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Abstract. A large increase in the use of the observation of nature, mainly the behavior of social insects or animals, in 

the development of new optimization algorithms has been observed in recent years. Among these algorithms, we can 

cite the Bees Colony Algorithm (BCA), which is based on the bees colony behavior in their search for food aiming at 

honey production. This approach combines global random search (through the performance of scout bees) with local 

search (by accentuated exploration of promising regions of the search space) to solve the optimization problem. 

However, due to the architecture of the canonical algorithm described in the literature, the stagnation of the 

population around a local optimum represents a limitation of the technique. In this context, the goal of this work is to 

propose a strategy to prevent the stagnation of the population and, consequently, to increase the capacity of escaping 

the local optima. The proposed algorithm is then applied to the estimation of radiative properties in a one-dimensional 

participating medium, being the radiative transfer phenomena modeled by an integro-differential equation, i.e., the 

Boltzmann equation. This equation describes mathematically the interaction of the radiation with the participating 

medium, i.e., a medium that may absorb, scatter and emit radiation. Test cases are presented for illustrating the 

efficiency of the proposed methodology in the treatment of inverse radiative transfer problems. 
 
Keywords: Inverse Problem, Radiative Transfer, Bees Colony Algorithm, Refinement Strategy. 

 
1. INTRODUCTION  
 

Nowadays, biological systems have contributed significantly to the development of new optimization techniques. 
These techniques are based on the use of strategies to upgrade a population of candidates so that a solution to the 
optimization problem is provided, which differentiates them from various techniques normally presented in the 
literature (Lobato et al., 2010a). Among the most recent bio-inspired strategies stands the Bees Colony Algorithm 
(BCA) proposed by Lucic and Teodorovici (2001) for solving combinatorial optimization problems. This algorithm is 
based on the behavior of bees’ colonies in their search of raw materials for honey production. According to Lucic and 
Teodorovici (2001), in each hive groups of bees (called scouts) are recruited to explore new areas in search for pollen 
and nectar. These bees, returning to the hive, share the acquired information so that new bees are indicated to explore 
the best regions visited in an amount proportional to the previously passed assessment. Thus, the most promising 
regions are best explored and eventually the worst end up being discarded. This cycle repeats itself, with new areas 
being visited by scouts at each iteration. 

Among the main applications of bio-inspired methods we can cite the solution of inverse problems. In this context, 
the inverse analysis of radiative transfer in participating media has numerous practical applications, such as the one-
dimensional plane-parallel (Silva Neto and Özişik, 1995; Alvarez Acevedo et al., 2004, Lobato et al., 2008; Lobato et 

al., 2009; Lobato et al., 2010b) and two-dimensional media (Carita Montero et al., 2001; Carita Montero et al., 2004), 
and radiative transfer in composite layer media (Siegel and Spuckler, 1993; Wang et al., 2002), which are devoted to 
applications in scientific and technological areas that are related to environmental sciences (Hanan, 2001), parameter 
estimation (Sousa et al., 2007), and tomography (Kim and Charette, 2007). 

The main difficulty found in the so-called bio-inspired methods is the high number of objective function evaluations 
and the probability of getting stuck in a local optimum because of the architecture of these canonical algorithms. To 
overcome this difficulty the present work proposes the incorporation of an operator to the BCA to refine the current 
optimal solution so that local minima can be avoided. 

In the present contribution the BCA is used for the solution of the inverse radiative transfer problem related to the 
simultaneous estimation of the optical thickness, single scattering albedo and the intensities of the isotropic external 
sources of radiation incident at τ=0 and τ=τo, respectively. The results obtained with this methodology are compared 
with those from the Differential Evolution (DE) and Simulated Annealing algorithms. This work is organized as 
follows. The mathematical formulations of the direct and inverse problems are presented in Sections 2 and 3, 
respectively. A review of the BCA and the refinement operator proposed are presented in Section 4. The results and 
discussion are described in Section 5.  Finally, the conclusions and suggestions for future work conclude the paper.  
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2. MATHEMATICAL FORMULATION OF THE DIRECT PROBLEM 
 

