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Abstract. Fatigue crack growth models based on elastic–plastic stress–strain histories, at the crack tip vicinity, and 
strain-life damage models have been proposed. The UniGrow model fits this particular class of fatigue crack 
propagation models. The residual stresses developed at the crack tip play a central role in these models, since they are 
used to assess the actual crack driving force, taking into account mean stress and loading sequential effects. The 
performance of the UniGrow model is assessed based on available experimental constant amplitude crack propagation 
data, derived for the 6061-T651 aluminum alloy. Key issues in fatigue crack growth prediction, using the UniGrow 
model, are discussed, in particular the residual stresses evolution. Using available strain-life data, it was possible to 
model the crack propagation behavior for the AA6061-T651, taking into account the stress R-Ratio effects. A 
satisfactory agreement between the predictions and the experimental crack propagation data was found. 
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1. INTRODUCTION 
 

The research on fatigue of materials and structures has deserved great interest both by academia and industry. 
Fatigue has been investigated for more than 150 years and still is a hot topic in research (Schütz, W., 1996). In 
particular, the investigation on fatigue crack propagation is not fully accomplished, despite the great developments 
achieved in the last decades. Paris (Paris et al., 1961) is considered the first one to establish a direct correlation between 
the fatigue crack propagation and a Fracture Mechanics parameter – the stress intensity factor, leading to the so-called 
Paris’s law. Since then, the Paris’ law has been used extensively to model fatigue crack growth under constant 
amplitude loading. However, the Paris’s law shows several limitations, namely it only models the stable crack 
propagation, excluding near threshold and near unstable crack propagation regimes. Also, the stress ratio effects are not 
accounted in the Paris’s law. Many other fatigue crack propagation laws have been proposed to overcome the 
limitations of the Paris’s law and also to deal with variable amplitude loading (Beden et al., 2009). The proposed 
fatigue models differ on the number of variables involved and the number of parameters required to be identified by 
curve fitting. 

Local strain-based approaches to fatigue (Coffin, 1954, Manson, 1954, Morrow, 1965, Smith et al., 1970) have been 
assumed as an alternative to Fracture Mechanics based fatigue crack propagation models. Local strain-based approaches 
to fatigue are often applied to model the crack initiation on notched components (Shang et al., 2001). Some authors 
(Glinka, 1985, Peeker and Niemi, 1999, Noroozi et al., 2005, 2007, 2008, Hurley and Evans, 2007) have proposed a 
relation between the local strain-based approaches to fatigue and the Fracture Mechanics based fatigue crack 
propagation models. They assume crack propagation as a process of continuous re-initializations (failure of consecutive 
representative materials elements). The resulting crack propagation model has been demonstrated to be able of 
correlation of crack propagation data from several sources, including the stress ratio effects. The crack tip stress-strain 
fields are computed using elastoplastic analysis and fracture mechanics concepts which are used together a fatigue 
damage law to predict the failure of representative material elements. The simplified methods of Neuber (1961) and 
Glinka (Moslski and Glinka, 1981) are used to compute the elastoplastic stress field at the crack tip vicinity using the 
elastic stress distribution given by the Fracture Mechanics concepts (Noroozi et al., 2005) (Moftakhar et al., 1995) 
(Reinhard et al. 1997). 

The application of local strain approaches on modeling fatigue crack propagation has the important advantage of 
requiring a smaller amount of experimental data than usually demanded Fracture Mechanics approaches. Also, 
experimental fatigue crack propagation data is more expensive to obtain, since the crack propagation tests are more time 
consuming and usually several stress ratios are expected to be tested. The interrelation between the  local strain 
approaches   and Fracture Mechanics also opens the possibility for a unify approach for modeling crack initiation and 
propagation. 

This paper proposes the assessment of the model proposed recently by Noroozi et al. (2005, 2007) to model fatigue 
crack propagation, based on the local strain approach to fatigue. This model has been denoted as UniGrow model and it 
has been classified as a residual stress based crack propagation model (Mikheevskiy and Glinka, 2009).  The model is 
applied to derive the fatigue crack propagation data for the 6061-T651 aluminum alloy, for distinct stress R-ratios. 
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Results are compared with the available experimental data. The required strain-life data was obtained by the authors and 
was already published in the literature (Ribeiro et al. 2005, 2007, 2009).  The representative material element size is 
assessed. Also, the residual stress field is analyzed for distinct crack sizes and stress R-Ratios. The elastoplastic stresses 
at the vicinity of the crack tip, computed using simplified formulae, are compared with the stresses computed using a 
elastoplastic finite element analysis of the specimen used in the experimental program to derive the crack propagation 
data. The analytical models proposed by Noroozi et al. (2005, 2007) to compute the elastoplastic stress/strain 
distribution ahead of the crack tip may lead to inconsistent residual stress distribution since the proposed analytical 
approaches does not account for stress redistribution due to yielding. The present paper proposes, alternatively, the use 
of elastoplastic finite element in order to obtain a more accurate prediction of the residual stress distribution. The 
accurate prediction of the residual stress distribution is of primordial importance for the application of the UniGrow 
model, since the model is a residual stress-based propagation model. The stress ratio effects, on crack propagation rates, 
are partially modeled by the level and extension of the compressive residual stresses. 

