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Abstract. This article concerns the characterization of dissipative effects in sandwich composite structures. The intrin-
sic damping of composite materials is increased by application of constrained viscoelastic treatments internal to the 
structure, resulting in a sandwich configuration. The theories employed in conjunction with the finite element modeling 
technique for sandwich plate structures are the First-order Shear Deformation Theory (FSDT), the Higher-order 
Shear Deformation Theory (HSDT) and the Layerwise-FSDT. In these formulations, each node of an arbitrary finite 
element has five, nine and eleven degrees of freedom, respectively. The chosen type of finite element is the quadrilat-
eral Serendipity, which has three nodes at each interface and a total of eight nodes. The damping resulting from the 
viscoelastic behavior is included in the formulation by a constitutive equation established in the time domain by means 
of the Fractional Calculus. The corresponding fractional differential equation is discretized and allows the model in-
corporation to the Finite Element Model in a straightforward fashion. The dynamic responses are obtained as func-
tions of time by using an adequate numerical integration scheme. Numerical simulations are performed aiming the 
validation of the modeling procedure for sandwich plate structures. Confrontation of the theories used for the dis-
placements fields is carried out by comparing the corresponding time responses. 
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1. INTRODUCTION 
 

Current engineering design involves minimization of production, operation and maintenance costs and must obey 
severe specific legislation requirements so as to ensure safety levels, low environmental impact, equipment accuracy 
levels, among others. For instance, the aviation industry demands very strict control in selection and application of 
materials that are employed in design and manufacturing stages of structural components. In general, structures are 
subjected to static (or quasi-static) and/or dynamical loads, as well as to environmental conditions, such as solar radia-
tion, rain and wind, being such factors at times responsible for abrupt degradation-related failures due to long time peri-
ods of exposition. Many studies that associate metallic and/or composite materials for the purpose of passive or active 
vibration control techniques are reported in the literature, as vibration levels are commonly related to fatigue failure, 
damage and noise emission (Malekzadeh and Khalili, 2005; Correia et al., 2000). Finegam and Gibson (1999) state that 
the passive vibration control strategies, in contrast with the active ones, render improved reliability to machines and 
structures. In addition, they are inherently stable and do not depend on external energy sources to attain their goal. 

Viscoelastic damping is one interesting passive approach that can be used in conjunction with composite and/or me-
tallic materials to convert vibratory mechanical energy into heat. Examples of recent works involving viscoelasticity as 
a means for vibration control of composite plates are those of Meunier and Shenoi (2001), Makhecha et al. (2002), 
Malekzadeh and Khalili (2005) and Lima et al. (2010). 

In addition, engineering design also involves the use of reliable analytical and numerical models so as to provide 
both qualitative and quantitative realistic insights on the structural behavior. Included in the numerical modeling tech-
niques is the Finite Element Method (FEM), which has shown to be suitable for the characterization of the dynamical 
behavior of a broad category of systems. 

In the context of the modeling of plate sandwich structures through finite elements, many theories are currently in 
use, being these distinguished mainly by the order of polynomial approximations adopted for displacement fields. 
Commonly used theories are the First-order Shear Deformation Theory (FSDT), the Higher-order Shear Deformation 
Theory (HSDT), and the Layerwise or Discrete Layer Theory. In the choice of a specific theory, one should consider 
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the thickness of the laminated structure, as well as the trade-off between computational costs and accuracy. As reported 
by Faria (2010), for thick laminated structures, HSDT is a better alternative. In the cases of homogeneous thin plates, 
however, FSDT provides good results. Layerwise Theories, on the other hand, are better suited for assessing the dynam-
ical behavior of heterogeneous sandwich systems. 

This paper is devoted to the modeling of laminated sandwich composite plates with the inclusion of viscoelastic 
damping layers, by using the FEM. One highlights its main contribution being the use of different modeling approaches 
to describe the kinematics of laminated sandwich structures. One assesses, for instance, the influence of the modeling 
technique over time domain transient responses in a considered numerical example; in other words, one investigates 
which of the considered theories can give a satisfactory description of the viscoelastic damping behavior. 