Consider a one-dimensional gray homogeneous participating medium of optical thickness τo, with transparent 
boundary surfaces that are subjected to external radiation. The mathematical formulation for such a problem 
considering no emission inside the medium and azymuthal symmetry is given by an integro-differential equation, 
known as Boltzmann equation (Özişik, 1973; Silva Neto and Moura Neto, 2005, de Abreu, 2005): 
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with 0 <τ < τo and –1 ≤ µ ≤ -1 and subject to the boundary conditions: 
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In this equation, I(τ,µ) is the intensity (radiance) of the radiation field, τ  the optical variable, µ  the cosine of the 

polar angle, ω the single scattering albedo, and A1 and A2 are the intensities of the isotropic external sources of radiation 
incident at τ=0 and τ =τo, respectively, according to Fig.(1). 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. One-dimensional participating medium. 

 
In the direct problem defined by Eqs. (1) and (2) the radiative properties and boundary conditions are considered as 

being known. Then the problem becomes the one of determining the radiation intensity I(τ,µ). In order to solve the 
direct problem, the Collocation Method (Villadsen and Michelsen, 1978; Wylie and Barrett, 1985) was used. In this 
methodology, the general Boundary Value Problem (BVP) is described as  

 
( , , ),      y f x y p a x b= ≤ ≤ɺɺ                                                                                                                                         (3) 

 
where x is the independent variable, y is a vector of dependent variables and p is a vector of unknown parameters. This 
BVP, subject to general nonlinear, two-point boundary conditions 
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is approximated by a polynomial function (S(x)) on each subinterval [xn, xn+1] of a mesh a = xo <  x1 < ... < xN  = b. This 
approximation should satisfy the boundary conditions 
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and satisfies also the differential equations at both ends and at the midpoints of each subinterval 
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In the context of this work, the integral terms found in the right hand side of Eq.(1) were substituted by Gauss-
Legendre Quadratures (Wylie and Barrett, 1985). The Collocation Method is formally derived by evaluating the 
governing integro-differential equation at the collocation points, which results in a system of nonlinear ordinary 
differential-algebraic equations describing the evolution of the solution at the collocation points. This methodology is 
very attractive due to its easiness of implementation, even when the problem to be solved is highly nonlinear (Villadsen 
and Michelsen, 1978; Wylie and Barrett, 1985). 

 
3. MATHEMATICAL FORMULATION OF THE INVERSE PROBLEM 

 
In this work, the inverse problem can be stated as: utilizing the measured data {Yi}, i=1, 2, ..., K, determine the  

vector of unknowns Z defined as: 
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Considering that the number of measured data, K, is larger than the number of parameters to be estimated (four 

variables), an implicit formulation is used for the inverse radiation problem at hand, in which the minimization of the 
least square norm is required, as given below: 
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where Ii and Yi are computed and measured exit intensities, respectively, and the elements of the vector of residues are 

 

( )1 2 , ,     1  2    i i o iG I , A A Y , i , , ..., Kτ ω= − =                                                                                                               (11) 

 
As real experimental data is not available, the measured exit intensities, Yi, were obtained from simulation. For this 

aim, random error E (with normal distribution and standard deviation σ) was added to the exact intensities, Iexact, 
obtained from the solution of the direct problem. 

 

    1  2    
ii exact iY I E , i , , ..., Kσ= + =                                                                                                                                (12) 

 
4. SOLUTION OF THE INVERSE PROBLEM 
 
4.1. Bee Colony Algorithm 

 
As observed in biology, a colony of honey bees can extend itself over long distances (more than 10 km) and in 

multiple directions simultaneously to exploit a large number of food sources. In addition, the colony of honey bees 
presents as characteristic, the capacity of memorization, learning and transmission of information in colony, so forming 
the swarm intelligence (von Frisch, 1976). 

In a colony the foraging process begins by scout bees being sent to search randomly for promising flower patches. 
When they return to the hive, those scout bees that found a patch which is rated above a certain quality threshold 
(measured as a combination of some constituents, such as sugar content) deposit their nectar or pollen and go to the 
“waggle dance”. 

This dance is responsible by the transmission (colony communication) of information regarding a flower patch: the 
direction in which it will be found, its distance from the hive and its quality rating (or fitness) (von Frisch, 1976). This 
dance enables the colony to evaluate the relative merit of different patches according to both the quality of the food they 
provide and the amount of energy needed to harvest it (Camazine et al., 2003).  

