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Abstract. The human being has a system, in spinal marrow, capable to control, in part, the human gait. This system, 

called central pattern generator (CPG), is responsible for the production of rhythmic movements. Modeling of this 

CPG can be made by means of coupled oscillators. This system generates patterns similar to human CPG, becoming 

possible the human gait simulation. In order to create an adequate system, a set of mutually coupled nonlinear 

oscillators was used. From a model of two-dimensional locomotor, oscillators with integer relation of frequency were 

used for simulating the behavior of the hip angle and of the knees angles. Each oscillator has its own parameters and 

the link to the other oscillators is made through coupling terms. The objective of this work is to analyze the dynamics of 

this coupled oscillators system by means of bifurcation diagrams and Poincaré maps. From the analysis and graphs 

generated in MATLAB, it was possible to evaluate some characteristics of the system, such as: sensitivity to the initial 

conditions, presence of strange attractors and other phenomena of the chaos. In the course of tests, we verify that 

diagrams did not clearly present bifurcation as simple curves, which normally happens in the dynamical analysis of 

systems. In fact, we have a cloud of points. Considering the complexity involved in the analysis of systems with coupled 

oscillators, this fact can be explained by two points of view: one is related to the coupling terms and their relationship, 

and other one is related to the quasi-periodic response of the system. Both of them will be presented and analyzed in 

this work. Based on the results of the study, we conclude that although the use of coupled oscillators represents an 

excellent way for generating pattern signals of locomotion, its application in the control of a bipedal locomotor will 

only be possible with the correct choice of parameters, which must be done from the data provided by the analysis of 

bifurcation and chaos. 
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1. INTRODUCTION 

 

In the course of many years, the man tries to copy or to imitate some systems of the human body. It is the case, for 

example, of the central pattern generator (CPG), a system in the human spinal marrow, responsible for the production of 

rhythmic movements. The spinal marrow is constituted by nerves, and its forepart contains the motoneurons, which 

transmit information to the muscles and stimulate the movement. The posterior part and the lateral parts contain the 

sensitive nerves, receiving information from the skin, joints, muscles and viscera (see Fig. 1). 

 

 
 

Figure 1. Human spinal marrow. 

 

The human gait requires a coordination of the muscular activity between the two legs, which is made by a flexible 

neural coupling to the level of the spinal marrow. Thus, in the course of the locomotion, a disturbance in one of the legs 

leads to a pattern of proposital reply of the spinal marrow, characterising the existence of the so-called central pattern 

generator. Some works about this subject were presented by Calancie et al. (1994), Dimitrijevic et al. (1998), Mackay-

Lyons (2002), and Dietz (2003). 
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In relation to the control system of the human locomotion, Fig. 2 presents a scheme, showing the central nervous 

system, where the central pattern generator supplies a series of pattern curves for each part of the locomotor. This 

information is passed to the muscles by means of a network of motoneurons, and the conjoined muscular activity 

performs the locomotion. Sensorial information about the conditions of the environment or some disturbance are 

supplied as feedback of the system, providing a fast action proceeding from the central pattern generator, which adapts 

the gait to the new situation. 

 

 
 

Figure 2. Control system of the human locomotion. 

 

CPG system can be simulate by means of coupled oscillators, generating patterns similar to human CPG. From this 

artificial system, it is possible to perform the human gait simulation, using a locomotor model. CPG system generates 

data related to the hip and knee angles. Each oscillator used in the system has its own parameters and the link to the 

other oscillators is made through coupling terms. We intend to evaluate a system with coupled van der Pol oscillators. 

Some previous works about CPGs using nonlinear oscillators, applied in the human gait simulation, can be seen in Bay 

and Hemami (1987), Zielinska (1996), Dutra et al. (2003), and Pina Filho (2005). 

From the CPG system, we achieve the dynamical analysis by means of bifurcation diagrams and Poincaré maps. 

With graphs generated in MATLAB, it was possible to evaluate some characteristics of the system, such as: sensitivity 

to the initial conditions, presence of strange attractors and other phenomena of the chaos. 