In the remainder, one firstly presents a brief introduction to the linear viscoelasticity modeling, as well as the frac-
tional differential constitutive equation adopted in this work. The implementation of such model by means of the FEM 
is then highlighted. Later, attention is devoted to the modeling of sandwich composite laminated plate structures. Dis-
placement fields as well as strain equations are given for the theories considered here, namely the FSDT, the HSDT and 
a Layerwise-FSDT. The finite element interpolation schemes are briefly presented in addition to the global system of 
equations of motion. Finally, a numerical example is presented to illustrate the modeling procedures and to compare the 
damping levels predicted by the different formulations considered, as mentioned earlier. 
 
2. LINEAR VISCOELASTICITY AND FRACTIONAL DERIVATIVE MODEL 
 

Viscoelastic materials are, in general, elastomeric materials that present long molecular chains. This molecular ar-
rangement is responsible for transforming mechanical energy into heat when viscoelastic materials are cyclically load-
ed. Moreover, at low temperatures and high excitation frequencies, they present a low-stiffness rubber-like behavior, 
whilst at high temperatures and low excitation frequencies they exhibit stiffer, glassy-like behavior. In a transition zone 
between the former two limiting cases, it can be seen that their elastic properties are very sensitive to frequency and 
temperature, although it is in such situations that viscoelastic materials can more effectively dissipate vibratory energy 
(Nashif et al., 1985). As being so, and also due to efficiency issues, when considering the design process of passive 
vibration control by means of viscoelastic damping augmentation, such environmental and operational dependencies 
should be accounted when modeling stress-strain relationships (Lima, 2003, 2007). 

According to Nashif et al. (1985) and Lima (2003, 2007), basically two main classes of mathematical models for 
viscoelastic constitutive behavior can be found in the literature, namely classical and modern models. Classical ap-
proaches are based on the use of simple rheological models, such as those composed by the association of linear springs 
and viscous dampers. Among these one can mention the Generalized Kelvin-Voigt model, the Generalized Maxwell 
Model and the Zener model. However, to be able of representing the physical behavior of real viscoelastic materials 
used with the purpose of vibration mitigation over a wide frequency range, these models should encompass large num-
ber of parameters that must be identified from experimental data. Moreover, when associated with FE models, large 
computational costs need to be overcome in order to assess the system dynamical behavior. 

Regarding the so-called modern viscoelastic models, one can mention the augmented thermodynamic field model 
(ATF, ADF) (Lesieutre, 1992; Lesieutre and Lee, 1996), the Golla-Hughes-McTavish model (GHM) (Golla and 
Hughes, 1985; McTavish and Hughes, 1993), and the fractional derivative models (Bagley and Torvik, 1983, 1985). In 
particular, finite element formulation implementation of fractional derivative models in the time domain has been inves-
tigated recently (Schmidt and Gaul, 2002; Deü and Matignon, 2010) and the technique proposed by Galucio et al. 
(2004) has proven to be one of the most effective in terms of computational burden. As a result, this model has been 
chosen for the developments presented in this paper. 

The 1-D viscoelastic constitutive equation that relates stress  t  and strain  t  adopted in this work was initially 

proposed by Bagley and Torvik (1985), and afterwards used by Galucio et al. (2004). The material behavior is modeled 
by the following fractional differential equation: 
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It is worthwhile introducing the Grünwald-Letnikov approximation for the fractional derivative operator. According 
to Miller and Ross (1993) and Galucio et al. (2004), one has: 
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where PN  is the number of points retained from the time discretization, which is assumed to be uniform, t  is the 

fixed-size time increment and  1jA   are the so-called Grünwald coefficients associated with an arbitrary -order 

differentiation. These coefficients can be calculated either by means of the Gamma function or by the following recur-
rence formula: 
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where  1 : 1A    for any order . One may not need to consider all the history of the function  f t  when computing 

the approximation given in Eq. (3) since Grünwald coefficients  1jA   are strictly decreasing as the index j increases, 

