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Abstract. The Generalized Integral Transform Technique (GITT) is employed in the hybrid numerical-analytical 

solution of two-dimensional Stefan-type phase change problems. Complementing previous contributions, the present 

work provides a critical analysis of reordering schemes for eigenfunction expansions in this multidimensional moving 

boundary problem, when the domain dimensions change with both the space and time variables. In addition, the 

present work provides a physical analysis of the phase change problem through variation of the corresponding 

governing parameters, such as Stefan number and the initial shape of the moving boundary. 
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1. INTRODUCTION 

 

Transient diffusion problems with moving boundaries are commonly called Stefan problems, in reference to the 

work of the Slovenian mathematician and physicist Jozef Stefan (Stefan, 1889). Actually, this class of problems was 

first studied by Lamé and Clapeyron in 1831 but Stefan was the first one to solve it. The original Stefan problem deals 

with the determination of the rate of ice formation in the polar seas. Along the last few decades, moving boundary 

problems have received further attention by various research groups around the world, mainly because several other 

applications were observed and dealt with through this type of mathematical formulation. A characteristic of heat 

conduction problems with phase change is the existence of a moving interface separating the phases. At this interface, 

the latent heat associated with the phase change can be absorbed or released, and as a result of the process of heat 

transfer in two phases the interface position is changing continuously in time (Rubinsky and Cravahlo, 1981). One of 
the challenges that lead to the study of this class of problems is the lack of a priori knowledge of the phase-change 

interface position, thus making it a nonlinear problem, of remarkable difficulty in obtaining analytical solutions. 

The Generalized Integral Transform Technique (GITT) (Cotta, 1990; Cotta, 1993) is an eigenfunction expansion 

methodology for solving linear or nonlinear convection-diffusion problems, especially those not a priori transformable 

by the classical approach.  It has also found applicability in the context of moving boundary problems, particularly 

motivated by applications in thermal protection systems of space vehicles, offering high accuracy and mild 

computational cost. In the early work of Cotta (1986), the GITT approach was used to obtain a hybrid solution of one-

dimensional diffusion problems with moving boundaries in finite media with a prescribed evolution of the boundary. In 

such analysis, the diffusion equation was presented in a very general form, including diffusion in solids of usual 

geometries such as slabs, cylinders and spheres, while the diffusivity was taken as independent of the concentration 

field. To illustrate the approach, an application on metals oxidation at high temperatures was dealt with. Results were 
obtained for the oxidation of β-zircaloy, a typical material used in the cladding of nuclear fuel rods. 

Diniz et al. (1990) extended the GITT in solving a one-dimensional formulation of thermal ablation in protection 

systems for space vehicles. The authors illustrate the applicability of the technique obtaining results for the temperature 

profiles and the moving interface, using different forms of the prescribed heat flux on one side of the plate as a function 

of time, and comparing with results previously reported in the literature. Ruperti and Cotta (1991) applied the GITT to 

analyze the one-dimensional multiregion formulation of thermal ablation controlled by conduction heat transfer, again 

in spacecraft thermal protection systems. The convergence of the hybrid analytical-numerical solution was illustrated by 

truncating the eigenfunction expansions at increasing orders, and critical comparisons were made with purely numerical 

solutions for an Aluminum-Teflon system. The GITT methodology and the computational implementation are described 

in more detail in Ruperti et al. (1992), also aimed at the design of thermal shields for spacecraft atmospheric reentry. 

Cotta (1993) devoted a chapter in this book to compile the procedures and analysis for the integral transformation of 

moving boundary problems. The author presented the mathematical formulation of this general class of problems in 
one-dimensional form, and then described the procedure for obtaining the coupled ordinary differential system resulting 

from the integral transformation. Also supplied is the matrix inversion procedure in order to obtain the formal solution 

of the problem. A comparison and covalidation of numerical and hybrid techniques was presented by Ruperti et al. 

