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Abstract. The present work is aimed at developing and validating a methodology for the analytical treatment of 
conjugated conduction-convection heat transfer in laminar flow within a microchannel. A single domain formulation is 

proposed for modeling the heat transfer phenomena at both the fluid stream and the microchannel wall regions. By 

making use of coefficients represented with abrupt variations at the interface fluid- wall, the mathematical model is fed 

with approximate information concerning the transition of the two domains, unifying the model into a single domain 

formulation with space variable coefficients. The Generalized Integral Transform Technique (GITT) is then employed 

in the solution of the resulting convection-diffusion problem with space variable coefficients, employing even fairly 

simple eigenfunction expansion basis to construct the temperature field analytical representation. A test problem is 

chosen that still offers an exact solution for validation purposes, based on the extended Graetz problem including 

transversal conduction only across the channel walls. The excellent agreement between the approximate and exact 

solutions demonstrates the feasibility of the approach herein presented in handling more involved conjugated heat 

transfer problems at the micro-scale. 
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1. INTRODUCTION 

 

The miniaturization of mechanical equipment such as heat exchangers is a subject of major interest in recent years, 

in light of the increasing demand on high performance devices and processes with high thermal efficiency, on sensors 

with rapid and accurate response, and on the ever growing need of heat dissipation in electronic devices, which tend to 

be further conceived in even smaller dimensions and with more powerful data processing capacity. 

For the conception and design optimization of such equipments, it is of crucial importance to employ reliable 

mathematical models and solution methodologies capable of describing the physical phenomena that take place in such 

micro-systems. However, recent contributions have shown significant discrepancies between experimental results and 
macro-scale correlations and simulations (Morini, 2004; Yener et al., 2005) which may be the result of neglecting terms 

that are usually not important at the macro-scale, but whose effects may have significant importance in micro-scale heat 

transfer. In order to achieve simulated results with better agreement against experimental data, a lot of effort is being 

dispended for the proposition of models and solution methodologies to deal with fluid flow and heat transfer in 

microchannels, such as the consideration of slip flow  in opposition to the classical no-slip condition, the inclusion of 

terms related to the viscous dissipation and axial diffusion which are often neglected in macro-scale problems (Yu & 

Ameel, 2001; Tunc & Bayazitoglu, 2001; Tunc & Bayazitoglu, 2002; Mikhailov & Cotta, 2005; Cotta et al., 2005; 

Castellões & Cotta, 2006; Castellões et al., 2007), besides the investigation of corrugated walls effects in heat transfer 

enhancement (Castellões & Cotta, 2008; Castellões et al., 2010). Recently, Nunes et al. (2010), motivated by the 

theoretical conclusions reached by Maranzana et al. (2004), presented some experimental and theoretical results 

showing the importance of taking into account the heat conduction within the microchannel wall, leading to a 

conjugated problem which solution yields results in much better agreement with the available experimental data. The 
theoretical approach then employed was an extension of the work of (Guedes et al., 1991), based on the Generalized 

Integral Transform Technique (GITT), a well known hybrid numerical-analytical technique for the solution of 

convection-diffusion problems (Cotta, 1990; Cotta, 1993; Cotta, 1994; Cotta & Mikhailov, 1997; Cotta, 1998; Cotta & 

Mikhailov, 2006), and accounting for the longitudinal heat conduction along the asymmetric walls. 

The present work is thus aimed at progressing into the analysis of conjugated heat transfer in microchannels, 

developing and validating a methodology for the approximate treatment of the conjugated problem reformulated into a 

single domain model. Thus, inspired by the well succeeded approach developed by (Naveira Cotta et al., 2009) for the 

solution of heat conduction problems in heterogeneous media, we propose in this paper the reformulation of conjugated 

problems as a single region model that accounts for the heat transfer at both the fluid and the microchannel wall regions. 

By making use of coefficients represented with an abrupt variation at the interface fluid- wall, the mathematical model 

is fed with the information concerning the two original domains of the problem.  
For the solution of the proposed mathematical model we again make use of the Generalized Integral Transform 

Technique (GITT) (Cotta, 1990; Cotta, 1993; Cotta, 1994; Cotta & Mikhailov, 1997; Cotta, 1998; Cotta & Mikhailov, 
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2006). This approach is based on extending the classical integral transform method (Mikhailov & Ozisik, 1984) making 

it sufficiently flexible to handle problems that are not a priori transformable, such as in the case of problems with 

arbitrarily space-dependent and nonlinear coefficients in either the equation or the boundary conditions. In order to 

validate the solution of the approximate formulation here proposed, a test problem was chosen based on an extended 

Graetz problem with transversal conduction across the wall, that provides an exact solution for the conjugated problem 

achieved with the Classical Integral Transform Technique (CITT) (Mikhailov & Ozisik, 1984), which is then used as a 

benchmark result. 

