bimorph energy harvester with a tip mass under base excitation (Erturk and Inman, 2009). 

The FE model has also been used to solve an optimization problem for UAV applications. The aluminum wing spar of a 

UAV is modified to design a generator wing spar. Since mass densities of typical piezoceramic materials are 

considerably large for UAV applications, a limiting value for mass addition is imposed to the problem as a design 

constraint. Dimensions of the embedded piezoceramic device are identified for the maximum electrical power output of 

the generator spar. 

In the field of aeroelasticity, the possibility of an additional power source for UAV and micro air vehicles (MAV) is 

attractive. Usable power can be extracted from aeroelastic vibrations of lifting surfaces. De Marqui et al. (2011) present 



Proceedings of COBEM 2011         21
st
 Brazilian Congress of Mechanical Engineering 

Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 

  

 
a piezoaeroelastic frequency-domain analysis of a cantilevered plate-like wing for energy harvesting. The 

piezoaeroelastic equations are obtained by combining an electromechanical finite-element plate model with the doublet-

lattice method. Expressions for piezoaeroelastically coupled frequency response functions are also defined. 

Erturk et al. (2010) present a frequency domain analysis of a linear piezoaeroelastically coupled typical section. The 

harvester delivers 10.7 mW of power to a 100 k  load resistance under a flow excitation of 9.3 m/s. Self-sustained 

oscillations occurring at a specific airspeed is a limiting situation for such a wind energy harvester. On the other hand, 

structural nonlinearities (Lee, Price and Wong, 1998) can induce subcritical limit cycle oscillations (LCO). Nonlinear 

LCO over a wide range of airflow speeds provides a useful source of electrical power. Recently, Anicézio et al. (2011) 

presented a theoretical model with experimental validation for a nonlinear piezoaeroelastic typical section. A free play 

region was modeled in the pitch DOF. LCO of acceptable amplitude was obtained below the linear flutter speed and the 

power output (about 30 mW) is twice the power of the linear model. The same paper suggests that a cubic stiffening 

nonlinearity bounds the amplitudes of LCO, improving the operating envelope of such an energy harvester. In addition 

to scavenging energy, Dunnmon et al. (2011) establish metrics regarding to the efficiency of a harvester. The authors 

define transduction efficiency as the ratio of the energy absorbed from the host structure by the electrical system.  

In this paper a broadband configuration of energy harvester is presented. The model presented here is similar 

(electromechanical coupling is added) to the one by Tang, Dowell and Virgin (1998). Two case studies are presented. 

First the influence of the control surface stiffness is investigated in a linear case. Although the critical flutter speed 

reduced from 23.96 m/s to 3.50 m/s for specific control surface stiffness, self-sustained oscillations occurring at a 

specific airflow speed still restricts the envelope of such a harvester. Then a nonlinear case study is presented. Free play 

is modeled in the control surface DOF and the operating envelope ranges from 18% to 94% of the critical condition 

(linear flutter velocity). 

 

2. PIEZOAEROELASTIC MODEL 

 

Figure 1 shows the schematic of a 3-DOF aeroelastic typical section. The plunge, pitch and control surface 

displacement variables are denoted by h ,  and , respectively. The plunge displacement is measured at the elastic 

axis (positive in the downward direction) and the pitch angle is measured at the elastic axis (positive in the clockwise 

direction). The control surface angle is measured from the typical section chord line (positive in the clockwise 

direction). In addition, b  is the semichord of the airfoil section, e  is the nondimensional distance of elastic axis from 

the mid-chord position, c  is the nondimensional distance of the control surface hinge line from the mid-chord, x  is the 

dimensionless chord-wise offset of the elastic axis from the centroid (CG), x  is the dimensionless offset of the control 

surface CG from the hinge line, hk  is the stiffness per length in the plunge DOF, k  is the stiffness per length in the 

pitch DOF, k  is the stiffness per length in the control surface DOF, hb  is the damping coefficient per length in the 

plunge DOF, b  is the damping coefficient per length in the pitch DOF, b  is the damping coefficient per length in the 

control surface DOF and U  is the airflow speed. 