(1998) for the one-dimensional Stefan problem in transient heat conduction. The GITT was used to solve the problem, 
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after adopting a transient filter strategy. The study also employed he finite volume method combined with a coordinate 

transformation in order to fix the moving boundary. The results for the temperature profile and moving boundary 

position were presented for two different materials, metal and paraffin. An analysis of heat diffusion with moving 

boundary in cylindrical bodies representing burning wood was provided in Macêdo et al. (2000). The GITT 

methodology was used with the local-instantaneous filtering strategy, in order to obtain homogeneous boundary 

conditions and enhance convergence behavior of the eigenfunction expansions. The results were compared with those 

reported in the literature and demonstrated an excellent agreement.  

More recently, a simulation approach for the analysis of ablation in thermal protection systems (TPS) with 

atmospheric reentry in ballistic flights was developed by Ruperti et al. (2004). First, the authors proposed a differential 

model for the analysis of ablative thermal protection, which involves the use of materials with low thermal diffusivity. 

The results for the one-dimensional problem of thermal ablation in plates were compared with those obtained by the 
solution of improved lumped formulations also developed in this work. In addition, an integrated symbolic-numerical 

code (TPS-Nose) was built using the Mathematica symbolic computational platform for the derivation and calculation 

of all quantities related to the flight, and to obtain the transient behavior of the TPS recession and its thermal 

performance for uniform or variable thickness along the vehicle nose. Gomes et al. (2005) also studied the problem of 

heat conduction with ablation in aerospace thermal protection systems, and the one-dimensional formulation of this 

process was performed using the GITT, in different coordinates systems. In a recent work, Sias et al. (2009), the GITT 

approach was once more used for the hybrid analytical-numerical solution in the ablation of thermal protection  systems 

for space vehicles during atmospheric reentry. Comparisons were shown against a reference case previously studied, 

and then the more realistic aerodynamic heating of a ballistic flight was illustrated, using thermophysical properties of 

actual thermal protection materials. Then, following this development, Sias et al. (2010) have generalized their analysis 

to include a more general heat transfer model of ablation including materials that undergo pyrolysis.   
In this context, the present contribution aims at further advancing a hybrid numerical-analytical approach for 

moving boundary problems, now handling the two-dimensional Stefan-type phase change problems using GITT. In a 

natural sequence to a previous contribution (Monteiro et al., 2010), the present work deals with the analysis of 

reordering schemes for the eigenfunction expansions, and also brings a physical analysis of the phase change problem 

through variation of the governing parameters, such as Stefan number and the initial shape of the moving boundary. 

 
2. ANALYSIS 
 

The problem to be studied is related to phase change of a pure substance, in which there is movement of the 

boundary from an initial temperature distribution and from an initial shape of the phase-change interface as a function 

of the x-coordinate. The vertical boundaries are kept insulated, and it is considered that the temperature in the region 
that has already changed phase is maintained equal to the phase change temperature at the interface throughout the 

transient process, as shown in Figure 1. Therefore, the mathematical formulation for this problem in dimensionless form 

is written as (Monteiro et al., 2010): 
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Specific expressions of the interface energy balance may be written for the moving boundary extremes as: 
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The following dimensionless groups were employed in the above formulation: 
 

2
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 (15-20) 

 

where L is the domain length between the two insulated surfaces, αs is the thermal diffusivity of the phase change 

material, Cp is the specific heat, Lfs is the latent heat of phase change, Ste is the Stefan number and ∆Tc is a reference 

temperature difference. 

 

   
Figure 1. Description of the phase-change heat conduction problem with a moving interface as function of position and 

time. 

