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Abstract. A mathematical description of a vortex is aimed by scientists since the early studies in Fluid Mechanics, espe-
cially after the recognition of the importance of vortical coherent structures in turbulence dynamics. Since the recognition
of a closed theory around the subject is not a fact, the coupling between vortex identification and the equations of fluid
dynamics has been putted aside. In the present work, the vortex identification parameters based on the strain acceleration
are written as a function of the terms of the specific case of Euler and Navier-Stokes equations. The strain-acceleration
parameters are reasoned on the fact that, vortices are regions where the strain rate tensor is orthogonal (out-of-phase)
with its acceleration, an objective tensor with respect to the changes in coordinates system. Applying this methodology to
the equations of motion, it is possible to identify which terms are in-phase or out-of-phase with respect to the strain rate
tensor and its tendency. Those new variables are evaluated for the so-called ABC flow, solution of the Euler equations
and the turbulent flow inside a cavity.
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1. INTRODUCTION

A mathematical description of a vortex, with full acceptance, is one great lacuna in fluid mechanics. Several points
distinguish the proposed criteria and its hypothesis limit their application to all kinds of flow. Some of them presents alter-
native formulations for compressive or non-newtonian flows but fail to identify vortices on regions of high vorticity. Most
of proposed criteria are based on kinematic assumptions. Some intuitive criteria, like vorticity magnitude or spiralling
streamlines are fundamented on the velocity field and their behavior along space. Even some proposed criteria which are
based on dynamic assumptions have their mathematical description as a function of kinematic entities.

Since a vortex definition has not find yet a common description, there is not much to say about the association of
dynamic entities on vortex identification in the literature. Although some intuitive ideas and observation can lead us
to some basic conclusions, the lack of a mathematical description around the subject limits the comprehensiveness to
some simple flows. The description, for example, of a oil-water emulsion formation depends, among other reasons, on
how the local mixing is responsible for breaking the oil droplets into small ones and make the mixing happens or how
the local mixing is responsible to propagate a flame in turbulent combustion. If a vortex identification criterion could
be mathematically inserted into the momentum equations for each phase or associated in the mixture equation, these
phenomena could be associated.

The objective of the present work is to derive the momentum equations and associate them to a vortex criterion based
on the strain acceleration. The strain-acceleration parameters are reasoned on the fact that, vortices are regions where
the strain rate tensor is orthogonal (out-of-phase) with its acceleration, an objective tensor with respect to the changes in
coordinates system. The application of a material derivative to the terms of momentum equations results in the description
of strain accelerations as a function of some important entities in fluid dynamic description, as the pressure hessian, for
example. Evaluating if a specific term contributes to the in-phase or out-of-phase portion of strain acceleration, its possible
to evaluate how this portion contributes to vortex evolution, by dissipating vortex motion or enhancing it.

2. VORTEX IDENTIFICATION VERSUS MOMENTUM TRANSFER EQUATIONS

The analysis of vortex identification parameters inside the momentum equations is relatively new. Jeong and Hussain
(1995) proposed a criterium with respect to the eigenvalues of pressure Hessian, a tensor composed by the second deriva-
tives of pressure with respect to space coordinates. This criterion is based on a pressure minimum at the vorticity plane.
The gradient of the Navier-Stokes equation can be separated into a symmetric and skew-symmetric parts. The pressure
hessian can be obtained applying the gradient operator to Navier-Stokes equation
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u = −1
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∇p + ν∇2u (1)
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(∇u) +∇u∇u = −1

ρ
P + ν∇2D (2)
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where D represent the strain rate tensor, ν the molecular viscosity and ρ the density. Splitting the velocity gradient, ∇u
into a symmetric (D) and antisymmetric part (W), the left side of Eq. (2) can be rewritten as

D

Dt
(∇u) +∇u∇u =

[
D

Dt
(D) + WW + DD

]
+

[
D

Dt
(W) + WD + DW

]
(3)

The right side of Eq. (3) can be also slitted into a symmetric and antisymmetric parts, respectively. The antisymmetric
part correspond to the vorticity equation

D

Dt
(W) + DW + WD = 0 (4)

and the symmetric part of Eq. (3) is equal to the left side of Navier-Stokes gradient, resulting into the relation

D

Dt
(D)− ν∇2D + WW + DD = −1

ρ
P (5)

The first two terms in Eq. (6) are not considered by the authors. They represent the influence, on the pressure hessian,
of local instantaneous material derivative and the viscous effects.

The occurrence of a pressure minimum in a plane requires two positive eigenvalues for pressure hessian. Jeong and
Hussain (1995) defined vortices as compact regions where the tensor D2 + W2, which balances the pressure term,
presents two negative eigenvalues. Since D2 + W2 is symmetrical, real eigenvalues are guaranteed. By rearranging the
eigenvalues, λD

2+W2

i , so that λD
2+W2

1 ≥ λD
2+W2

2 ≥ λD
2+W2

3 , its possible to conclude that λD
2+W2

1 is always positive
and λD

2+W2

3 is always negative. So, the criterium defines vortical structures as compact regions where λD
2+W2

2 < 0.
The criterium proposed by Jeong and Hussain (1995) are based on dynamic assumptions, but are restricted by its

hypothesis. In the Stokes regime, for example, the pressure gradient in the flow is caused solely by viscous effects, and
the notion of vortices can be found in this regime (Dombre et al. (1986)).