 

2. PROBLEM FORMULATION AND SOLUTION METHODOLOGY 

 

The considered problem involves a laminar incompressible internal flow of a Newtonian fluid between parallel 

plates, in steady-state, and undergoing convective heat transfer due to a prescribed temperature,
wT , at the external face 

of the channel wall. The microchannel wall is considered to participate on the heat transfer problem through transversal 

heat conduction, neglecting the longitudinal component of the heat flux within the solid. The fluid flows with a known 

fully developed velocity profile ( )u y , and with an inlet temperature Tin. Fig. 1 depicts a schematic representation of the 

application that motivated the present study.  

 

 
 

Figure 1. Schematic representation of the conjugated heat transfer problem in a microchannel. 

 

2.1. Approximate solution 

 

We assume that the fluid is thermally developing and neglect axial heat conduction. Then, the formulation of the 

conjugated problem as a single region model that accounts for the heat transfer phenomena at both the fluid flow and 

the microchannel solid wall, is achieved by making use of coefficients represented as functions with an abrupt variation 

at the interface fluid-solid wall. The problem to be here solved is given in the following formulation with space variable 

coefficients: 

 

( , )
( ) ( ) ,   0 ,   0w

T y z T
w y k y y y z

z y y

   
    

   
                   (1a) 

( , 0) inT y z T                         (1b) 

0

0,     ( ,  )w w

y
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T y y z T

y
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
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and   and pc  are the density and the specific heat of the fluid, respectively, 
sk  is the thermal conductivity of the 

microchannel wall, fk  is the thermal conductivity of the fluid, and ( )u y is the known parabolic velocity profile of the 

fully developed flow. 

To improve the computational performance of the formal solution derived below, it is recommended to reduce the 

importance of the boundary source terms, so as to enhance the eigenfunction expansions convergence behavior (Cotta & 

Mikhailov, 1997). One possible approach for achieving this goal is the proposition of analytical filtering solutions, and 

in this work the proposed filter is just the temperature at the external wall, as presented in the following expression: 

 
*( , ) ( , )wT y z T T y z                        (2) 

 
The filtered problem is thus rewritten from Eqs. (1a-d) and (2): 

 
* *

( ) ( ) ,   0 ,   0w

T T
w y k y y y z

z y y

   
    

   
                    (3a) 

* *( , 0) in w inT y z T T T            (3b) 

*
*

0
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y

T
T y y z

y



  


                                (3c,d) 

 
Following the GITT formalism, the transform/inverse pair is defined as follows: 

* *

0

transform :     ( ) ( ) ( , )
wy

n nT z z T y z dy                       (4a) 

* *

1

inverse :     ( , ) ( ) ( )n n

n

T y z z T z




        (4b) 

where 

( )
( ) n

n

n

y
y

norm


  , normalized eigenfunctions                    (4c) 

2

0

( )
wy

n nnorm y dy  , normalization integrals                   (4d) 

 

where the eigenfunctions ( )n y  come from the eigenvalue problem solution, which was here chosen as the simplest 

possible auxiliary problem to fully demonstrate this flexible solution path: 

 
2

2

2

( )
( ) 0n

n n

d y
y

dy


  

                       (5a) 

0

0n

y

d

dy






          (5b)

 

( ) 0n iy 
          (5c)

 

Operating Eq. (3) on with  
0

( )
wy

n y dy  , 
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which can be rewritten as: 

* * *

0 00

( )
( ) ( ) ( ) ( ) ( )

ww w
yy y

n

n n

d yT T T
w y y dy y k y k y dy

z y dy y


 

  
 

  
                 (6b) 



Proceedings of COBEM 2011         21
st
 Brazilian Congress of Mechanical Engineering 

Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 

  

 

where 
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Thus: 
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Using the inverse definition into Eq. (6d), one obtains: 
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which can be rewritten as: 
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and concisely given in matrix form by: 

 
*

* 
dT

T
dz

 A B                     (7a) 