 
The problem defined by Eqs. (1-8) presents non homogeneous boundary conditions for the moving boundary heat 

balance equation. Therefore, before applying the integral transformation process, it is advisable to filter the original 

problem in order to make the boundary conditions homogeneous, and thus to improve the convergence of the 

eigenfunction expansions. Here, a quite straightforward filter expression is proposed as (Monteiro et al., 2010): 
 

0 1( , ) (1 ) ( ) ( ) ( , )S X X S XS H X         (21) 

 

where S0(τ) and S1(τ) are, respectively, the positions of the moving boundary at the borders X=0 and 1. The resulting 

homogeneous problem for the filtered surface position, H(X,), may then be integral transformed in the X direction, to 
yield an ODE system for the transformed boundary positions, to be numerically solved together with the transformed 

temperatures, as a function of time. After application of the filter, the nonlinear moving boundary equation is given by: 
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An analytical solution for the problem defined by Eqs. (1) to (4) and Eqs. (22) to (25) is unlikely to be obtainable, in 

light of the nonlinear nature of the moving boundary formulation. A hybrid analytical-numerical solution of the problem 

is then here developed by extending the ideas of the generalized integral transform technique (GITT) as described and 

reviewed in Cotta (1990), Cotta (1993), Cotta and Mikhailov (1997), Cotta (1998) and Cotta and Mikhailov (2006). 

Here, we propose to perform a double integral transformation of the temperature field, in both space coordinates, and a 

single transformation in the X-coordinate for the filtered moving boundary position. The integral transform pairs for the 

temperature field and the filtered moving boundary position are given as, respectively:  
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The quantities i(X,Y,) and m(X) are eigenfunctions of appropriately chosen eigenvalue problems, and details in 

obtaining these eigenvalue problems and respective solutions are shown in the work of Monteiro et al. (2010). The 

resulting transformed system, after operating on both the energy and interface equations, Eqs. (1, 22), is given by: 
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The same operations can be performed over the initial conditions given by Eqs. (2) and (23), to furnish 

(0)ik i ka b  ;   (0)m mH a   (34,35) 

 

All coefficients of the transformed system shown above are analytically derived using a platform of symbolic 

computation, Mathematica v.7.0 (Wolfram, 2005). 
In this two-dimensional application, the final integral transform solution for the temperature field is expressed as a 

double summation according to the inverse formula, Eq.(27).  From a computational point of view, only a truncated 

version of such nested summations can be actually evaluated. However, if one just truncates each individual summation 

to a certain prescribed finite order, computations become quite ineffective, and even risky. By following this path some 

still important information to the final result can be disregarded due to the fixed summations limits, while other terms 

are accounted for that have essentially no contribution to convergence of the potential in the relative accuracy required. 

Therefore, for an efficient computation of these expansions, the infinite multiple summations should first be converted 

to a single sum representation with the appropriate reordering of terms according to their individual contribution to the 

final numerical result. Then, it would be possible to evaluate the minimal number of eigenvalues and related derived 

quantities required to reach the user-prescribed accuracy target (Correa et al., 1997; Cotta & Mikhailov, 1997). Since 

the final solution is not, of course, known a priori, the parameter which shall govern this reordering scheme must be 
chosen with care. The most common choice of reordering strategy is based on the argument of the dominating 

exponential term, which offers a good compromise between the overall convergence enhancement and simplicity in use. 

In the case of a two-dimensional conduction problem in a fixed domain, the reordering criterion based on eigenvalues 

summation, results in a new set of eigenvalues and a single index given by μp
2
=μik

2
=βi

2
+λk

2
, where βi and αk are the 

respective eigenvalues of the problem in each space coordinate (Mikhailov and Cotta, 1996).  The criterion for 

reordering of terms in this work is based on the proportionality associated with the eigenvalues in the form 

μp(X,τ)
2
=μik(X,τ)

2
=βi

2
/S(X,τ)

2
+λk

2
. However, it is clear that this relationship now depends on position and time. For 

convergence analysis and comparisons of different reordering criteria, following the same rule and scheme described by 

Mikhailov and Cotta (1996), the criterium is first evaluated with S(X,0) at the leftmost position (X=0), then at the 

average value (X=Xm) and finally at the rightmost position (X=1), for the two cases of initial conditions considered in 

this work. Therefore, the employed reordering criteria are: μp(0,0)
2
=βi

2
/S(0,0)

2
+λk

2
; μp(Xm,0)

2
=βi

2
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 and 

μp(1,0)
2
=βi

2
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2
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2
. 