 
 

2. OVERVIEW OF THE UNIGROW MODEL 
 

The UniGrow model was proposed by Noroozi et al. (2005) based on the following assumptions: 
 
- The material is composed of elementary particles of a finite dimension *. It represents an elementary material 

block size, below which material cannot be regarded as a continuum, Fig. 1a. 
 

- The fatigue crack tip is considered equivalent to a notch with radius *, Fig. 1b. 
 

- The fatigue crack growth process is considered as successive crack increments due to crack re-initiations over 
the distance *. 
 

- The fatigue crack growth rate can be determined as: 
 

f

*

NdN

da 
  (1) 

 
where Nf is the number of cycles required to fail the material over the distance *, which can be determined using the 
Smith–Watson–Topper (Smith et al., 1970) fatigue damage parameter:  
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The maximum stress max  and the strain range   have to be evaluated as the average values at the elementary 

material block size, *, taking into account an elastoplastic analysis.  

 
Figure 1. Crack configuration according the UniGrow model: a) crack and the discrete elementary material blocks; 

b) crack shape at the tensile maximum and compressive minimum loads (Noroozi et al. 2005). 
 

a) b) 
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To compute the elastoplastic stresses and strains at the elementary material blocks ahead of the crack tip, the 
numerical procedure proposed by Noroozi et al. (2005, 2007) was followed in this paper: 
 

- The elastic stresses are computed ahead of the crack tip using the Creager-Paris (Creager and Paris, 1967) 
solution for a crack with a tip radius *, using the applied stress intensity factors. 

 
- The actual elastoplastic stresses and strains, ahead of the crack tip, are computed using the Neuber or Glinka’s 

approaches (Neuber, 1961) (Moslski and Glinka, 1981). Multiaxial approaches were adopted in this paper using 
the procedures presented by Moftakhar et al. (1995) and Reinhard et al. (1997).  
 

- The residual stress distribution ahead of the crack tip is computed using the actual elastoplastic stresses 
computed at the end of the first load reversal and subsequent cyclic elastoplastic stress range, 

  maxr . 

 
- The residual stress distribution computed ahead of the crack tip is assumed to be applied on crack faces, behind 

the crack tip, in a symmetric way. The residual stress intensity factor, Kr, is computed using the weight function 
method (Glinka, 1996).  
 

- The applied stress intensity factor (maximum and range values) is corrected using the residual stress intensity 
value, resulting the total values, Kmax,tot and Ktot.  

 
- Using the total values of the stress intensity factors, the first and second steps before are repeated to determine 

the corrected values for the maximum actual stress and actual strain range at the material representative 
elements. Then, equations (2) and (1) are applied to compute the crack growth rate. 
 

The described methodology does not allow close-form solutions for the crack propagation rates. However, 
introducing some simplifications about the elastoplastic conditions (e.g. predominantly elastic behavior) it is possible to 
derive close-form solutions for the crack propagation rates based on a two-parameters crack driving force (Noroozi et 
al. 2005, 2007):  
 

       q
tot

p
totmax, KKC

dN

da
  (3) 

 
where C, p and  are constants to be correlated with the cyclic constants of the material in a form depending on the 
elastoplastic conditions at the crack tip. In this paper, the full solution of the methodology proposed by Noroozi et al. 
(2005) is followed.  
 

Besides the elastoplastic cyclic and fatigue properties of the material, the UniGrow model requires the definition of 

the elementary material block size, *. This parameter can be estimated using the fatigue endurance limit f and the 

fatigue crack propagation threshold, thK  (Noroozi et al., 2005). However, and since these values are not available for 

the material under investigation, an iterative process is used to compute *. This parameter is computed using a try and 
error procedure in order a good correlation of the experimental crack growth data is obtained. 
 
 
3. FATIGUE DATA OF THE 6061-T651 ALUMINIUM ALLOY 

 
The 6061-T651 aluminum alloy has been investigated by the authors (Ribeiro et al., 2005, 2007, 2009), regarding 

the fatigue behavior characterization. This section presents the main results which are required for the application of the 
UniGrow model. The cyclic elastoplastic behavior was characterized as well as the strain-life fatigue data using smooth 
and polished cylindrical specimens. The fatigue crack propagation rates are also characterized using cracked specimens, 
in particular the Compact Tension (CT) specimens.  