as pointed out by Schmidt and Gaul (2002) and Galucio et al. (2004). 
Galucio et al. (2004) introduce the variable change      t t t E      into Eq. (1) to obtain a constitutive equa-

tion that contains only one fractional differentiation: 
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This equation can be solved by means of the Grünwald-Letnikov approximation introduced above, to give: 
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Such solution can be extended to more general 3-D cases by introducing first- and second-order tensors. By admit-

ting that the viscoelastic material is isotropic and that its Poisson ratio   is frequency-independent, one has: 
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where C  is the matrix of elastic low-frequency coefficients of the viscoelastic material and: 
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The factor 0EC  is introduced in Eq. (7) to account for different behavior in the cases of axial and shear deformation. If 

the viscoelastic is either orthotropic or anisotropic, straightforward modifications must be introduced accordingly in the 
C  elastic coefficients matrix. 
 
2.1. Implementation of the Fractional Derivative Viscoelastic Model into Finite Element Models 
 

One considers here a displacement-based finite element formulation for which the following interpolation is used: 
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where  , tU x stands for the generalized displacement vector,  N x  is the interpolation matrix,  tu  is the nodal de-

grees of freedom vector and x  the spatial coordinates vector. Following the procedure adopted by Galucio et al. (2004), 
one obtains the equations of motion at elementary level in the form: 
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where M  is the elementary mass matrix, K  is the elementary stiffness matrix,  e tQ  is the elementary externally 

applied generalized forces vector, and  tu  is an internal variable vector that may be calculated by considering Eq. (6). 

As for the notation, quantities distinguished by an upper tilde (  ) stand for element-related ones. 
 
3. FSDT, HSDT AND LAYERWISE-FSDT FINITE ELEMENT FORMULATIONS FOR SANDWICH 
COMPOSITE LAMINATED PLATES 
 

In this section one presents, at first, the displacement fields related to the FSDT, HSDT and Layerwise-FSDT asso-
ciated with composite laminated plate structures. 

For the FSDT, one adopts: 
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where  , ,x y z  are the spatial cartesian coordinates, ( , ,0)x y  is the undeformed middle plane of the sandwich plate, 

 , , ,u x y z t ,  , , ,v x y z t  and  , , ,w x y z t  are the displacement fields in the directions of x , y  and z , respectively, 

 0 , ,u x y t ,  0 , ,v x y t  and  0 , ,w x y t  are the displacements of a material point that belongs to the reference plane 

( , ,0)x y  in the directions of x , y  and z , respectively, and  , ,x x y t  and  , ,y x y t  are y  and x  rotations, respec-

tively (Reddy, 1997; Faria, 2010)   
As for the HSDT, one has: 
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where  , ,x x y t ,  , ,x x y t ,  , ,x x y t  and  , ,x x y t  are functions that do not have clear physical meaning, al-

tough they can be viewed as higher order rotations (Faria, 2010). 
Finally, considering the Layerwise-FSDT, one can establish: 
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where the superscript k is used to denote quantities associated with the k-th layer of the laminated plate, 1, , lk n  , in 

which ln  is the total number of layers. Furthermore, for Layerwise Theory formulations, such as the Layerwise-FSDT 

considered here, one needs also to consider displacement continuity between layers, expressed as follows: 
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from which  0 , ,ku x y t  and  0 , ,kv x y t  appearing in Eqs. (13) can be computed from the reference layer displacements 

 0 , ,u x y t  and  0 , ,v x y t . 

Regarding strains, one can establish (space and time dependencies are omitted for the sake of simplicity): 
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where ,( )i  stands for the partial derivative with respect to the parameter i, e. g., 0, 0x xu u

 , etc.. 