According to the explanation above, for the construction of the transformed differential system, we set a new index 

p, for the reordered indices i and k, and an index q, for the reordered indices j and l, i.e., (i,k)p and (j,l)q. Thus, the 
sums are reduced to the following form: 
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Therefore, Eqs. (3.18) and (3.19) are written in terms of simple summations as: 
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The ordinary differential equations system Eqs. (38) to (43) constitutes an initial value problem of coupled nonlinear 

equations, which should be truncated to an order of terms NT (temperature) and NS (boundary position), both large 

enough to ensure convergence of the transformed temperature field, ( )p  , and to the transformed moving boundary 

position, ( )mH  , within the error control criteria established by the user. It is advisable to make use of special 

subroutines for stiff problems, such as subroutine DIVPAG from the IMSL Library (1991). Therefore, once the 

transformed potentials are numerically obtained, the temperature field and the moving boundary position distributions 

are recovered from the inverse analytical formulae given by Eqs. (27) and (29). The reader is referred to (Monteiro et 

al., 2010) for the complete specification of the transformed system coefficients in Eqs.(38-43). 

 

3. RESULTS AND DISCUSSION 

 

Numerical results for the moving boundary position and for the temperature field were obtained from a 

computational code developed in the programming language FORTRAN 95/2003. The code was implemented on a 

PENTIUM DUAL CORE 1.73 GHz microcomputer, and the system given by Eqs. (38) to (43) was handled through the 
subroutine DIVPAG from the IMSL Library (1991). The hybrid solution was then computed using up to sixty terms 

(NT = 60) in the reordered eigenfunction expansions, and results were obtained for two different initial conditions 

functions of the moving boundary position, as presented by Gupta and Kumar (1986), for Stefan number equal to unity. 

These two cases were here named Cases A and B, corresponding to the initial positions S(X,0)=0.5–0.2Cos(πX/2) and 

S(X,0)=0.5– 0.2Cos(πX). In addition, it is presented results for Stefan numbers equal to 0.1 and 0.01 for these test-cases. 

Figures 2.a,b show the validation of the GITT solution in comparison to the 1D limiting case, for two initial 

positions of the uniform boundary, S = 0.3 and 0.5, and Stefan number equal to unity. The 2D solution tends to these 

limiting cases as the number of terms increases, showing no significant differences in the graphic scale for NT=40. 

 

    
Figure 2. Verification of the phase-change moving boundary position obtained by GITT from the two-dimensional 

model, against the one-dimensional solution at different times: a) S(X,0)=0.3. b) S(X,0)=0.5. 
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Table 1 shows a comparison of three different reordering criteria in the convergence of the moving boundary 

position, for case A and Ste=1, for values at the two boundaries, X=0 and 1 and for different times. The truncation 

orders are varied from N=5 up to 40, to allow for a brief convergence analysis. The first row in each set of results 

corresponds to the criterium taking the initial value of the boundary position at X=0, i.e., S(0,0)=0.3, while the second 

row corresponds to taking the initial value of the boundary position at X=1, S(1,0)=0.5, and the third and last row is the 

merging of these two sets of reordered eigenvalues. Clearly, the first criterium provides the lowest convergence rates, 

though it already provides fairly accurate results, with up to three converged digits, at the order N=40. The third 

criterium, which is in fact the combination of the required terms as obtained from the two other choices, provides the 

best convergence rates, and has then be preferred throughout the computations. 
 