After waggle dancing on the dance floor, the dancer (i.e., the scout bee) goes back to the flower patch with follower 
bees that were waiting inside the hive. More follower bees are sent to more promising patches. This allows the colony 
to gather food quickly and efficiently. While harvesting from a patch, the bees monitor its food level. This is necessary 
to decide upon the next waggle dance when they return to the hive (Camazine et al., 2003). If the patch is still good 
enough as a food source, then it will be advertised in the waggle dance and more bees will be recruited to that source. 

In this context, Pham and co-workers (Pham et al., 2006) proposed an optimization algorithm inspired by the natural 
foraging behavior of honey bees (Bees Colony Algorithm - BCA) and presented in Fig. 2.  
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Basic steps of the Bees Colony Algorithm 
1. Initialise population with random solutions. 
2. Evaluate fitness of the population. 
3. While (stopping criterion not met) 
4. Select sites for neighborhood search. 
5. Recruit bees for selected sites (more bees for the best e 

sites) and evaluate fitnesses. 
6. Select the fittest bee from each site. 
7. Assign remaining bees to search randomly and 
evaluate their fitnesses. 
8. End While. 

 

Figure 2. Bees Colony Algorithm (Pham et al., 2006). 
 

The BCA requires a number of parameters to be set, namely, the number of scout bees (n), number of sites selected 
for neighborhood search (out of n visited sites) (m), number of top-rated (elite) sites among m selected sites (e), number 
of bees recruited for the best e sites (nep), number of bees recruited for the other (m-e) selected sites (ngh), and the 
stopping criterion. 

The BCA starts with the n scout bees being placed randomly in the search space. The fitnesses of the sites visited by 
the scout bees are evaluated in step 2. 

In step 4, bees that have the highest fitnesses are chosen as “selected bees” and sites visited by them are chosen for 
neighborhood search. Then, in steps 5 and 6, the algorithm conducts searches in the neighborhood of the selected sites, 
assigning more bees to search near to the best e sites. The bees can be chosen directly according to the fitnesses 
associated with the sites they are visiting. 

Alternatively, the fitness values are used to determine the probability of the bees being selected. Searches in the 
neighborhood of the best e sites, which represent more promising solutions, are made more detailed by recruiting more 
bees to follow them than the other selected bees. Together with scouting, this differential recruitment is a key operation 
of the BCA. 

However, in step 6, for each patch only the bee with the highest fitness will be selected to form the next bee 
population. In nature, there is no such a restriction. This restriction is introduced here to reduce the number of points to 
be explored. In step 7, the remaining bees in the population are assigned randomly around the search space scouting for 
new potential solutions. 

In the literature, various applications using this bio-inspired approach can be found, such as: modeling combinatorial 
optimization transportation engineering problems (Lucic and Teodorovic, 2001), engineering system design (Yang, 
2005; Lobato et al., 2010a), transport problems (Teodorovic and Dell’Orco. 2005), mathematical function optimization 
(Pham et al., 2006), dynamic optimization (Chang, 2006), optimal control problems (Afshar et al., 2001), parameter 
estimation in control problems (Azeem and Saad, 2004), among other applications (http://www.bees-algorithm.com/). 

 
4.2. Anti-Stagnation Operator 

 
 In any evolutionary approach, there is the possibility of the population to stagnate at a point that is not the global 
optimum. To increase the chance of the BCA to avoid this situation, an anti-stagnation operator was coupled to the 
original algorithm. In this operator, at the t-th generation, the average of the last k-th objective functions is calculated. If 
the difference between this value and the best value of the objective function in the current generation is smaller than a 
tolerance defined by the user, the current solution is refined through smaller perturbations generated randomly around 
this candidate. It should be mentioned that this procedure naturally increases the number of objective function 
evaluations, but also increases the probability of escaping from this stagnation point.  

Next section presents an application of the methodology proposed in this work, denominated as Improved Bees 
Colony Algorithm - IBCA. 
 