Introducing appropriate discretization for the variables appearing in Eqs. (11) – (13), finite elements models can be 
obtained for each one of the considered theories. For instance, here one uses the quadrilateral Serendipity element for 
multi-layered composite plates (Reddy, 1997; Faria, 2010), which presents eight nodes, three per interface. For FSDT, 
HSDT and Layerwise-FSDT formulations, one has 5, 11 and 2 3ln   degrees of freedom per node, respectively. The 

linear transformation matrix that relates global  ,x y  and local  ,   coordinates, as well as Serendipity interpolation 

functions  ,iN   , 1, , 8i   , can be encountered in Reddy (1997) and Faria (2010). Equations (11) – (13) can be 

rewritten by the use of finite elements discretization, respectively, as: 
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                    
, L-FSDT L-FSDT L-FSDT

3 1 3 2 3 2 3 8 2 3 8 2 3 1
, , , ,  , 1, ,  ,

l l l l

k k
ln n n n

z t z t k n          
 U A N u   
     (20)

 

where  FSDT , N ,  HSDT , N  and  L-FSDT , N  are the interpolation matrices associated with the FSDT, HSDT 

and Layerwise-FSDT formulations, respectively, and  FSDT tu ,  HSDT tu  and  L-FSDT tu  are the elementary d.o.f. vec-

tors for the corresponding theories, which are given by: 
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         

           

TT T TFSDT FSDT FSDT FSDT
1 2 840 1

TFSDT
0 0 0

 ;

, , , , , , , , , ,  , 1, , 8 ;i i i i i i i x i i y i i

t t t t

t u t v t w t t t i           


              

   

u u u u

u

   

     
 

(21)

 

         

             

         

TT T THSDT HSDT HSDT HSDT
1 2 888 1

HSDT
0 0 0

T

 ;

, , , , , , , , , , , ,

, , , , , , , , , ,  , 1, , 8 ;

i i i i i i i x i i y i i z i i

x i i y i i z i i x i i y i i

t t t t

t u t v t w t t t t

t t t t t i

              

              


              
 

 

u u u u

u

   

      

     

 

(22)

 

          

           

       

T T TL-FSDT L-FSDT L-FSDT L-FSDT
1 2 88 2 3 1

L-FSDT 1 1
0 0 0

T

 ;

, , , , , , , , , ,

, , , , , , , ,  , 1, 

l

l l

n

i i i i i i i x i i y i i

n nk k
x i i y i i x i i y i i

t t t t

t u t v t w t t t

t t t t i

           

           

 
              

 

 

u u u u

u



 

   

     

     , 8 .

 

(23)

 
In the former,  FSDT

i tu ,  HSDT
i tu  and  L-FSDT

i tu  are the d.o.f. vectors associated with the i-th node of the Serendipi-

ty element, whose coordinates are given by  , .i i   Moreover, the matrices  FSDT zA ,  HSDT zA  and  , L-FSDTk zA  

appearing in Eqs. (18) – (20) relate the mechanical displacement fields discretized by means of Eqs. (21) – (23) to the 
generalized displacements vectors: 

 

         

         

T

3 1

T

3 1

, , , , , , , , , , , ,  ;

, , , , , , , , , , , ,  , 1, ,  .k k k k
l

z t u z t v z t w z t

z t u z t v z t w z t k n

       

       





   

   

U

U

   

    
 

(24)

 

Matrices  zA   and  , N  , for FSDT, HSDT, L-FSDT , are not presented here, but can be encountered in the 

works of Reddy (1997) and Faria (2010). 
The strain vectors given in Eqs. (15) – (17), can be computed according to: 
 

               FSDT FSDT FSDT FSDT
6 1 6 5 5 40 40 1, , , ,  ;z t z t      ε D N u    (25)

 

               HSDT HSDT HSDT HSDT
6 1 6 11 11 88 88 1, , , ,  ;z t z t      ε D N u    (26)

 

                    
, L-FSDT , L-FSDT L-FSDT L-FSDT
6 1 6 2 3 2 3 8 2 3 8 2 3 1

, , , ,  , 1, ,  ,
l l l l

k k
ln n n n

z t z t k n          
 ε D N u   
     (27)

 

where  FSDT zD ,  HSDT zD  and  , L-FSDTk zD  are spatial differential operator matrices depending on z (Faria, 2010). 