Table 1. Convergence of the moving boundary position S(X,τ) for case A and Ste = 1.0 

NT 
Case A 

X=0 X=1 
τ=0.05 τ=0.10 τ=0.50 τ=1.00 τ=2.00 τ=0.05 τ=0.10 τ=0.50 τ=1.00 τ=2.00 

5 

0.4055a 

0.3957b 

0.3939c 

0.4462  

0.4352 

0.4323 

0.5103 

0.4957 

0.4917 

0.5139 

0.4985 

0.4945   

0.5140 

0.4985 

0.4945   

0.5864 

0.5727 

0.5718 

0.6302 

0.6133 

0.6119 

0.7012 

0.6776 

0.6760 

0.7048 

0.6804 

0.6788 

0.7049 

0.6804 

0.6789 

10 

0.3950 

0.3946 

0.3941 

0.4342 

0.4333 

0.4333 

0.4942 

0.4927 

0.4930 

0.4969 

0.4953 

0.4957 

0.4970 

0.4954 

0.4957 

0.5715 

0.5711 

0.5701 

0.6109 

0.6101 

0.6091 

0.6728 

0.6717 

0.6703 

0.6754 

0.6742 

0.6728 

0.6755 

0.6743 

0.6729 

20 

0.3945 

0.3928 

0.3933 

0.4335 

0.4314 

0.4324 

0.4933 

0.4903 

0.4922 

0.4959 

0.4929 

0.4947 

0.4960 

0.4929 

0.4948 

0.5694 

0.5683 

0.5676 

0.6065 

0.6051 

0.6043 

0.6653 

0.6634 

0.6621 

0.6677 

0.6657 

0.6644 

0.6678 

0.6657 

0.6645 

30 

0.3946 

0.3933 

0.3930  

0.4338 

0.4322 

0.4318 

0.4935 

0.4915 

0.4909 

0.4961 

0.4940 

0.4934 

0.4962 

0.4941 

0.4935 

0.5680 

0.5664 

0.5660 

0.6043 

0.6021 

0.6017 

0.6621 

0.6590 

0.6582 

0.6644 

0.6613 

0.6605 

0.6645 

0.6613 

0.6605 

40 

0.3935 

0.3934 

0.3933 

0.4325 

0.4323 

0.4323 

0.4918 

0.4916 

0.4915 

0.4943 

0.4941 

0.4940 

0.4944 

0.4942 

0.4941 

0.5653 

0.5648 

0.5647 

0.6006 

0.5998 

0.5997 

0.6568 

0.6556 

0.6555 

0.6590 

0.6578 

0.6576 

0.6591 

0.6579 

0.6577 
                a)Reordering with S(0,0)=0.3  b)Reordering with S(1,0)=0.5  c)Reordering with S(0,0)=0.3 and S(0,0)=0.5   

 

 

Tables 2 to 7 illustrate the convergence behavior of the present results for the moving boundary position at different 
times and for X=0 and 1, with different Stefan numbers. Clearly, the larger value of Ste results in slower convergence, 

due to the more severe variations promoted by the wider movement of the phase change front. One can observe that all 

four significant digits shown in Tables 5 and 6 are fully converged, while in Tables 3 and 4, in a few cases, full 

convergence at the fourth significant digit might not yet be achieved. In Tables 1 and 2 for Ste=1, in the worst situation, 

at least two significant digits are fully converged to N<60, where it becomes evident that the behavior at the boundary 

X=1 requires a few extra terms for convergence. 
 

Table 2. Convergence of the moving boundary position S(X,τ) for case A and Ste = 1.0 

NT 

Case A 

X=0 X=1 
τ=0.05 τ=0.10 τ=0.50 τ=1.00 τ=2.00 τ=0.05 τ=0.10 τ=0.50 τ=1.00 τ=2.00 

5 0.3939   0.4323  0.4917 0.4945   0.4945   0.5718 0.6119 0.6760 0.6788 0.6789 

15 0.3932  0.4320    0.4910 0.4936    0.4936   0.5689 0.6071 0.6670 0.6694 0.6694 

30 0.3930  0.4318 0.4909 0.4934 0.4935 0.5660 0.6017 0.6582 0.6605 0.6605 

45 0.3929 0.4317 0.4907 0.4931 0.4932 0.5642 0.5990 0.6545 0.6567 0.6567 

60 0.3928 0.4317 0.4907 0.4931 0.4931 0.5624 0.5964 0.6509 0.6530 0.6530 
 

 