The work of Haller (2005) establish a relation between his vortex identification criterium, which is based on La-
grangian operators, and define vortices in the region where the tensor

ν∇2D + WW + DD− 1

ρ
P (6)

is positive indefinite.

3. NEW SET OF VORTEX IDENTIFICATION PARAMETERS

It is very common, in many physical and mathematical situations, the identification of the necessity to compare the
diagonal components of a matrix with its off-diagonal ones. One simple idea is to measure this competition by an overall
ratio index. A parameter which has in the numerator and the denominator, the intensities of one and other sides of this
balance: diagonal and off-diagonal components of the strain acceleration tensor, evaluated in the strain basis.

Here, we have developed two methods for an anisotropic comparison between the diagonal and off-diagonal compo-
nents of a matrix. Following Haller (2005) and Thompson (2008) we use the matrix associated with the second Rivlin-
Ericksen tensor. The first method which will be called here line-method is to compare, in the diagonal components of
the tensor AA1

2 , acceleration tensor on the basis of the strain tensor, L, the part of each component that comes from the
diagonal and off-diagonal component of tensor AA1

2

ARA
i =

(A|ii)2

(A2)|ii
(7)

where A = AA1
2 represents the second Rivlin-Ericksen tensor (strain acceleration) on the basis of the first one (strain rate

tensor). An isotropic version was also formulated, based on the same idea provided in above relations

IR =
AiiAii

[AA]jj
(8)

4. STRAIN ACCELERATION VERSUS MOMENTUM TRANSFER EQUATIONS

This work is intended to present the evaluation of strain acceleration in the momentum equations. Although the
parameters proposed in this section are written as the parts of Euler equations, it can be simply applied to the Navier-
Stokes equations as well. The procedure will be demonstrated for the Euler equations, but it can be easily applied to
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Navier-Stokes flow as wel. Applying the gradient operator to the Euler equations, its possible to establish, in tensorial
notation,

dD

dt
= −(D2 + W2)− 1

ρ
P (9)

Applying the the tensor A2 = dD/dt + A1∇v + ∇vTA1 in Eq. (9), results in the following relation between the
strain acceleration and the pressure Hessian:

1

2
A2 = (D + W)(D−W)− 1

ρ
P (10)

The Eq. (10) permits an direct analysis of how the terms of Euler equations can influence in the in-phase or out-of-
phase parts of A2 tensor with respect to A1 = 2D tensor. In other words, it turns possible to establish how a specific
term tends to excite or dissipates vortices locally. It is possible now to indicate parameters that can measure the influence
of each part. The first one, IR(D−W)(D+W), evaluates how much the tensor N = (D−W)(D+W), in the base of A1

eigenvectors, is in-phase or out-of-phase with A1 tensor and can be represented by the following relation

IR(D−W)(D+W) = 1− 2

π
cos−1

([
NA1

]
ii

[
NA1

]
ii

[NA1NA1 ]jj

)
(11)

In the case when the operator IR(D−W)(D+W) presents values between 0 and 0.5, it is possible to conclude that the
tensor (D −W)(D + W) is out-of-phase with respect to A1 and contributes to the vortex formation. When the same
parameters presents values between 0.5 and 1, the same tensor is in-phase to A1 and tends to impose a stretch behavior
in material elements in the respective region. The operator IRP evaluates how the pressure Hessian, in the strain base is
in-phase or out-of-phase with the same tensor and can be represented by the following relation

IRP = 1− 2

π
cos−1

([
PA1

]
ii

[
PA1

]
ii

[PA1PA1 ]jj

)
(12)

The operator IRA2
(D−W)(D+W) do the same evaluation with respect to the tensor AA1

2 corresponde ao tensor (D −
W)(D + W) and is represented by the equation bellow

IRA2
(D−W)(D+W) = 1− 2

π
cos−1

(
‖ΦA1

(D−W)(D+W)‖

‖ΦA1

A2
‖

)
(13)

Based on these relations, as the operator IRA2
(D−W)(D+W) tends to unity, greater is the share in the out-of-phase parte

of tensor A2 with A1 and greater will be its influence in the formation and excitation of vortices. IRA2
P do the same

analysis with respect to the previously mentioned tensor, but with the pressure hessian in the in-phase part of A2 with A1,
following the relation

IRA2
P = 1− 2

π
cos−1

(
‖ΦA1

P ‖
‖ΦA1

A2
‖

)
(14)

As much as the IRA2
P operator tends to unity, greater will be its participation in the in-phase part of A2 with A1.