 
3.1. Strain-life fatigue data 

 
Smooth and polished cylindrical specimens (8 mm) were tested under strain control conditions (strain ratio equal to 

-1) according to the ASTM E606 standard (ASTM, 1998). Using the stabilized cyclic behavior, the cyclic curve of the 
material was represented in Fig. 2. This curve represents the relation between the stabilized stress amplitude and the 
plastic strain amplitude. The Morrow’s relation (Morrow, 1965) is also included in Fig. 2, resulting the strain hardening 
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coefficient MPa4.393K   and the strain hardening exponent 0567.0n  . Figure 3 represents the strain-life data, 

which includes the Coffin-Manson (Coffin, 1954) (Manson, 1954) and Basquin (1910) relations. The fatigue strength 

coefficient f   results equal to 394 MPa and the fatigue strength exponent b results equal to -0.0453. The fatigue 

ductility coefficient f   is equal to 0.8680 and the fatigue ductility exponent c is equal to -0.7745. The fatigue strength 

coefficient was computed using the Young’s modulus equal to 68 GPa. 
 

3.2. Fatigue crack propagation data 
 

In order to determine the fatigue crack propagation curves (da/dN versus K curves) for the 6061-T651 aluminum 
alloy, CT specimens were used. Specimens with a thickness B=10 mm and nominal width W=50 mm were cut from a 
base plate with a thickness of 24 mm. These dimensions are according to the recommendations of the ASTM E647 
standard (ASTM, 2000). Figure 4 illustrates the crack growth data derived for the 6061-T651 aluminum alloy, for two 
stress ratios, namely R=0.1 and R=0.5. The crack growth rates can be satisfactorily correlated by a power law, as 
proposed by Paris (Paris et al., 1961), individually for each stress ratio. The crack propagation is clearly influenced by 
the stress ratio. Higher the stress ratios results in higher crack growth ratios.   

  
 

 
Figure 2. Cyclic curve of the 6061-T651 aluminum alloy. 

 
 

 
Figure 3. Strain-life fatigue data of the 6061-T651 aluminum alloy. 
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4. RESULTS AND DISCUSSION 
 

The UniGrow model was implemented in the Microsoft Excel® supported on VBA programming, taking into 
account the CT geometry. The input data are the material properties, loads, dimensions of the CT specimen, including 
the initial and final crack size to be simulated. Additionally, the elementary material block size, *, is required. This 
parameter was evaluated by a try and error procedure, in order the numerical results agree satisfactorily with the 
experimental data. Two possibilities for the elastoplastic analysis at the crack vicinity are allowed, namely using the 
Neuber and Glinka’s approaches. A multiaxial approach was used as referred in section 2. In order to compute the 
residual stress distribution ahead the crack front, stresses were computed at points equally spaced according distances 
smaller than *. This concern was taken into account in order to prevent the influence of the discretization on the 
residual stress distribution and particularly on computed residual stress intensity factor, given by weight function 
method. A discretization of */10 was found suitable. 
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Figure 4. Crack propagation data of the 6061-T651 aluminum alloy. 
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Figure 5. Experimental crack growth data and UniGrow predictions for the AA 6061-T651. 
 
 

Figure 5 presents the predictions of the fatigue crack growth rates for each stress ratio, using the multiaxial Neuber’s 
approach for the elastoplastic analysis. Satisfactory predictions were obtained for *=2E5 m. Noroozi et al. (2007) 
proposed a value for * equal to 8E6 m, for the 2024-T351 aluminum alloy, which is about the same order of 
magnitude. The experimental results show, for R=0.0, a sudden increase (“jump”) in the crack growth rate for K 
within the range 300-400 N.mm-1.5. The slope of the crack growth data before and after the jump is approximately the 
same, which strengthens the idea of an abnormal behavior. Therefore, the * was identified taking into account the crack 
propagation data, for R=0.1, after the jump. In order to illustrate the effect of the stress ratio on fatigue crack growth 
rates, Fig. 6 plots the fatigue crack growth rates for several stress ratios. The predicted fatigue crack propagation curves 
are essentially parallel to each other and the increase in the crack propagation rates is more significant for higher stress 
ratios. The model takes into account the stress ratio effects in two ways, namely using the SWT parameter and also 
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through the compressive residual stresses, which are subtracted from the stress range to derive the total stress intensity 
factor range, lower than the applied one. The compressive residual stresses tend to vanish for high stress ratios, which 
make the crack growth rates to increase, as illustrated by Fig. 6. 
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Figure 6. Fatigue crack growth predictions for the AA6061-T651 for distinct stress R-Ratios. 
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Figure 7. Fatigue crack growth predictions for the AA6061-T651 for distinct stress R-ratios, supported on Neuber and 

Glinka’s approaches. 
 

