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Abstract. The objective of this work is to present a numerical algorithm to solve the structural optimization problem that
consists to minimize the weight of a truss structure subject to a fundamental frequency constraint. The paper discusses
nonlinear and semidefinite formulations for that problem. The numerical optimization model is solved with a new interior
point technique for semidefinite programming. Finally, some numerical examples of truss topology optimization problems
are solved with this approach.
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1. INTRODUCTION

A truss is a mechanical system defined by thin elastic bars connected to each other at the end points. The points where
the bars are linked are called nodes. The truss can be submitted to different external load cases. A load case is a set of
forces acting at the nodes simultaneously. Under a load case, the structure deformes until the equilibrium of internal and
external forces is obtained. The deformation of the truss is computed by the finite element method. The truss is defined
when the set of nodes and set of bars are given.

The design of light-weight structures with bounded fundamental frequency is of supreme importance in real
applications. In this work we consider the cross sectional areas of the bars as the desing variables of the optimization
problem. In this case, the weight of the truss is a linear function. By limiting the fundamental frequency of a structure
from below by a constant λ, we preclude large deflections or failure of the system due to the resonance effect. A feasible
design will be secure if the external excitation of the structure has a frequency far away and below λ.

We use the following notation: A ∈ Sm means that A is a symmetric matrix of size m ×m. We denote by A ∈ Sm
+

or A < 0, a symmetric and positive semidefinite matrix of size m×m. If A ∈ Sm
− or A 4 0, then A is a symmetric and

negative semidefinite matrix of size m ×m. We write A ∈ Sm
++ or A � 0 to denote a symmetric and positive definite

matrix of size m×m. If A ∈ Sm
−− or A ≺ 0, then A is a symmetric and negative semidefinite matrix of size m×m. If

x ∈ Rn and a ∈ R, we write x > a (x > a) to indicate that all components of x are greater than or equal to a (greater
than a). For x ∈ Rn, the symbol Diag(x) is a diagonal matrix of size n × n with the main diagonal equal to x. The
inverse operator is diag: diag(Diag(x)) = x. The set ker(A) is the null space of A.

In the next section we define basic concepts, important propositions and the optimization model we are going to solve.
In section 3, we introduce a new algorithm for semidefinite programming. Finally, in section 4, we solve some numercial
examples using the optimization model and algorithm defined in sections 3 and 4, respectively.

2. PROBLEM DEFINITION

2.1 BASIC CONCEPTS

Consider a general truss structure modeled by the finite element method. Let b be the number of bars where xi is the
cross sectional area of bar i ∈ {1, . . . , b}. The vector of design variables is x = [x1 . . . xb]>. Let m be the number of
degrees of freedom of the structure and let s be the total number of load cases {p1, . . . , ps} where pi ∈ Rm − {0}.

We assume that the structure satisfy the following linear equilibrium equations:

K(x)U = P (1)

where:

• K(x) =
∑b

e=1 xeKe ∈ Sm is the reduced stiffness matrix of the structure,
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• Ke ∈ Sm is the reduced stiffness matrix of bar number e with unitary area,

• U = [u1 . . . us] ∈ Rm×s is the matrix with displacement vectors,

• ui ∈ Rm is the displacement due to the load case pi,

• P = [p1 . . . ps] ∈ Rm×s is the matrix of the load cases and

• pi ∈ Rm is the load case number i.

The eigenvalues of the truss are governed by the following problem:

K(x)v = λM(x)v (2)

where:

• M(x) =
∑b

e=1 xeMe ∈ Sm is the reduced mass matrix of the structure,

• Me ∈ Rm×m is the reduced mass matrix of bar number e with unitary area,

• (λ, v) ∈ R× Rm is an eigenvector-eigenvalue pair.

If the pair (λ, v) verifies equation (2), then the square root of λ is a natural frequency of the structure and v is the
associated mode shape of vibration.

In order to define a well-posed problem, we assume that
∑b

e=1Ke � 0 and
∑b

e=1Me � 0 (Ben-Tal and Nemirovski,
1997). These conditions mean that for each load case pi ∈ Rm there exists a unique vector ui verifying (1) for some
design vector x > 0.

In general, if x > 0, then K(x) < 0 and M(x) < 0.
In the sequel, we use the following sets in Rb:

• X = {x ∈ Rb : x > 0, x 6= 0},

• Xε = {x ∈ Rb : x > ε}, where ε ∈ R.

A report from (Achtzinger and Kočvara, 2006) shows that there exist situations where the smallest eigenvalue of
equation (2) is undefined. This situation happens when when (λ, v) verifies (2), with v 6= 0 and v ∈ ker(M(x)). In that
case, any pair (µ, v) is also a solution to (2), for any µ ∈ R. The well-defined smallest eigenvalue of problem (2), is in
that case defined as (Achtzinger and Kočvara, 2006):

λmin : X → R ∪ {+∞}
λmin(x) = min{λ : ∃v ∈ Rm, (λ, v) verify (2) and v /∈ ker(M(x))} (3)

Proposition 1. Some properties of the function λmin are:

(a) λmin(x) = sup{λ : K(x)− λM(x) < 0} for any x ∈ X .