Finally, the operators IRA2′

(D−W)(D+W) and IRA2′

P do the same analysis, but with respect to the out-of-phase parte of A2

with respect to A1. These parameters can be written by the following relations

IRA2′

(D−W)(D+W) = 1− 2

π
cos−1

(
‖Φ̃A1

(D−W)(D+W)‖

‖Φ̃A1

A2
‖

)
(15)

IRA2′

P = 1− 2

π
cos−1

(
‖Φ̃A1

P ‖
‖Φ̃A1

A2
‖

)
(16)

5. ABC FLOW

The ABC flow is a classical flow due to its chaotic behavior even for laminar flows (Dombre et al., 1986).
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5.1 Lamb vector and helicity density

The local geometrically orthogonal decomposition of the velocity vector v with respect to the vorticity vector w
introduces two quantities of crucial importance in vorticity dynamics: the vector w × v, known as Lamb vector, and the
scalar w · v, known as helicity density. The two interesting non-trivial cases are when the helicity density or the Lamb
vector vanishes. When w · v = 0 and w × v 6= 0, the flow is called complex lamellar flow. It exists if and only if

v = λ∇ξ (17)

where ξ = const are equi-potential surfaces orthogonal to the streamlines everywhere (potential flow, also called
lamellar flow, is obtained when λ = 1). When w · v = 0 and w× v = 0 the streamlines are parallel to the vorticity lines,
or

w = ζv (18)

which implies that the velocity is an eigenvector of the curl operator. This kind of flow is called Beltrami (or helical)
flow. If ζ is constant, the flow is specifically called Trkalian.

When the Lamb vector is a complex lamellar field or

w × v = g∇h (19)

there exist a set of surfaces h =const, called Lamb surfaces which are orthogonal to the Lamb vector everywhere. It
can be shown that the existence of the Lamb surfaces imply the integrability of the system and therefore this kind of flow
cannot be chaotic. Therefore, A Beltramian flow is a candidate of a chaotic flow. However, if ∇ζ 6= 0 the velocity is still
integrable, since the velocity will be on the surfaces normal to ∇ζ. Therefore, the only possibility of an incompressible
chaotic steady flow is when∇ζ = 0, where the flow is Trkalian.

Arnold (1965), seeking steady inviscid chaotic flow, proposed a Trkalian flow where ζ = 1 or w = v. The ABC flow
in cartesian coordinates is given by

u = A sin z + C cos y (20)

v = B sinx+A cos z (21)

u = C sin y +B cosx (22)

6. RESULTS

Figure 1 shows the values of the isotropic normalized ratio that compares linear acceleration deformation, in the sense
provided by the covariant convected time derivative, to angular acceleration gradient (in the same sense). Higher values
correspond to hyperbolic-like behavior.

Also all three fields of anisotropic index associated to a line-method are shown in Fig. 1. Since the orientation of
the index is different depending on the point considered, we have decided to produce indexes based on the comparison
between the three anisotropic indexes of each method. What is shown in the first row of the second column is related to
the highest (among three) value of the tendency to evolve persistently the same material line. Figure 1 show the contours
of the Q-criterion, proposed by Huntet al. (1988) and Qs-criterion, proposed by TaborandKlapper (1994), which is
an Euclidian invariant version of Q.

All the criteria are normalized in order to obtain the same basis for comparison so if a certain region presents values
below 0.5, this region remains in a vortical region, according to the criterion.

In order to evaluate the Euler equation terms with respect to the in-phase or out-of-phase parts of A2 with respect to A1

tensor, its possible to evaluate those parameters in Fig. 2. The left side images evaluates how the tensor (D−W)(D+W)
is in-phase with A2, its share of A2 tensor and the share of the in-phase part of A2 with A1 tensor, respectively. In the
right side, the same analysis is performed to the pressure Hessian P. Its possible to notice that the tensor (D−W)(D+W)
works with a big share of the out-of-phase part of A2 tensor in the vortical region along y-direction identified by the the
parameters IR and ARA

1,2,3 in Fig. 1.

7. FINAL REMARKS

Therefore, its possible to conclude that the application of the parameters discussed in the present work can lead to
important conclusion, with respect to the evolution of vortices or coherent structures in turbulent flows. This analysis, by
the way, can lead to the development to new theory based on the strain acceleration. For example, the same knowledge
can be applied to the homogeneous theory in multiphase flows, mixing, combustion and other phenomena described
also by the momentum equations. The isotropic and anisotropic parameters must be used coupled with the discussed
entities in order to measure the importance of evaluating the in-phase or out-of-phase part of an specific term of Euler or
Navier-Stokes equation locally.
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Figure 1. Vortex identification criteria evaluated in ABC flow.
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Figure 2. IR(D−W)(D+W), IRP , IRA2
(D−W)(D+W), IR

A2
P , IRA2′

(D−W)(D+W) e IRA2′

P operators in ABC-flow.
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