 

2. LOCOMOTION PATTERNS 

 

Despite the people not walk in completely identical way, some characteristics in the gait can be considered 

universal, and these similar points serve as base for description of patterns of the kinematics, dynamics and muscular 

activity in the locomotion. In this work, our interest is related to the patterns of the hip and knee angles, more 

specifically, in sagittal plane (see Fig. 3). 

 

 
Figure 3. Movements of hip and knee in sagittal plane. 
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Figure 4 presents the graphs of angular displacement and phase space of the hip, while Fig. 5 presents the graphs of 

angular displacement and phase space of the knee. These figures were extracted from Pina Filho et al. (2006). 

From the knowledge of these patterns of behaviour, a CPG using the system of coupled oscillators was created. This 

system will be applied in a biped locomotor model to simulate the human gait. 

 

  
 

Figure 4. Angular displacement and phase space of the hip (mean ± deviation). 

 

  
 

Figure 5. Angular displacement and phase space of the knee (mean ± deviation). 

 

3. CPG SYSTEM 

 

Coupled oscillators systems have been extensively used in studies of physiological and biochemical modelling. 

Since the years of 1960, many researchers have studied the case of coupling between two oscillators, because this study 

is the basis to understand the phenomenon in a great number of coupled oscillators. One of the types of oscillators that 

can be used in coupled systems is the auto-excited ones, which have a stable limit cycle without external forces. The 

van der Pol oscillator is an example of this type of oscillator, and it will be used in this work. Then, considering a 

system of n coupled van der Pol oscillators, from van der Pol equation: 

 

( )( ) ( ) 0,01 0
22

0 ≥=−Ω+−−− pxxxxxpx εε                  &&&  (1) 

 

where ε, p and Ω correspond to the parameters of the oscillator, and adding coupling terms that relate the oscillators 

velocities, we have: 
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which represents coupling between oscillators with the same frequency, where θ corresponds to the system degrees of 

freedom (see more details in Pina Filho (2005)). In the case of coupling between oscillators with integer relation of 

frequency, the equation would be: 
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where ( )][, ioiiihc θθθ −&  is responsible for the coupling between oscillators with different frequencies, while 

( )khkhc θθ && −, , also seen in Eq. (2), effects the coupling between oscillators with the same frequency. Both terms were 

determined by Dutra (1995). 

To generate the angles θ3, θ4 and θ5 as a periodic attractor of a nonlinear net, three coupled van der Pol oscillators 
were used. These oscillators are mutually coupled by terms that determine the influence of one oscillator on the others 

(see Fig. 6). 

 

 
 

Figure 6. Structure of coupling oscillators. 

 

Applying Eq. (2) and (3) to the proposed problem, knowing that the frequency of θ3 and θ5 (knee angles) is double 
of θ4 (hip angle), we have the following equations: 
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From Eq. (4)-(6), using the parameters shown in Tab. 1 together with values supplied by Pina Filho (2005), the 

graphs were generated in MATLAB as shown in Fig. 7, which present, respectively, the behaviour of θ3, θ4 and θ5 as a 
function of time, and trajectories in the phase space. 

 

  
 

Figure 7. Angles as a function of time, and trajectories in the phase space. 
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Table 1. Parameters of van der Pol oscillators. 

 

c3,4 c4,3 c3,5 c5,3 c4,5 c5,4 ε3 ε4 ε5 

0.001 0.001 0.1 0.1 0.001 0.001 0.01 0.1 0.01 

 

Comparing Fig. 7 with the experimental results presented in Fig. 4 and 5, it is verified that the coupling system 

supplies similar results, what confirms the possibility of use of mutually coupled van der Pol oscillators in the 

modelling of the CPG. 