 

where:              
0 0

( ) ( )
( ) ( ) ( ) ,      ( )

w wy y

n m

nm n m nm

d y d y
A w y y y dy B k y dy
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 
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The ordinary differential equations (ODE) system (7) can be analytically solved to provide results for the 
transformed temperatures, upon truncation to a sufficiently large finite order N, in terms of the matrix exponential 

function: 

 

 * 1 *( ) exp (0)   T z z T A B                               (8a) 

 

where 
*(0)T  are the transformed initial conditions and are given by: 

 

* *

in

0

(0) ( )
wy

n nT y T dy                    (8b) 

 

Once the transformed potentials
*( )nT z , with n = 1,2,...,N, have been computed, the inversion formula can be 

recalled to yield the temperature field 
*( , )T y z  representation at any desired position y and z. The original temperature 

field ( , )T y z  can then be obtained by: 

 

* *

1

( , ) ( , ) ( ) ( )
N

w w n n

n

T y z T T y z T T z y


                      (9) 

 

It is always the main interest in convective heat transfer analysis to determine the local heat transfer coefficient, h(z), 

in general expressed in dimensionless form as the Nusselt number, ( )Nu z , here computed from both the approximate 

and the exact solutions. The following expressions for the local Nusselt number and for the bulk temperature, Tav(z), are 

then needed: 

 



Proceedings of COBEM 2011         21
st
 Brazilian Congress of Mechanical Engineering 

Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 

  

( )
( ) ; ( )

( , ) ( )

i

f

y y h

i av f

T
k

y h z D
h z Nu z

T y z T z k






 


,       0

0

( ) ( , )

( )

( )

i

i

y

av y

u y T y z dy

T z

u y dy






     (10a-c) 

In order to avoid the direct evaluation of the derivative /
iy y

T y


   when using the approximate solution, an integral 

balance alternative expansion is obtained, based on integration of the energy equation (Cotta & Mikhailov, 1997): 
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The convergence of the approximate solution for the temperature values in the vicinity of the interface can similarly 

be enhanced, by implementing the integral balance approach also for computing the temperature distribution, via an 

additional integration of the energy equation along the transversal direction. In this case, the fluid temperature 
distribution is computed from the following alternative expression: 

 
''

0 0

( ', )
( , ) (0, ) ( ') ' ''

y y

p

f

c T y z
T y z T z u y dy dy

k z

 
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where the centerline temperature (0, )T z  is calculated with the normal inversion formula, Eq. (9). 

 

2.2. Exact solution 

 

For the exact solution of this problem, the heat transfer problem is then modeled as a conduction problem for the 

solid wall, coupled at the interface iy y with the internal convective problem for the fluid, as represented by the 

following equations for the two domains: 

 

Solid energy equation: 

  
2

2

( , )
0 ,   ,   0s

s i w

T y z
k y y y z

y


   


                    (12a) 

( ,  )s w wT y z T           (12b) 

 
Fluid energy equation: 

2

2
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f f
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

 
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 
                   (12c) 
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0
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y
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
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Interface conditions: 
 

( , ) ( , )

ii

f s

f s

y yy y

f i s i

T T
k k

y y

T y z T y z



  


 




                                  (12f,g) 

 

For the exact solution of the proposed problem, eqs.(12), we first consider Eq. (12a) and the boundary conditions 

given by Eqs. (12b) and (12g), which yields the following expression for the solid wall temperature distribution: 
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and the boundary condition given by Eq. (12f) can then be rewritten as: 

 

( , )

i

f s w

f f i s

w i w iy y

T k T
k T y z k

y y y y y



 
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                       (14) 

 

Thus, the problem for the fluid flow region becomes a Graetz type problem with third kind boundary condition: 

 
2

2
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f f
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T y z T
u y c k y y z

z y

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y y y y y y
 

 
  

   
                             (15c,d) 

 

Problem (15) has an exact analytical solution readily obtainable by the Classical Integral Transform Technique 

(Mikhailov & Ozisik, 1984; Cotta, 1993) and then the microchannel wall region temperature distribution, ( , )sT y z , can 

be directly obtained from eq. (13). The exact solution for the fluid flow region, ( , )fT y z , will be used later on as a 

benchmark solution for the validation of the conjugated problem approximate formulation described in the previous 

section. The exact solution for the fluid flow region is obtained from the solution of the following eigenvalue problem, 

formulated by directly applying separation of variables to the homogeneous version of problem (15): 
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2

2
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( ) 0f f

d y
k w y

dy
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
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0
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y

d
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, ( ) 0

i

s

i

w iy y

kd
y
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

 



        (16b,c) 

 

which allows for an analytical solution in terms of hypergeometric functions that can be readily obtained using the 

routine DSolve of the Mathematica platform (Mikhailov & Cotta, 2005).  