Figure 7 shows the crack growth predictions which resulted from the application of the elastoplastic analyses 
according the Neuber and Glinka’s approaches. Despite the Neuber’s approach being usually considered to give an 
upper bound for the elastoplastic stresses and the Glinka’s approach a lower bound (Reinhard et al., 1997), the final 
results for the crack growth rates are essentially the same for both analyses.   

The elastoplastic analysis at the crack front is a key step of the UniGrow model. The accuracy of the elastoplastic 
analysis is crucial in a correct crack propagation modeling. In this paper, the application of the UniGrow model is based 
on a simplified elastoplastic analysis based on the multiaxial Neuber or Glinka’s approach. In order to assess the 
accuracy of the simplified elastoplastic analysis, a bi-dimensional finite element model of the CT specimen is built and 
used in the elastoplastic analysis. A very refined mesh at the crack tip region is required, in order to model the crack tip 
notch radius, *. Figure 8 illustrates the finite element mesh of the CT geometry with the respective boundary 
conditions. Only ½ of the geometry is modeled, taking into account the existing symmetry plane. Plane stress conditions 
were assumed. The load was applied at a node located in the geometrical center of the pin. A Von Mises yield theory 
with multilinear kinematic hardening model was used to model the plastic behavior. The model was fitted to the cyclic 
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curve of the material. The simulations were carried out using the ANSYS® 12.0 code. The two stress ratios that were 
considered in the experimental program (R=0.1 and R=0.5) were simulated. A sequence of two load steps was 
simulated, namely the maximum load of 3309.2 N was firstly applied and then removed in a second load step. The 
resulted elastoplastic stress distributions are compared with the solutions from the analytical simplified analyses. In 
particular, the maximum stresses (xx, yy), at the end of the first load step, and the residual stresses, at the end of the 
second load step, are compared with the analytical solutions, along the distance from the crack tip and for the symmetry 
plane (y=0 in Fig. 8).  
 

 

Figure 8. Finite element mesh of the CT specimen: global mesh and boundary conditions (left) and zoom of the mesh 
around the crack tip (right). 

 
Figure 9 compares the analytical and numerical distributions of the maximum elastoplastic stresses obtained for the 

CT specimen, for a=10 mm. The analytical solutions used were based on Neuber and Glinka’s approaches. These two 
solutions yields very similar results for both xx and yy stresses. The numerical results agree satisfactorily with the 
analytical results, this agreement being better for xx. Figure 10 shows the residual stress distributions, for the y 
direction (load direction). Again, the two analytical models give approximately the same results. They predict 
compressive stress distributions which are only slightly affected by the stress R-ratio. The numerical model foresees a 
narrower compressive stress distribution. Furthermore, the compressive stress distribution is more sensitive to the stress 
R-ratio and become more localized as the stress ratio increases, which means that the compressive residual stress 
intensity factor tends to zero, as the stress ratio increases above 0.5. This condition is consistent with the conclusions 
proposed by Noroozi et al. (2005, 2007).  
 
 
5. CONCLUSIONS 
 
 

The UniGrow model, which uses the local strain-life approach to model the crack propagation, was applied to 
predict the fatigue crack propagation of the 6061-T651 aluminum alloy. Experimental strain-life and fatigue crack 
propagation data was derived for the aluminum alloy, by authors, and used in the analysis. The UniGrow model 
produced satisfactory predictions of the crack propagation data, predicting the stress ratio effects, with a representative 
material element of 2×105 m. This representative material element shows approximately the same order of magnitude 
of the values proposed in literature for other aluminum alloys. Therefore, the results of the present paper further validate 
the UniGrow model, which was proposed recently Glinka and his co-workers. 

A simplified analytical procedure for elastoplastic analysis at the crack tip region was adopted, namely based on 
multiaxial Neuber and Glinka’s rules. Despite the well known upper bound stress values given by the Neuber’s 
approach, both approaches gave very similar stress distributions and crack propagation rates. A finite element model of 
the CT specimen was built for elastoplastic analysis in order to verify the elastoplastic stresses from the analytical 
solutions. In general, a good agreement was observed for the maximum elastoplastic stresses. However, for the residual 
compressive stress distribution deviations are observed, which increases for higher stress ratios. It seems that the 
analytical models overestimate the residual stresses for high stress ratios. This is an important conclusion of this work, 
since the UniGrow model is a residual stress –based propagation model, which means that the stress ratio effects are 
modeled, in part, by the level of compressive residual stresses. The proposed analytical models are not able to simulate 
the stress redistribution due to yielding. Therefore, they are recommended for computation of the elastoplastic 
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stress/strains at the notch root only. The residual stress distribution should be computed by elastoplastic finite element 
analysis as proposed in this paper.   
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Figure 9. Comparison of numerical and analytical stress distributions for the CT geometry with a=10 mm and 
Fmax=3309.2 N. 
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Figure 10. Comparison of numerical and analytical residual stress distributions for the CT geometry under two distinct 

stress ratios. 
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