 

4. HUMAN GAIT SIMULATION 

 

In order to specify a locomotor model, we consider some particularities of the human locomotion (see Saunders et 

al., 1953, and McMahon, 1984), such as the determinants of gait. The model presented here characterises the three most 

important determinants of gait: the compass gait that is performed with stiff legs like an inverted pendulum (the 

pathway of the centre of gravity is a series of arcs); the knee flexion of the stance leg, which combined with pelvic 

rotation and pelvic tilt achieve minimal vertical displacement of the centre of gravity; and the plantar flexion of the 

stance ankle, where the effects of the arcs of foot and knee rotation smooth out the abrupt inflexions at the intersection 

of the arcs of translation of the centre of gravity. 

Figure 8 presents the biped model with its angles and lengths, where: ls is the length of foot responsible for the 

support (toes), lp is the length of foot that raises up the ground (sole), lt is the length of tibia, and lf is the length of 

femur. The angle of the hip θ4 and the angles of the knees θ3 and θ5 will be determined by the CPG system, while the 

other angles are calculated by the kinematical analysis of the mechanism. In this work we will not present details of this 

analysis, which can be seen in Pina Filho (2005). 

 

 
 

Figure 8. Biped model with the determinants of gait, angles and lengths. 

 

Applying the presented CPG system to this model, we have, in Fig. 9, a stick figure showing the gait with a step 

length of 0.5 m. Dimensions used in the model can be seen in Tab. 2. 

 

Table 2. Model dimensions. 

 

Thumb Foot Leg (below the knee) Thigh 

0.03 m 0.11 m 0.37 m 0.37 m 
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Figure 9. Stick figure showing the gait with a step length of 0.5 m. 

 

5. DYNAMICAL ANALYSIS 

 

The dynamical analysis of the system presented here will help the choice of some optimal parameters, to simulate 

the human gait. We intend to avoid the chaotic behaviour of the system, which in biped models mean unpredictable 

locomotion patterns. Thus, we need to study the presence of this chaotic configuration. 

Two conditions must be satisfied to make possible that a system presents chaotic behaviour: the equations of motion 

must include a nonlinear term; and the system must have at least three independent dynamic variables. The main 

consequence associated with the chaos is the sensitivity to the initial conditions. In chaotic systems, a small change in 

the initial conditions results in a drastic change in the system behaviour. 

Also, in chaotic systems, we observe the bifurcation phenomenon, which represent the stroboscopic distribution of 

the system response from slow variation of a parameter. This method was applied here, which implies to simulate 

different parameter values that we want to analyze, evaluating the response in bifurcation diagrams and Poincaré maps. 

More details about the Chaos theory and its characteristics can be found in Thompsom and Stewart (1986), Strogatz 

(1994), and Baker and Gollub (1996). 

Then, considering different values for the parameters ε3, ε4 and ε5, the tests have been performed using MATLAB to 

generate the bifurcation diagrams and Poincaré maps. In principle, keeping values of ε4 = 0.1 and ε5 = 0.01, the value of 
ε3 was varied from 0 to 2. Other values of the system have been kept. Figure 10 presents the bifurcation diagram 

showing the behaviour of knee oscillator θ3 with variation of parameter ε3, which represents the damping term related 

with this oscillator. Also, we have the strange attractor generated in the analysis of knee oscillator θ3, observed in a 
Poincaré map. 

 

  
 

Figure 10. Bifurcation diagram for θ3 with variation of ε3, and strange attractor for θ3. 
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This diagram does not represent the bifurcation as simple curves, which normally happens in dynamical analysis of 

a system, but with a cloud of points. Considering the complexity of coupled oscillators system, this fact can be 

explained by relation between coupling terms or by quasiperiodic response of the system. 

A great variation between coupling terms, with one of them approaching to zero, makes the system presents 

practically a unidirectional coupling, and consequently the response in bifurcation diagram is represented by a cloud of 

points, characterizing not only the presence of periodic and chaotic orbits, but also pseudo-trajectories (Grebogi et al., 

2002, and Santos et al., 2004). 