(b) λmin is quasiconcave in X .

(c) λmin is upper semicontinuous in X .

(d) λmin is Lipschitz continuous in Xε for any ε > 0.

(e) λmin is smooth in x ∈ Xε for any ε > 0 whenever the smallest eigenvalue of (2) is unique.

The proof of (a)-(c) can be found in (Achtzinger and Kočvara, 2006). To prove (d) and (e), we can use the proposition
1.2.3 from (Šilhavý, 1949) and the fact that (2) can be expressed as Aw = λw.

Finally, we want to emphasize that in this paper, the design variable x belong to X . Then we are dealing, additionally,
with a problem of truss topology design (Bendsøe, 1995). As a consequence, we allow some components of x to be zero
during the optimization process.



Proceedings of COBEM 2011
Copyright c© 2011 by ABCM

21st International Congress of Mechanical Engineering
October 24-28, 2011, Natal, RN, Brazil

2.2 OPTIMIZATION MODEL

The classic formulation for the minimum weight problem with fundamental frequency constraint reads as:

min
x∈Rb,U∈Rm×s

∑b
e=1 xe

subject to : K(x)U = P
diag(P>U) 6 γ

λmin(x) > λ
x > 0

(4)

where γ and λ are positive constants to bound the compliance and the smallest eigenvalue of the truss, respectively. The
constraints

K(x)U = P
diag(P>U) 6 γ

mean

K(x)ui = pi

(pi)>ui 6 γ

for i = 1, . . . , s.
In view of proposition 1, the function λmin could be discontinuous. Additionally, the function λmin could be

nonsmooth if the smallest eigenvalue of problem (2) is multiple. Then it is inappropriate to solve (4) with smooth or
even nonsmooth continuous techniques.

Fortunately, there is a pair of equivalences that transforms (4) into a semidefinite programming problem. The first
equivalence is:

K(x)U = P
diag(P>U) 6 γ

⇐⇒
(
γ (pi)>

pi K(x)

)
< 0, i = 1, . . . , s (5)

The proof of (5) can be found in (Ben-Tal and Nemirovski, 1997).
The second equivalence is:

λmin(x) > λ⇐⇒ K(x)− λM(x) < 0 (6)

The proof of (6) can be found in (Achtzinger and Kočvara, 2006).
Using (5) and (6), problem (4) is equivalent to the following semidefinite programming problem:

min
x∈Rb

∑b
e=1 xe

subject to : (
γ (pi)>

pi K(x)

)
< 0, i = 1, . . . , s

K(x)− λM(x) < 0
x > 0

(7)

Problem (7) has nice properties. First, problem (7) is convex, then a local minimum is a global minimum. Second,
the objective and constraint functions are smooth with respect to x. Third, we eliminated the design variable U ∈ Rm×s

from (4) reducing the number of variables from b+m× s to b.
In the next section we introduce a new semidefinite programming algorithm to solve problem (7).

3. SEMIDEFINITE TECHNIQUE

Consider the following semidefinite programming problem: min
x∈Rn

f(x)

s.t. G(x) 4 0,
(8)

where f : Rn → R and G : Rn → Sm are smooth functions. The present algorithm generates a sequence of points in the
interior of the feasible region Ω = {x ∈ Rn : G(x) 4 0}.
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The first order Karush-Kunh-Tucker conditions (KKT) for problem (8), proved in (Shapiro, 1994), are the following:

∇xL(x,Λ) = 0
ΛG(x) = 0
G(x) 4 0

Λ < 0

(9)

where Λ ∈ Sm is a matrix of Lagrange multipliers and L : Rn × Sm → R is the Lagrangian of problem (8) given by
L(x,A) = f(x) + tr (AG(x)). Here, tr(A) is the trace operator given by the sum of diagonal elements of A.

The Feasible Direction Algorithm for Semidefinite Programming (FDASDP) is an iterative method in the primal
variables x and dual variables Λ that converges asymptotically to a pair (x∗, Λ∗) that verifies the KKT condition (9). In
each iteration, FDASDP computes a quasi-Newton search direction for the system of equalities of the KKT condition (9).
The quasi-Newton matrix corresponding to the equalities of the KKT condition (9) is

W =
[

B ∇G(x)
(Λ~ I)∇G(x)> I ~G(x)

]
, (10)

where B could be any positive definite matrix, a quasi-Newton approximation of the Lagrangean L or the identity matrix.
The matrix∇G(x) contains the components of partial derivatives ofG(x) (Shapiro, 1994). The symbol ~ is the symmetric
Kronecker operator. Associated with this Kronecker operator is the symmetric vectorization of a matrix (de Klerk, 2002).
Given A ∈ Sm with components aij , we define m = 1

2m(m+ 1) as the number of upper diagonal components of A. The
symmetric vectorization of A, denoted by svec(A), is given in the following manner,

svec(A) =
[
a11

√
2a12 a22

√
2a13

√
2a23 a33 . . . amm

]>
.