5. RESULTS AND DISCUSSION 

 
In order to evaluate the performance of the IBCA to estimate both the single scattering albedo, ω, and the optical 

thickness, τo, of the layer, and also the intensities A1 and A2 of the external sources at τ = 0 and τ  = τo, respectively, of a 
given one-dimensional plane-parallel participating media, the three test cases listed in Tab.(1) have been performed. 
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Table 1. Parameters used to compose the illustrative examples (Lobato et al., 2010c). 

Parameter Meaning 
Case # 

1 2 3 

ω Single scattering albedo 0.1 0.1 0.9 

τo Optical thickness of the layer 0.5 5.0 5.0 
A1 Intensity of external  source atτ = 0 1.0 1.0 1.0 
A2 Intensity of external  source atτ  =τo 0.0 0.0 0.0 

 
It should be emphasized that 20 points were used for the approximation of the variable µ and 10 collocation points 

were taken into account to solve the direct problem. Table 2 present the parameters used in the BCA (in the IBCA 
algorithm; the anti-stagnation operator was activated when the current generation was larger than 20). 

 
Table 2. Parameters used in the IBCA to solve the radiative transfer problem. 

 
Number of scout bees (n) 20 
Number of bees recruited for the best e sites (nep) 10 
Number of bees recruited for the other (m-e) selected sites 5 
number of sites selected for neighbourhood search  (m) 10 
number of top-rated (elite) sites among m selected sites (e) 5 
Neighborhood search (ngh) 10-3 
Generation Number 100 

 
In order to examine the accuracy of the inverse methodology of analysis considered, test cases incluidng noise (σ 

=0.02, i. e., corresponding to 5% error) or without noise (σ =0) have been studied. Also, two algorithms to solve the 
inverse problem, namely the Differential Evolution (DE) and the Simulated Annealing (SA) algorithms have been 
performed. The parameters used by DE and SA are given in Tab. (3). 

 

Table 3. Parameters used in the two evolutionary algorithms (Lobato et al., 2010c). 

Parameter SA DE  

Generation number 100 100  
Population size - 10  
Crossover probability - 0.8  
Perturbation rate - 0.8  
Strategy - DE/rand/1/bin  
Temperature number 50 -  
Iterations number  
for each temperature 

10 - 
 

Temperature  
initial/final 

0.5/0.01 - 
 

Initial Estimate 

Case #1 [0.25 0.25 0.5 0.5] 

Randomly generated 
0 ≤ ω ≤ 1; 0 ≤ τo ≤ 1; 1 ≤ A1 ≤ 1.5; 0 ≤ A2 ≤ 1 

Case #2 [0.25 0.45 0.5 0.5] 0 ≤ ω ≤ 1; 3 ≤ τo ≤ 5; 1 ≤ A1 ≤ 1.5; 0 ≤ A2 ≤ 1 
Case #3 [0.75 0.45 0.5 0.5] 0 ≤ ω ≤ 1.4; 3 ≤ τo ≤ 5; 1 ≤ A1 ≤ 1.5; 0 ≤ A2 ≤ 1 

 
The present case studies are intended to observe the performance of the evolutionary algorithms for different levels 

of noise with standard deviation of experimental errors of 0% and 5%. For all test cases presented in this section the 
inverse problem algorithm was run ten times. Consequently, the worst, average and best results obtained are shown. 

In Table 4 the results obtained for case #1 are presented. In this table, Neval is the number of function evaluations. It 
can be observed that when using σ=0 (without noise) both algorithms led to good estimates for the unknown 
parameters. However, if noise is added, it can be seen that the estimates become poorer.  The same behavior was 
observed for test cases #2 and #3 whose results are presented in Tabs.(5)-(6), respectively. However, the results 
obtained can be considered satisfactory in the context of the study conveyed. 

From Tabs. (4)-(6) it should be emphasized that, in terms of the number of objective function evaluations, both BCA 
and IBCA lead to less evaluations as compared with the SA algorithm. Approximately the same number of objective 
function evaluations was obtained by the DE algorithm.  
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Table 4. Results obtained for case #1. 