By considering the previous relations, as well as the constitutive equations for the base (metallic, composite, etc.) 
and viscoelastic materials, one can compute elementary kinetic and potential energies, this latter associated with the 
non-viscoelastic layers, only, and the elementary virtual work of the internal forces associated to the viscoelastic mate-

rial. In addition, one may consider the Boolean transformation matrices FSDTL , HSDTL  and L-FSDTL  that relates elemen-
tary and global d.o.f. vectors: 

 

                               FSDT FSDT FSDT HSDT HSDT HSDT L-FSDT L-FSDT L-FSDT
40 1 40 1 88 1 88 1 18 2 3 1 8 2 3

;  ;  ,
l ln n n n nn n n

t t t t t t         
  u L u u L u u L u 
      (28)

 
where n  is the total number of d.o.f. of the considered problem. In doing so, elementary energy contributions can be 
expressed in a global sense and, by means of Lagrange’s equations, one can obtain the following global equations of 
motion for each of the theories considered: 

 

                       FSDT FSDT FSDT FSDT FSDT FSDT, FSDT
11 1 1 1

1

PN
v

jn n n n n n n n n n
j

t t t c A t j t       


    M u K u R K u   (29)
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                       HSDT HSDT HSDT HSDT HSDT HSDT, HSDT
11 1 1 1

1

PN
v

jn n n n n n n n n n
j

t t t c A t j t       


    M u K u R K u   (30)

 

                       L-FSDT L-FSDT L-FSDT L-FSDT L-FSDT L-FSDT, L-FSDT
11 1 1 1

1

PN
v

jn n n n n n n n n n
j

t t t c A t j t       


    M u K u R K u   (31)

 
where: 
■ for the FSDT formulation: 

►        

T
FSDT FSDT FSDT FSDT

40 40 40 40n n n n   
   M L M L    and  

FSDT
40 40M  are the global and elementary mass matrices, respectively; 

►      
FSDT FSDT, FSDT,nv v
n n n n n nc   K K K  is the modified global stiffness matrix; 

►        

T
FSDT, FSDT FSDT, FSDT

40 40 40 40
nv nv

n n n n   
   K L K L    and  

FSDT,
40 40

nv
K  are the non-viscoelastic contributions to the global and ele-

mentary stiffness matrices, respectively; 

►        

T
FSDT, FSDT FSDT, FSDT

40 40 40 40
v v

n n n n   
   K L K L    and  

FSDT,
40 40

v
K  are the viscoelastic contributions to the global and elementary 

stiffness matrices, respectively; 

►      
FSDT FSDT, FSDT,
40 40 40 40 40 40

nv v
   K K K    is the elementary stiffness matrix; 

►    FSDT
1n tR  is the global externally applied generalized forces vector; 

►    FSDT
1n tu  is an internal variable vector arising from the viscoelastic behavior of selected layers of the structure; 

■ for the HSDT formulation: 

►        

T
HSDT HSDT HSDT HSDT

88 88 88 88n n n n   
   M L M L    and  

HSDT
88 88M  are the global and elementary mass matrices, respectively; 

►      
HSDT HSDT, HSDT,nv v
n n n n n nc   K K K  is the modified global stiffness matrix; 

►        

T
HSDT, HSDT HSDT, HSDT

88 88 88 88
nv nv

n n n n   
   K L K L    and  

HSDT,
88 88

nv
K  are the non-viscoelastic contribution to the global and ele-

mentary stiffness matrices, respectively; 

►        

T
HSDT, HSDT HSDT, HSDT

88 88 88 88
v v

n n n n   
   K L K L    and  

HSDT,
88 88

v
K  are the viscoelastic contribution to the global and elementary 

stiffness matrices, respectively; 

►      
HSDT HSDT, HSDT,
88 88 88 88 88 88

nv v
   K K K    is the elementary stiffness matrix; 

►    HSDT
1n tR  is the global externally applied generalized forces vector; 