Table 3. Convergence of the moving boundary position S(X,τ)  for case B and Ste = 1.0 

NT 

Case B 

X=0 X=1 
τ=0.05 τ=0.10 τ=0.50 τ=1.00 τ=2.00 τ=0.05 τ=0.10 τ=0.50 τ=1.00 τ=2.00 

5 0.3026   0.3026   0.3026   0.3026   0.3026   0.7009 0.7009 0.7009 0.7009 0.7009 

15 0.4025  0.4546   0.5742  0.5910   0.5929    0.7491 0.7839 0.8701 0.8814 0.8826 

30 0.4042  0.4564  0.5799   0.5978    0.5997    0.7488 0.7828 0.8673 0.8784 0.8795 

45 0.4042  0.4566  0.5816   0.5998    0.6018   0.7486 0.7823 0.8667 0.8778 0.8790 

60 0.4043 0.4570 0.5827 0.6011 0.6031 0.7481 0.7815 0.8652 0.8761 0.8773 
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Table 4. Convergence of the moving boundary position S(X,τ)  for case A and Ste = 0.1 

NT 

Case A 

X=0 X=1 
τ=0.05 τ=0.10 τ=0.50 τ=1.00 τ=2.00 τ=0.05 τ=0.10 τ=0.50 τ=1.00 τ=2.00 

5 0.3114 0.3153 0.3180 0.3180 0.3180 0.5085 0.5132 0.5177 0.5177 0.5177 

10 0.3114 0.3152 0.3178 0.3178 0.3178 0.5085 0.5132 0.5175 0.5175 0.5175 

20 0.3115 0.3153 0.3180 0.3180 0.3180 0.5084 0.5129 0.5171 0.5171 0.5171 

30 0.3115 0.3153 0.3180 0.3180 0.3180 0.5083 0.5127 0.5168 0.5169 0.5169 

40 0.3115 0.3153 0.3180 0.3180 0.3180 0.5083 0.5126 0.5166 0.5166 0.5166 
 

 

Table 5. Convergence of the moving boundary position S(X,τ)  for case B and Ste = 0.1 

NT 
Case B 

X=0 X=1 
τ=0.05 τ=0.10 τ=0.50 τ=1.00 τ=4.00 τ=0.05 τ=0.10 τ=0.50 τ=1.00 τ=2.00 

5 0.3124 0.3180 0.3255 0.3257 0.3257 0.7059 0.7104 0.7184 0.7186 0.7186 

10 0.3129 0.3186 0.3259 0.3261 0.3261 0.7060 0.7102 0.7176 0.7178 0.7178 

20 0.3130 0.3188 0.3262 0.3264 0.3264 0.7057 0.7097 0.7168 0.7170 0.7170 

30 0.3131 0.3189 0.3263 0.3265 0.3265 0.7056 0.7096 0.7166 0.7167 0.7167 

40 0.3132 0.3190 0.3265 0.3266 0.3266 0.7056 0.7095 0.7164 0.7166 0.7166 
 

 

Table 6. Convergence of the moving boundary position S(X,τ)  for case A and Ste = 0.01 

NT 
Case A 

X=0 X=1 
τ=0.05 τ=0.10 τ=0.50 τ=1.00 τ=4.00 τ=0.05 τ=0.10 τ=0.50 τ=1.00 τ=2.00 

5 0.3012 0.3015 0.3018 0.3018 0.3018 0.5009 0.5013 0.5018 0.5018 0.5018 

10 0.3012 0.3015 0.3018 0.3018 0.3018 0.5009 0.5013 0.5018 0.5018 0.5018 

20 0.3012 0.3016 0.3018 0.3018 0.3018 0.5009 0.5013 0.5017 0.5017 0.5017 

30 0.3012 0.3016 0.3018 0.3018 0.3018 0.5009 0.5013 0.5017 0.5017 0.5017 
 

 

Table 7. Convergence of the moving boundary position S(X,τ) for case B and Ste = 0.01 