 
 

3. RESULTS AND DISCUSSION 

 

The present work was motivated by an application of water flow with constant mass flow rate, 0.25 mg / minm  , 

with a prescribed temperature, 60wT C   at the microchannel external wall and with an inlet temperature Tin  =25°C. 

The microchannel wall has a 5 m thickness and is made with polyester resin, and the two parallel plates are kept apart 

by 5 m . As for the thermophysical properties, we have taken the density and the specific heat of water, respectively, 

as 3989.3 kg/m and 4181 J/kg°C , the thermal conductivity of the microchannel wall as 0.16 W/m°C , the thermal 

conductivity of water as 0.6396 W/m°C . Figs. 2.a,b below illustrate the behavior of the space variable coefficients that 

are feeding the single region model in eq. (1.a), ( )and ( )w y k y , as continuous functions with an abrupt variation at the 

fluid-solid interface. 

The conjugated problem presented in this work has been solved using the approximate single region formulation 

described in Section 2.1 and compared to the exact solution of Section 2.2. Figures 3a and 3b show the temperature 

transversal profiles for a few different longitudinal positions along the flow,  z = 0.01, 0.1, 0.2, 0.4, 1.0, 2.5 and 5.0 μm, 

for the fluid and the microchannel wall regions, respectively. In these results it can be observed an excellent agreement 

between the approximate and exact solutions, which are essentially coincident to the graph scale. In Fig. 4 it can be seen 

the temperature evolution at the centerline of the microchannel (y = 0) for z = 0 up to 5 μm, and it also shows the Graetz 

problem solution with first kind boundary condition, which is a simplification of this problem when the wall thermal 

resistance is neglected. It can be concluded that the thermal resistance of the polymeric wall noticeably delays the 

increase of the fluid temperature along the flow. 
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(a) 

 
(b) 

Figure 2. Representation of the space variable coefficients as continuous functions with an abrupt variation at the 

interface fluid-solid wall, (a)Product velocity and heat capacity, w(y); (b) Thermal conductivity, k(y) 

 

 

  
 (a) (b) 

Figure 3. Temperature profiles calculated using the approximate methodology in comparison with the exact solution  

(a) at the fluid flow region and (b) at the microchannel wall 

 

 

 
Figure 4. Comparison of the temperature evolution along the centerline of the microchannel (y = 0) for z = 0 up to 5 μm 

 

 

Tables 1a,b  illustrate the convergence behavior of the temperature profile for the approximate solution, respectively 

at z = 0.1μm and z = 0.5μm, for different positions in the fluid flow region. The results are apparently fully converged to 

at least 3 digits for N = 50 in all selected positions. The exact solution results are fully converged to all five digits 

shown, which are achieved to within only five terms in the eigenfunction expansion. 

 approximate solution 

 exact solution 

 

    approximate  solution 

     exact solution 

     Graetz problem (1st kind BC) 
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Table 1a. Convergence behavior of the temperature profile for the approximate solution 

 at z = 0.1 μm for fluid flow region  

order y = 1μm y = 2μm y = 2.5μm 

N = 10 27.257 28.366 29.527 

N = 20 27.276 28.508 29.375 

N = 30 27.269 28.481 29.313 

N = 40 27.268 28.475 29.285 

N = 50 27.270 28.486 29.273 

Exact solution 27.265 28.473 29.229 

 

Table 1b. Convergence behavior of the temperature profile for the approximate solution 

at z = 0.5 μm for fluid flow region  

order y = 1μm y = 2μm y = 2.5μm 

N = 10 35.199 36.039 36.919 

N = 20 35.213 36.147 36.804 
N = 30 35.208 36.127 36.756 

N = 40 35.208 36.122 36.736 

N = 50 35.209 36.130 36.726 

Exact solution 35.185 36.101 36.674 

 

 

Tables 2a-b show more closely the direct comparison between the approximate solution as directly computed from 

the inversion formula, Eq.9,  and the exact solution, by presenting the numerical values and the relative error obtained at 

several positions across the y axes for z = 0.1 and 1.0 μm, respectively. One may observe that in all selected positions 

the error of the approximate solution with respect to the exact one was smaller than 0.15%. It is also evident that there is 

a slight increase in the relative error for the positions closer to the interface.  