In relation to system behaviour, with small values of damping term, below 0.1, the system presents a periodic 

response. With the increase of damping term, the system starts to present a quasiperiodic response, and later chaotic 

response, when ε3 = 2 (see Fig. 11). 
More details about transition between quasiperiodic and chaotic response are presented in Yoshinaga and Kawakami 

(1994), Yang (2000), and Pazó et al. (2001). 

 

     
 

Figure 11. Periodic response: ε3 = 0.01, Quasiperiodic response: ε3 = 1, and Chaotic response: ε3 = 2. 
 

Sensitivity to the initial conditions can be verified considering two simulations with different conditions, for 

example, with ε3 = 3 (chaotic regime, similar to seen in Fig. 11, for ε3 = 2), choosing initial values for the angles: θ3 = 
3º, θ4 = 50º, θ5 = −3º, and changing  θ3 = 3.001º, we observed the influence of initial conditions in the system response 

(Fig. 12). 

 
 

Figure 12. Sensitivity to the initial conditions in chaotic response. 

 

Considering the coupling oscillators, the degree of influence between them is defined by the coupling term. Then, a 

change of oscillator parameters must influence the behaviour of other oscillators. In the case of the hip angle, the 

influence of knee oscillator θ3 on the hip is small, therefore the behaviour of θ4 does not show many alterations. This 

occurs due to small value adopted for the coupling term between the oscillators (c34 = c43 = 0.001). In relation to the 

knees, the coupling term is greater (c35 = c53 = 0.1), configuring a more significant influence. 

Similarly to analysis of ε3, the system response can be analyzed by varying the values of ε4 (from 0 to 2) and 

keeping the other values fixed. Figure 13 presents the bifurcation diagram showing the behaviour of hip oscillator θ4 
with variation of parameter ε4, which represents the damping term related with this oscillator. Also, we have the strange 

attractor generated in the analysis of this oscillator. 
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Figure 13. Bifurcation diagram for θ4 with variation of ε4, and strange attractor for θ4. 
 

As seen previously in the analysis of ε3, the influence of hip on the knees is small, then a variation of ε4 does not 
cause great changes in θ3 and θ5. 

Finally, the system response can be analyzed by varying the values of ε5 (from 0 to 2) and keeping the other system 

values fixed. Figure 14 presents the bifurcation diagram showing the behaviour of knee oscillator θ5 with variation of 
the parameter ε5, which represents the damping term related with this oscillator. Also, we have the strange attractor 

generated in the analysis of this oscillator. 

 

  
 

Figure 14. Bifurcation diagram for θ5 with variation of ε5, and strange attractor for θ5. 
 

6. CONCLUSION 

 

In this work, we present the study of a biped locomotor with a CPG formed by a system of coupled van der Pol 

oscillators. A biped locomotor model with three of the six most important determinants of human gait was used in the 

analyses. After the modelling of the oscillators system, a dynamical analysis was performed to verify the performance 

of the system, in particular, aspects related to the chaos. From presented results and discussion, we come to the 

following conclusions: the use of mutually coupled nonlinear oscillators of van der Pol can represent an excellent way 

to generate locomotion pattern signals, allowing its application for the control of a biped by the synchronization and 

coordination of the legs, once the choice of parameters is correct, which must be made from the data supplied by the 

analysis of bifurcation and chaos. Through the dynamical analysis it was possible to evidence a weak point of coupling 

systems. The influence of the knee oscillators on the hip, and vice versa, is very small, what can harm the functionality 

of the system. The solution for this problem seems immediate: to increase the value of the coupling term between the 

hip and knees. However, this can make the system unstable. Then, it is necessary a more refined study of the problem, 

which will be made in future works, as well as a study of the behaviour of the ankles, and simulation of the hip and 

knees in the other anatomical planes, increasing the network of coupled oscillators, and consequently simulating with 

more details the human locomotion CPG. This study has great application in the project of autonomous robots and in 

the rehabilitation technology, not only in the project of prosthesis and orthesis, but also in the searching of procedures 

that help to recuperate motor functions of human beings. 
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