   ω τo A1 A2 Q (Eq.(10)) 
Exact Error in experimental data  0.1 0.5 1.0 0.0 - 

DE(1) 

0.0 
Worst 0.1003 0.5002 1.0000 0.0001 1.5578x10-6 

Average 0.0998 0.4999 0.9999 0.0000 5.7702x10-7 
Best 0.1000 0.4999 0.9999 0.0000 4.4564x10-9 

5.0% 
Worst 0.0876 0.5018 0.9992 0.0058 0.0842 

Average 0.0876 0.5018 0.9992 0.0058 0.0842 
Best 0.0870 0.5017 0.9990 0.0057 0.0842 

SA(2) 

0.0 
Worst 0.0994 0.4999 1.0001 0.0000 5.3920x10-7 

Average 0.0996 0.4998 0.9999 0.0000 3.4741x10-7 
Best 0.0999 0.4999 0.9999 0.0000 2.1496x10-7 

5.0% 
Worst 0.0885 0.5012 0.9991 0.0059 0.0849 

Average 0.0880 0.5010 0.9990 0.0059 0.0844 
Best 0.0879 0.5010 0.9989 0.0056 0.0842 

BCA(3) 

0.0 
Worst 0.1023 0.5087 1.0041 0.0001 2.5900x10-4 

Average 0.1090 0.5002 1.0001 0.0000 5.9080x10-5 
Best 0.9993 0.4999 0.9997 0.0000 9.8978x10-6 

5.0% 
Worst 0.0888 0.5098 0.9921 0.0078 0.0889 

Average 0.0888 0.5090 0.9922 0.0078 0.0889 
Best 0.0879 0.5080 0.9922 0.0077 0.0887 

IBCA(4) 

0.0 
Worst 0.1020 0.5022 1.0014 0.0000 7.5649x10-6 

Average 0.1000 0.5001 1.0001 0.0000 5.9080x10-9 
Best 0.9999 0.4999 0.9999 0.0000 3.1349x10-14 

5.0% 
Worst 0.0877 0.5070 0.9921 0.0079 0.0839 

Average 0.0875 0.5067 0.9921 0.0079 0.0839 
Best 0.0875 0.5068 0.9920 0.0078 0.0837 

(1) Neval=1010, (2) Neval =7015, (3) Neval =852 and (4) Neval =1245 (average value in all runs). 

 

Table 5. Results obtained for case #2. 

   ω τo A1 A2 Q (Eq.(10)) 
Exact Error in experimental data  0.1 5.0 1.0 0.0 - 

DE(1) 

0.0 
Worst 0.1024 4.9982 0.9988 0.0013 6.3559x10-6 

Average 0.1004 4.9976 0.9992 0.0000 2.6107x10-6 
Best 0.0998 5.0036 1.0008 0.0000 1.1856x10-7 

5.0% 
Worst 0.0453 4.9678 0.9683 0.0000 0.0878 

Average 0.0454 4.9675 0.9682 0.0000 0.0878 
Best 0.0455 4.9674 0.9680 0.0000 0.0878 

SA(2) 

0.0 
Worst 0.0997 5.0097 1.0026 0.0004 8.6468x10-7 

Average 0.0998 4.9981 0.9995 0.0003 7.7231x10-7 
Best 0.0994 4.9956 0.9988 0.0005 7.1664x10-7 

5.0% 
Worst 0.0483 4.9578 0.9689 0.0001 0.0892 

Average 0.0484 4.9575 0.9685 0.0001 0.0890 
Best 0.0485 4.9554 0.9680 0.0001 0.0888 

BCA(3) 

0.0 
Worst 0.0996 5.0077 1.0006 0.0004 1.0948x10-4 

Average 0.0994 4.9998 0.9996 0.0001 7.0989x10-5 
Best 0.0993 4.9996 0.9987 0.0001 1.4222x10-6 

5.0% 
Worst 0.0477 4.9578 0.9688 0.0002 0.0908 

Average 0.0478 4.9575 0.9686 0.0001 0.0907 
Best 0.0480 4.9554 0.9690 0.0000 0.0899 

IBCA(4) 

0.0 
Worst 0.0997 5.0007 1.0002 0.0001 8.009x10-7 

Average 0.0998 4.9999 0.9998 0.0000 1.2223x10-9 
Best 0.0999 4.9999 0.9999 0.0000 9.0989x10-13 

5.0% 
Worst 0.0478 4.9580 0.9678 0.0002 0.0890 

Average 0.0480 4.9585 0.9680 0.0001 0.0880 
Best 0.0482 4.9594 0.9699 0.0001 0.0878 

(1) Neval=1010, (2) Neval =8478, (3) Neval =852 and (4) Neval =1249 (average value in all runs). 
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Table 6. Results obtained for case #3. 