Each iteration of FDASDP solves two linear systems with the matrix W . The solution d0 of the first linear system
is a descent direction for the objective function (Aroztegui, 2010). Unfortunately, if x is in the boundary of Ω, d0 can
be infeasible. Then, we must solve a second linear system with the same matrix W to obtain a direction d1 that points
toward the interior of Ω. Once obtained d0 and d1, FDASDP computes a positive parameter ρ in such a way to make
d = d0 + ρd1 a feasible and descent direction. Finally, to obtain the next point xk+1 in the interior of Ω we compute a
step size tk ∈ Rn using an Armijo’s line search along d. Those steps are repeated until the norm of the direction d0 is less
than a tolerance TOL > 0.

Under standard hypotheses we can prove the global convergence of FDASDP, i.e., the sequence generated by the
algorithm converges to a stationary point of problem (8) (Aroztegui, 2010). FDASDP is a generalization of Feasible
Direction Interior Point Algorithm (FDIPA) developed in (Herskovits, 1998). The statement of FDASDP is presented
below.

Feasible Direction Algorithm for Semidefinite Programming- FDASDP

Parameters. ξ ∈ (0, 1), η ∈ (0, 1), ϕ > 0, ν ∈ (0, 1), TOL > 0.
Data. x ∈ int(Ωa), B ∈ Sn

++ and Λ ∈ Sm
++ such that Λ and G(x) commute.

Step 1) Computation of the search direction d.
i) Solve the following linear system in d0 ∈ Rn and λ0 ∈ Rm[

B ∇G(x)
(Λ~ I)∇G(x)> I ~G(x)

] [
d0

λ0

]
=
[
−∇f(x)

0

]
(11)

If |d0| < TOL, stop.
ii) Solve the following linear system in d1 ∈ Rn and λ1 ∈ Rm[

B ∇G(x)
(Λ~ I)∇G(x)> I ~G(x)

] [
d1

λ1

]
=
[

0
−λ

]
(12)

where λ = svec(Λ).
iii) Compute the parameter ρ such that

ρ = min
{
ϕ‖d0‖2, (ξ − 1)

d>0 ∇f(x)
d>1 ∇f(x)

}
(13)

if d>1 ∇f(x) > 0. Otherwise:

ρ = ϕ‖d0‖2. (14)
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iv) Compute the search direction d as

d = d0 + ρd1. (15)

Step 2) Line Search.
Find t, the first element of {1, v, v2, v3 . . . } such that

f(x+ td) 6 f(x) + t.η.d>∇f(x) (16)

and

G(x+ td) ≺ 0. (17)

Step 3) Updates.
i) Update the new point by x = x+ td.
ii) Define a new value for B ∈ Sn

++.
iii) Define a new value for Λ ∈ Sm

++ such that commutes with G(x).
iv) Go to Step 1).

4. NUMERICAL EXAMPLES

Here we show some numerical examples with one and two load cases, i.e. s = 1 and s = 2.
Example 1. The first example considers the ground structure of Figure 1 with a single load case.

Figure 1. Truss of Example 1.

Example 2. The second example considers the ground structure of Figure 2 with a single load case.

Figure 2. Truss of Example 2.

Example 3. The third example considers the ground structure of Figure 3 with two load cases.

Figure 3. Truss of Example 3.

4.1 NUMERICAL RESULTS

In this section we solve problem (4) using the equivalent formulation (7) for each numerical example. In all examples
we use the Feasible Direction Algorithm for Semidefinite Programming (FDASDP).

Figures 4, 5 and 6 show the final topology obtained with FDASDP for example 1, 2 and 3, respectively. In those
figures we show the importance of the frequency constraint in truss topology optimization. To the left of each figure, we
show the optimized structure without the frequency constraint, and to the right, the optimized structure with the frequency
constraint.

The FDASDP algorithm stops when |d0| < 10−6. The compliance and frequency constraints are always active at the
solutions obtained. In other words: diag(P>U(x∗)) = γ and λmin(x∗) = λ.
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Figure 4. Optimum result of example 1: without (left) and with (right) frequency constraint.

Figure 5. Optimum result of example 2: without (left) and with (right) frequency constraint.

Figure 6. Optimum result of example 3: without (left) and with (right) frequency constraint.

5. CONCLUSIONS

This work shows a technique to solve structural optimization problem that minimizes the weight of a truss structure
subject to a fundamental frequency constraint.

In our optimization model we allow the value of a design variable to be zero. The fundamental frequency, as a function
of the design variables, could be discontinuous or non smooth when some variable design has zero value. Then, classical
smooth optimization techniques could not be applied for that problem.

To overcome those difficulties we present an equivalent semidefinite formulation for the optimization problem. The
equivalent formulation is solved with a general algorithm for semidefinite programming. We show some simple examples
that confirms the effectiveness of the semidefinite approach. Those examples also shows the importance of fundamental
frequency constraint in the design of robust structures.
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