 

 
 

Figure 1. 3-DOF typical aeroelastic section with control surface (adapted from Tang and Dowell, 2010) 

 

In this work, piezoelectric coupling is added to the plunge DOF of the typical section. A load resistance is 

considered in the electrical domain of the problem. A concentrated nonlinearity (free play) is added to the control 

surface DOF. Therefore, by using Lagrange’s equations, the nonlinear piezoaeroelastically coupled equations are 

presented as 
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where m  is the airfoil mass per length (in the span direction), 
em  is the fixture mass (connecting the airfoil to the 

plunge springs) per length, I  is the airfoil mass moment of inertia per length about the elastic axis and I  is the 

control surface moment of inertia per length about its hinge line, S  and S  are the static moments per length, l  is the 

span length, lR  is the load resistance in the electrical domain, pv  is the voltage across the resistive load, eq

pC  is the 

equivalent capacitance of the piezoceramic layers,  is the electromechanical coupling term, M  and M  are the 

aerodynamic moments, L  is the aerodynamic lift and the over-dot represents differentiation with respect to time. In Eq. 

(1c), ( )fpf  is given by 
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and fp  is the free play gap. It is important to note that when 0fp  the free play nonlinearity is obtained (combining 

the linear restoring moment and ( )fpf ). The linear equations are obtained when 0fp . The restoring moment in the 

control surface DOF for the free play nonlinearity is presented in Fig. 2 along with the linear case. 

 

 
 

Figure 2. Linear and nonlinear elastic restoring moments of the control surface 

 

The normalized version of the piezoaeroelastic equations is obtained by multiplying equation (1a) by 1/ ( )mb  and 

(1b) and (1c) by 
21/ ( )mb . The electric equation is also multiplied by 

21/ ( )mb . The piezoaeroelastic equations are 

presented as, 
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where ( ) /em m m , 
h

,  and  are the plunge, pitch and control surface damping ratios, respectively 

(subscript h  refers to plunge, subscript  refers to pitch and subscript  refers to the control surface), 
h

,  and 

 are the uncoupled natural frequencies, r  and r  are the dimensionless radius of gyration, /h h b , */p pv v v  

(where *v  = 1 Volt), L , M  and M  are the dimensionless aerodynamic loads, 
*( / )v mbl , * 2( / )eq eq

p pC C v mb l , 

2 *2( / )l lR R mb l v  and 
* * 2( / )v mb l , or * / b . The term ( )fpf  is the modified version of Eq. (2). 

The linear piezoaeroelastic equations (Eq. (3a-d)) is represented here in the state-space form proposed by Edwards, 

Ashley and Breakwell (1979). However, the electromechanical coupling is also included in this paper. Therefore an 

additional electrical state is considered here. The unsteady aerodynamic loads (lift and moments in Eq.(3)) due to 

arbitrary motions are obtained from Jones’ approximation of Wagner’s indicial function, which is an approximation to 

the generalized Theodorsen function. The load expressions for arbitrary values of s  (Laplace variable) are obtained 

from the representation of simple harmonic loads by a rational function of s . The rational function describing the 

aerodynamic loads is ordinary differential equations that can be cast into state space form. Therefore two augmented 

states ( 1 2{ }T

a x xx ) are included in the state space representation of the piezoaeroelastic problem (T denotes 

transposed). The linear state-space piezoaeroelastic equation is 
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where [0 0 ]T

sΘ , 
*[0 0 ]T

eΘ , { }Thx  and I  is the identity matrix. The mass, stiffness and 

damping related matrices in Eq. (4) are 
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where M  is the structural mass matrix, B  is the structural damping matrix, K  is the structural stiffness matrix,  is 

the air density and ncM , ncB  and ncK  are noncirculatory aerodynamic matrices related to inertia, damping and 

stiffness. These matrices together with the aerodynamic matrices D , 1E , 2E , F , R , 1S  and 2S  are given in Edwards, 

Ashley and Breakwell (1979). 

Equation (4) can be also represented as 

 

x Ax   (5) 

 

and 
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A similar derivation is performed when concentrated nonlinearities (Eq. (2)) are included in the piezoaeroelastic 

system (Eq. (1)). In such a case, a combination of linear state-space models is used to represent the full nonlinear 

system (Conner, Virgin and Dowell, 1996). Therefore, the nonlinear state-space equation is 

 

i ix A x a   (6) 

 

where the state matrix and the vector 
ia  changes as the system reaches the free play boundaries (Fig. 2). The equations 

are solved using a Runge-Kutta algorithm with Hénon’s method (Hénon, 1982). Conner, Virgin and Dowell (1996) 

presented the adaptation of Hénon’s method to determine the switching point (or free play boundaries) in the time 

domain and avoid errors in numerical integration and numerical instability. 