 

Table 2a. Comparison between the approximate and exact temperatures at z = 0.1 μm 

y [μm] 
Approximate sol. 

[°C] 

Exact sol.  

[°C] 

( , ) ( , )
100%

( , )

conj ex

ex

T y z T y z

T y z


  

0.1 26.818 26.814 0.0165% 

0.2 26.833 26.828 0.0173% 

0.5 26.931 26.926 0.0191% 

0.7 27.041 27.036 0.0172% 
1.0 27.270 27.265 0.0185% 

1.2 27.463 27.457 0.0240% 

1.5 27.804 27.797 0.0263% 

2.0 28.486 28.473 0.0451% 

2.5 29.273 29.229 0.149% 

 

Table 2b. Comparison between the approximate and exact temperatures at z = 1.0 μm 

y [μm] 
Approximate sol. 

[°C] 

Exact sol.  

[°C] 

( , ) ( , )
100%

( , )

conj ex

ex

T y z T y z

T y z


  

0.1 42.240 42.205 0.0823% 

0.2 42.247 42.213 0.0825% 

0.5 42.300 42.265 0.0828% 

0.7 42.359 42.324 0.0818% 

1.0 42.482 42.447 0.0816% 

1.2 42.585 42.550 0.0829% 

1.5 42.768 42.732 0.0826% 

2.0 43.133 43.095 0.0873% 

2.5 43.554 43.501 0.122% 

 
 

The improved approximate solution here proposed after application of the integral balance, Eq.11c, is also critically 

examined. The comparison with the exact solution at z = 0.1 μm is shown in Table 3, where it can be noticed that the 

relative error at the interface (y = 2.5 μm) dropped from about 0.15% to 0.086%. At the other positions the relative error 

increased, but not significantly, offering an overall improvement in the accuracy of the temperature distribution. 
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Table 3. Comparison between the approximate solutions with and without the integral balance formulation 

 and the exact solution for the temperature at z = 0.1 μm 

y [μm] 

Approx. sol. 

with integral 

balance [°C] 

Approximate 

solution [°C] 
Exact sol.[°C] 

Relative error 

(approx. sol. 

with integral 

balance) 

Relative error 

(approx. sol.)

 

0.1 26.819 26.818 26.814 0.0187% 0.0165% 

0.2 26.833 26.833 26.828 0.0193% 0.0173% 

0.5 26.932 26.931 26.925 0.0235% 0.0191% 

0.7 27.043 27.041 27.035 0.0280% 0.0172% 

1.0 27.274 27.270 27.264 0.0369% 0.0185% 

1.2 27.468 27.463 27.456 0.0439% 0.0240% 
1.5 27.812 27.804 27.796 0.0550% 0.0263% 

2.0 28.494 28.486 28.473 0.0728% 0.0451% 

2.5 29.254 29.273 29.229 0.0858% 0.149% 

 

 

Figure 5 below depicts both the approximate and the exact computations of the local Nusselt number, where it can 

also be observed an excellent agreement. It is also clear that thermal development occurs within a very short length of 

the microchannel, with the establishment of a fully developed asymptotic Nusselt number, in light of the very low 

Reynolds numbers achieved in such applications. Nevertheless, the thermal development is noticeably delayed with 

respect to the classical Graetz problem with prescribed wall temperature and the Nusselt numbers are larger. 

 

 
 

Figure 5. Local Nusselt number calculated from the approximate and the exact solutions and critically compared to 

the classical Graetz problem with prescribed wall temperature 

 

 

4. CONCLUSIONS 

 

In this work we have developed and validated a methodology for the approximate treatment of the conjugated heat 

transfer problem for laminar flow in microchannels, by proposing a single domain formulation for modeling the heat 
transfer phenomena at both the fluid flow and the microchannel wall regions. By making use of coefficients represented 

as continuous functions presenting an abrupt variation at the interface fluid-microchannel wall, the mathematical model 

is fed with the information concerning the two original domains of the problem. A test problem is selected involving an 

extension to the classical Graetz problem, with wall participation via transversal conduction only, which allows for an 

exact solution to be obtained for benchmarking purposes. The approximate formulation of the conjugated problem is 

then tackled with the Generalized Integral Transform Technique (GITT) and an excellent agreement between the two 

analytical solutions was obtained, demonstrating the feasibility of the approach herein proposed. 
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