   ω τo A1 A2 Q (Eq.(10)) 
Exact Error in experimental data  0.9 5.0 1.0 0.0 - 

DE(1) 

0.0 
Worst 0.9000 5.0002 0.9996 0.0000 2.8555x10-8 

Average 0.9000 5.0001 0.9999 0.0000 2.6683x10-8 
Best 0.9000 5.0000 0.9999 0.0000 2.6203x10-8 

5.0% 
Worst 0.8999 5.0599 1.0118 0.0001 0.0844 

Average 0.8992 5.0592 1.0117 0.0000 0.0824 
Best 0.8979 5.0562 1.0107 0.0000 0.0804 

SA(2) 

0.0 
Worst 0.9001 5.0003 0.9998 0.0000 3.7788x10-8 

Average 0.9000 5.0002 0.9999 0.0000 2.9988x10-8 
Best 0.9000 5.0000 0.9999 0.0000 2.7245x10-8 

5.0% 
Worst 0.8999 5.0692 1.0090 0.0001 0.0855 

Average 0.8994 5.0691 1.0189 0.0001 0.0834 
Best 0.8981 5.0566 1.0179 0.0001 0.0811 

BCA(3) 

0.0 
Worst 0.9021 5.0031 0.9987 0.0000 1.8228x10-4 

Average 0.9018 5.0022 0.9987 0.0000 7.9098x10-5 
Best 0.9010 5.0013 0.9999 0.0000 4.5556x10-6 

5.0% 
Worst 0.8979 5.0694 1.0091 0.0001 0.0995 

Average 0.8984 5.0684 1.0182 0.0001 0.0995 
Best 0.8981 5.0576 1.0180 0.0000 0.0994 

IBCA(4) 

0.0 
Worst 0.9010 5.0011 0.9989 0.0000 9.9989x10-8 

Average 0.9008 5.0008 0.9989 0.0000 9.9094x10-10 
Best 0.9002 5.0005 0.9999 0.0000 6.9789x10-14 

5.0% 
Worst 0.8989 5.0698 1.0089 0.0002 0.0998 

Average 0.8985 5.0698 1.0177 0.0001 0.0993 
Best 0.8983 5.0555 1.0145 0.0000 0.0992 

(1) Neval=1010, (2) Neval =8588, (3) Neval =852 and (4) Neval =1346 (average value in all runs). 

 
6. CONCLUSIONS 

 
In this work, the Improved Bees Colony Algorithm was applied to the simultaneous estimation of the albedo, optical 

thickness and the intensities A1 and A2 of the external sources at τ=0 and τ =τo, respectively, of a given one-dimensional 
plane-parallel participating media.  

In this sense, an operator for the refinement of the current solution in the canonical Bees Colony Algorithm was 
proposed. The results obtained by applying the methodology showed that the incorporation of the operator designed to 
refine the solution was extremely important for obtaining the global optimum, even if this procedure requires more 
evaluations of the objective function with respect to its canonical version. The results obtained by using BCA and those 
from DE and SA are similar. However, in terms of the number of objective function evaluations, the BCA needs yet to 
be better studied, so that appropriate conclusions can be drawn, i.e., a new mechanism to explore the diversity of the 
design space should be proposed. 

As observed in Tabs.(4)-(6), the addition of noise to the synthetic experimental points results an increase in the 
objective function values. Such a behavior was previously expected since noise does not permit the convergence of the 
optimization process to the actual experimental values. Consequently, the user should be aware of this behavior when 
using real experimental data, as they are always affected by noise.    

As further work, we intend to extend the Bees Colony Algorithm to the multi-objective context and assess the 
sensitivity of the parameters with respect to the quality of the solution. The inclusion of the conduction heat transfer 
effect in the inverse problem of combined conduction and radiation effects in semitransparent media is also left for 
further studies. 
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