 

3. CASE STUDIES 

 

Two study cases are presented in this work. In the first case, a linear piezoaeroelastic problem is investigated. The 

linear flutter speed is determined for a set of resistors ranging from close to short-circuit to close to open-circuit 

boundary conditions (
2 3 4 5,  10 ,10  10 ,  10lR  and 610  ). The optimum load resistance that gives the maximum 

power and maximum flutter speed (due to shunt damping effect of resistive power generation) is determined. The flutter 

boundary is also investigated for different control surface uncoupled natural frequency to the pitch uncoupled natural 

frequency ratios. In the second case, a nonlinear system is considered. The linear torsional spring of the control surface 

DOF is replaced by a bilinear spring with a free play region. The system parameters used in this paper are presented in 

Tab. 1 and are the same given by Tang, Dowell and Virgin (1998). The electromechanical coupling term = 1.55 

mN/V was obtained from a distributed parameter model (Erturk and Inman, 2008). The piezoelectric manufacturer’s 

published equivalent capacitance eq

pC = 120 nF. 

 

Table 1. System parameters (Tang, Dowell and Virgin, 1998). 

 

Semichord 0.127 m 

Span 0.52 m 

Elastic axis -0.5 

Hinge line 0.5 

Airfoil-control surface mass (per span) 1.558 Kg/m 

Fixture mass (per span) 0.913 x 2 Kg/m 

S  (per span) 0.08587 Kg 

S  (per span) 0.00395 Kg 

x  0.434 

x  0.01996 

I  (per span) 0.01347 Kgm 

I  (per span) 0.0003264 Kgm 

k  (per span) 37.3 Kgm/s
2
 

k  (per span) 3.9 Kgm/s
2
 

hk  (per span) 2818.8 Kg/m/s
2
 

 0.01626 

 0.0115 

h  0.0113 



Proceedings of COBEM 2011         21
st
 Brazilian Congress of Mechanical Engineering 

Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 

  

 
 

3.1. Linear Piezoaeroelastic Model 

 

The piezoaeroelastic behavior of the electromechanically coupled linear typical section is investigated. The 

frequency ratio /  is 2.1 (corresponding to the nominal stiffness 23.9 Kgm/sk ). 

The stability of this system is investigated through the analysis of the real part of eigenvalues. The short-circuit 

flutter speed is 23.96 m/sU  (for 
210lR ). The optimum load resistance 

510lR  gives the linear flutter speed 

of 24.02 m/sU . The maximum power given by the optimum load is 4.6 mW. The variation of power output against 

the load resistance is shown in Fig. 3. 

 

 
 

Figure 3. Predicted power output for each load resistance 

 

The influence of the control surface uncoupled frequency to the pitch uncoupled frequency ratio ( / ) over the 

linear flutter boundary is shown in Fig. 4 (short-circuit condition). 

 

 
 

Figure 4. Linear flutter velocity for different frequency ratios (◊ = plunge, ○ = pitch) 

 

When the control surface stiffness is zero ( / 0 ) the short-circuit flutter speed is 7.04 m/s. For the optimal 

load resistance and control surface free condition, the linear flutter speed is 7.10 m/s (and the power obtained is 3.4 

mW). 
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When / 0.48 , corresponding to 20.21 Kgm/sk , the linear short-circuit flutter speed is 3.50 m/sU . 

This is the lowest airflow speed for which persistent oscillations may occur for the linear case. When the optimal load is 

considered for this frequency ratio the linear flutter speed is 3.6 m/s. 

Figure 5 shows the variation of power output (delivered at the flutter speed previously determined for each control 

surface stiffness considered in this work) against the variation of control surface stiffness (for 100 klR ). The 

maximum power is obtained for /  larger than 1.2 (that gives large plunge displacements). However the linear 

flutter speed is not practical for this range of frequency ratios (Fig. 4). When the frequency ratio is /0 75 1.2.  

plunge displacement is small as well as power output.  

 

 
 

Figure 5. Electrical power output for different frequency ratios 

 

3.2. Nonlinear Piezoaeroelastic Model 

 

In the second case study, a concentrated nonlinearity is modeled in the control surface DOF. The linear torsional 

spring of the control surface DOF is replaced by a bilinear spring. The free play nominal gap is 2 4.24  degrees and 

is symmetrical about the control surface zero position. For this configuration a limit cycle occurs at 4.33 m/sU  for a 

sufficiently large initial disturbance (and short-circuit condition). Such a minimum initial disturbance is shown to be

/ ( ) ~ 0.3bh  (  in radians) or about 1% of the semichord length (Tang, Dowell and Virgin, 1998). The authors also 

pointed out that the disturbance required to excite the plunge mode is smaller than that for the pitch and control surface 

DOFs. 