►    HSDT
1n tu  is an internal variable vector arising from the viscoelastic behavior of selected layers of the structure; 

■ for the Layerwise-FSDT formulation: 

►             

T
L-FSDT L-FSDT L-FSDT L-FSDT

8 2 3 8 2 3 8 2 3 8 2 3l l l ln n n n n n n n       
   M L M L   
    and     

L-FSDT

8 2 3 8 2 3l ln n  
M  
  are the global and elementary mass 

matrices, respectively; 
►      

L-FSDT L-FSDT, L-FSDT,nv v
n n n n n nc   K K K  is the modified global stiffness matrix; 

►             

T
L-FSDT, L-FSDT L-FSDT, L-FSDT

8 2 3 8 2 3 8 2 3 8 2 3l l l l

nv nv
n n n n n n n n       

   K L K L   
    and     

L-FSDT,

8 2 3 8 2 3l l

nv

n n  
K  
  are the non-viscoelastic contribution 

to the global and elementary stiffness matrices, respectively; 

►             

T
L-FSDT, L-FSDT L-FSDT, L-FSDT

8 2 3 8 2 3 8 2 3 8 2 3l l l l

v v
n n n n n n n n       

   K L K L   
    and     

L-FSDT,

8 2 3 8 2 3l l

v

n n  
K  
  are the viscoelastic contribution to the 

global and elementary stiffness matrices, respectively; 

►               
L-FSDT L-FSDT, L-FSDT,

8 2 3 8 2 3 8 2 3 8 2 3 8 2 3 8 2 3l l l l l l

nv v

n n n n n n        
 K K K     

    is the elementary stiffness matrix; 

►    L-FSDT
1n tR  is the global externally applied generalized forces vector; 

►    L-FSDT
1n tu  is an internal variable vector arising from the viscoelastic behavior of selected layers of the structure. 

 
In order to perform a transient dynamical analysis of the system, one must use a numerical integration scheme to 

solve either of Eqs. (29) – (31). Several of such numerical algorithms as applied to the solution of finite element models 
are provided by Bathe (1996). Galucio et al. (2004) use a Newmark explicit numerical integration procedure to solve 
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equations in the form of Eqs. (10) and (29) – (31), which incorporate viscoelastic behavior by modifying the stiffness 
matrix of the model and by means of an internal variables vector. For further details about the solution of the dynamical 
differential equations associated with systems presenting viscoelasticity modeled by the fractional derivative constitu-
tive equation herein considered, the reader should refer to Galucio et al. (2004), who firstly incorporated the procedure 
used herein. 
 
4. NUMERICAL EXAMPLES 
 

In this section, one presents a numerical example in order to validate the proposed procedures and to assess differ-
ences in the obtained time responses induced by the different formulations adopted. 

As example, one considers a cantilever sandwich beam with length of 0.200 m and width of 0.010 m that presents 
three different layers and has been studied by Galucio et al. (2004). A schematic illustration of the addressed problem 
can be seen in Fig. 1. The bottom and upper layers have thickness of 0.001 m and their materials are an aluminum alloy, 
whose density, Poisson ratio and longitudinal Young modulus are Al 2690  kg/m³, Al 0.345   and AlE   

70.3  10³ MPa, respectively. As for the intermediate viscoelastic layer, its thickness is 0.0002 m and its material is 
3M® ISD112TM, for which, at 27 °C (  300 K), ISD112 1600  kg/m³, ISD112 0.5  , 0,ISD112 1.5E  MPa, ,ISD112E   

69.9495 MPa, ISD112 1.4052  105 s, and ISD112 0.7915   are its density, Poisson ratio, static longitudinal Young 

modulus, high-frequency longitudinal Young modulus, relaxation time and fractional derivative order, respectively. 
Spatial discretization was accomplished by means of a uniform mesh consisting of 20 elements along the length and 

one element along width of the beam. 
In addition, one considers that a triangular impulsive load, given by: 
 

 

0 N , if 0 s or if 2 ms ;

 N , if 0 1 ms ;
0,002

2  N , if 1 2 ms ,
0,002

t t

t
f t t

t
t


 




  



  


 (32)

 
for t  expressed in seconds, is applied at the free-end of the beam as depicted in Fig.1. 