NT 
Case B 

X=0 X=1 

τ=0.05 τ=0.10 τ=0.50 τ=1.00 τ=4.00 τ=0.05 τ=0.10 τ=0.50 τ=1.00 τ=2.00 

5 0.3013 0.3021 0.3025 0.3026 0.3025 0.7006 0.7014 0.7018 0.7018 0.7018 

10 0.3013 0.3019 0.3025 0.3025 0.3026 0.7006 0.7010 0.7017 0.7018 0.7018 

20 0.3013 0.3019 0.3026 0.3026 0.3026 0.7006 0.7010 0.7017 0.7017 0.7017 

30 0.3013 0.3019 0.3026 0.3026 0.3026 0.7006 0.7010 0.7017 0.7017 0.7017 

 
 

Based on the results obtained for the highest number of terms considered in the present simulation (NT=60), some 

physical discussions are now undertaken. Figures 3.a,b describe the evolution of the phase-change boundary for cases A 

and B at X=0 and X=1, and for Stefan numbers Ste=0.01, 0.1 and 1.0. It is observed that for lower Stefan numbers, 

which implies larger latent heats with respect to sensible heats, the boundaries have mild advancement from the original 

positions. For the case Ste=1.0, since a relatively smaller latent heat is required, for a given provided sensible heat, the 

front movement is much more pronounced. 

Figures 4.a,b bring the evolution of the moving boundary profile at different dimensionless times τ = 0.4 to 4.0, 

along the longitudinal coordinate, for cases A and B, with different Stefan numbers Ste=0.01, 0.1 and 1.0. Again, the 

larger Stefan number case illustrates a more significant moving boundary advancement, which is clearly more 

pronounced at the boundary X=0, where less material is initially present from the initial condition shape. 
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Figure 3. Evolution of the phase-change boundary with time for different Stefan numbers at X = 0 and X = 1: 

    a) Case A. b) Case B. 

 

 

    
Figure 4. Evolution of the moving boundary at different times and Stefan numbers: a) Case A. b) Case B. 

 

 

Figures 5.a,b show the evolution of dimensionless temperature at the two insulated contours (X=0 and X=1), on the 

lower plane Y=0, for cases A and B, and Stefan numbers Ste=0.01, 0.1 and 1.0. In both cases, it is observed that the 

temperatures at X=0 (dashed lines) have a faster transient behavior, as expected, since initially the medium width is 

smaller at this position, providing higher temperature gradients and higher rates of heat transfer. One may also observe 

the larger temperature differences that occur, at the same dimensionless time, for the lower values of Ste. 

Figures 6.a,b show the temperature distributions along the horizontal direction X, again at position Y=0, for the 

cases A and B and Stefan numbers, Ste=0.01, 0.1 and 1.0. It can be observed that the temperature distributions 

progressively deviate from the initial uniform profile, due to the pronounced transients and variable domain shape, with 

an evolution to a new uniform profile at larger times. 
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Figure 5. Temperature evolution for different Stefan numbers at X = 0 and X = 1 (Y=0): a) Case A. b) Case B. 

 

 

    
Figure 6. Temperature profiles at different times and position Y = 0, for different Stefan numbers: a) Case A. b) Case B. 
 

 

4. CONCLUSIONS 

 

A hybrid numerical-analytical treatment of the two-dimensional Stefan problem is advanced, by extending the ideas 

in the Generalized Integral Transform Technique (GITT). A double integral transformation of the temperature field is 

proposed based on an eigenvalue problem that incorporates the information on the moving boundary. A reordering 

scheme is organized to reduce the double summations into single ones, thus significantly reducing computational costs 

in the numerical solution of the transformed differential system. The moving boundary position itself is expanded in 

eigenfunctions, preceded by application of a filtering solution that extracts the information at the two borders, thus 

yielding a homogeneous eigenvalue problem for the boundary heat balance equation. A physical analysis is undertaken, 
for both the moving boundary position and the temperature distributions, demonstrating the adequacy of the proposed 

hybrid solution. 
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