The airflow velocity at which the first limit cycle occurs is 18% smaller than the linear flutter speed. Figure 6 (a-c) 

shows the nondimensional pitch, control surface and plunge amplitudes of LCO against the nondimensional flow 

velocity 0/ Fu U U  for the frequency ratio / 2.1  (where 0FU  is the flutter airspeed for / 0  of the 

linear case). The nondimensional amplitudes of LCO are obtained by dividing the dimensional amplitudes by

2 /180b . Figure 6 (d) shows the corresponding electrical power output for each load resistance considered in this 

work. 
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Figure 6. Nonlinear piezoaeroelastic responses with nondimensional velocity: (a-c) Nondimensional pitch, control 

surface and plunge amplitudes of LCO; (d) Electrical power output for each load resistance 

 

One can note in Fig. 6 that any initial disturbance is damped out for any u  lower than 0.6 and no persistent power 

output is obtained. For any velocity ratio larger than 0.6 the system undergoes self-sustained oscillations (for a finite 

initial disturbance). 

For velocity ratios ranging from 0.6 to 1.7 there is a stable low-frequency limit cycle. The plunge amplitude of LCO 

grows with increasing airflow velocity and power increases from 70 μW up to 1.9 mW. 

At ~ 1.7u  the low-frequency LCO becomes unstable and a high-frequency LCO occurs. Such a change in the 

system response is followed by a sudden drop in the plunge amplitude. Between 3.8 21 .u , the plunge displacement 

is bounded and exhibits a quite small increase with a relative large increase in the flow velocity. In this region, the 

power obtained for the optimal load increases from 55 μW to 300 μW. 

For 3.2u  the frequency of oscillation tends to approach the plunge natural frequency and the amplitude of LCO 

(for the plunge, pitch and control surface DOF) grows up rapidly as the airflow approaches the linear flutter speed. 

Divergent motion will occur at 94% of the linear flutter speed. 

The load resistance 100 klR  provides the maximum power among the loads considered in this paper. When

1.6 70 .u  the most interesting situation for wind energy harvesting is verified. The airflow ranges from 18% up to 

48% of the linear flutter speed and matches natural wind. The limit cycles are stable and the plunge amplitude increases 

with increasing airflow speed. Power increases from 70 μW to 1.9 mW (an increase of 27 times). Between 3.8 21 .u  

the power obtained ranges from 55 μW up to 300 μW. 

 

4. CONCLUSIONS 

 

This paper investigates theoretically and experimentally a linear and a nonlinear 3DOF piezoaeroelastic energy 

harvester. The piezoelectric coupling is introduced through the plunge DOF while the concentrated structural 

nonlinearity is introduced to the control surface DOF. A state-space piezoaeroelastic model is derived and the unsteady 

aerodynamic loads are obtained from Jones’ approximation of Wagner’s indicial function, which is an approximation to 

the generalized Theodorsen function. The linear piezoaeroelastic behavior is investigated for a set of load resistances. 

The optimum load that gives the maximum power also presents the largest flutter speed. The influence of control 

surface stiffness over the flutter speed is also investigated. A specific stiffness (or control surface to pitch frequency 

ratio) presents the minimum flutter speed (3.5 m/s), an interesting condition for energy harvesting from natural wind. 

Although usually avoided in real aircraft, the flutter condition is the ideal scenario for energy harvesting from linear 

aeroelastic vibrations. 
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The nonlinear piezoaeroelastic behavior of the electromechanically coupled typical section is also investigated. Free 

play nonlinearity is considered in the control surface DOF to reduce the cut-in speed of persistent oscillations. For this 

configuration a limit cycle is observed at U = 4.33 m/s for a sufficiently large initial disturbance (and short-circuit 

condition). The piezoaeroelastic behavior is investigated for a wide range of airflow speeds and persistent oscillations 

are obtained. The maximum power output of the configuration with free play nonlinearity is observed to be half of that 

of the linear configuration (at the flutter boundary). However, it is important to note that power can be extracted over a 

wide range of flow speeds in the nonlinear case. This is an interesting condition for practical applications. 
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