The final observation time is chosen to be 250 ms. Time discretization was accomplished by dividing the time win-
dow [0–250] ms in 1000 equally spaced intervals, which implies in 0.25t  ms. Numerical integration was performed 
by means of Newmark explicit integration algorithm, which can be found in (Bathe,1996) and in (Galucio et al., 2004). 
Moreover, to describe the memory effect associated with the 3M® ISD112TM viscoelastic material one adopts 50PN  , 

which is used in the computation of the weighted sums appearing in the right-hand side of Eqs. (29) – (31). 
Time response at the investigated d.o.f., namely the one associated with transverse motion of the beam free-end, is 

presented in Fig. 2. Results are given for the three different formulations considered. Also the displacement history 
obtained by Galucio et al. (2004) is superimposed to the results. 

 
 

 
 

Figure 1. Schematic illustration of the sandwich beam considered (not in scale). 
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Figure 2. Time response of the d.o.f. associated with the transverse deflection of the free-end tip of the beam. 
 
Responses shown in Fig. 2 allow the verification that the Layerwise-FSDT formulation lead to the same results in-

cluded in the work of Galucio et al. (2004). Nevertheless, the FSDT and HSDT formulations cannot capture the damp-
ing effect provided by the viscoelastic layer. Such effect is observed inasmuch as two different materials compose the 
considered sandwich beam, namely an Aluminum alloy and the viscoelastic 3M® ISD112TM material. This leads to a 
heterogeneous configuration along the beam thickness, which cannot be properly modeled by the FSDT and HSDT 
formulations, as proven by the plots shown in Fig. 2. One can ascribe such modeling deficiency of the system dynam-
ical behavior to the single displacement field admitted for all the layers of the sandwich structure. Therefore, although 
viscoelasticity is taken into account in the formulations, the strains related with the viscoelastic layer, in special shear 
strain, are not modeled correctly, leading to the inconsistencies shown in Fig. 2. 

As to the results obtained by Galucio et al. (2004), it is important to mention that the authors use a three-layer sand-
wich beam theory as to assess the dynamic response included in Fig. 2. The formulation used by the previous authors in 
their work adopts Euler-Bernoulli assumptions for the external linear-elastic layers, as well as Timoshenko hypotheses 
for the viscoelastic core. In addition, plane stress state and perfect bonding between layers are assumed in their devel-
opment. The response provided in Fig. 2 as being the one from Galucio et al. (2004) was achieved by digitizing the plot 
presented by the authors in their paper. Thus, minimal differences seen in Fig. 2 between such response and the one 
arising from the Layerwise-FSDT formulation are completely acceptable. 
 
5. CONCLUSIONS 
 

In this paper, general modeling of sandwich plate structures containing viscoelastic layers was carried out in the 
time domain by the use of the Finite Element Method and a fractional-derivative constitutive equation for the viscoelas-
ticity phenomenon. Three different formulations of the problem were considered: the First-order Shear Deformation 
Theory (FSDT), the Higher-order Deformation Theory (HSDT), and a Layerwise-FSDT. The first two differ from each 
other in terms of interpolation order of the displacement fields, mainly. Layerwise Theories, on the other hand, account 
for different displacement fields for different layers, and the Layerwise-FSDT adopts a first order approximation, with 
respect to the transverse coordinate z , for such displacement fields. 

Although the numerical example considered in this paper consists of a non-composite sandwich beam, the assess-
ment of the correct modeling of plate structures containing viscoelastic damping treatments could be carried out, and 
indicated that FSDT and HSDT cannot correctly anticipate the dynamic response investigated. Still, it is important to 
stress that FSDT and HSDT may be useful for situations in which material homogeneity is encountered through thick-
ness. Nevertheless, Layerwise-FSDT is better for situations alike the one analyzed in this text, including instances 
where composite materials are present. 
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