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Abstract. For the reliability, safety and efficiency improvement of many technical processes, advanced methods of fault
diagnosis have become increasingly important. The aim of this work is to explore the advantages of the new biogeography
inspired algorithm for global optimization, i.e. Biogeography- Based Optimization (BBO), for the development of model-
based fault diagnosis methods. As a first case of study we have considered simulated data of the Inverted-Pendulum
benchmark. The experiments considered noisy data and incipient faults in order to analyze the quality of the diagnosis
with Biogeography- Based Optimization, mainly in the topic of robustness, sensitivity and time of diagnosis. The results
indicate the feasibility of the approach adopted.
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1. INTRODUCTION

Fault diagnosis is the process of detection and isolation of a fault (FDI). Taking into account the severe consequences
of faults, many FDI methods have been developed. They should guarantee that faults can be detected and isolated early
(sensitivity to faults) while rejecting any false alarm caused by noise, external disturbances or spurious signals (robustness)
(Isermann, 2005).

The FDI methods are classified in three general groups: those which do not use a model of the process, those which
do use a qualitative model of the process and those that are based on a quantitative model (Venkatasubramanianet al.,
2003a,b,c; Angeli and Chatzinikolaou, 2004).

The model-based approaches using the quantitative analytical model allow a deep insight into the process behavior
(Isermann, 2005) and can be brought down to a few basic concepts such as: the parity space; observer approach; the fault
detection filter approach and the parameter identification or estimation approach. The parameter estimation approach is
based on the diagnosis of the faults via estimation of the parameters of the mathematical model (Frank, 1990; Pattonet al.,
2000; Isermann, 2005).

The limitations of the current FDI methods lead to the necessity of new alternatives development that can deal with
an appropriate balance between fault sensitivity and robustness to external disturbances, see (Simaniet al., 2002; Simani
and Patton, 2008). In the particular case of the parameter estimation based method, there is the additional inconvenient
of high the computing time which turns it make almost unfeasible for most online applications (Frank, 1990; Isermann,
1993).

In that sense, the main objective of this work is to explore the advantages of Biogeography- Based Optimization (BBO)
for the development of robust and sensible FDI methods via direct faults estimation. The selection of BBO is based on the
recent and positive applications of this theory to others benchmarks and real-world problems (Simon, 2008; Gonget al.,
2010b). For demonstrating the performace of BBO we have considered as case of study the Inverted-Pendulum System
(IPS).

The main contribution of this paper can be summarized as: proposal and analysis of BBO application to FDI via direct
faults estimation. As a first approximation it was considered an experiment with simulation data of the inverted pendulum
benchmark. The analysis of the viability of the proposal is established based on some criteria such as: robustness,
sensitivity and computing time. Also some comments regarding comparisons with others FDI methods based on parameter
estimation are put forward.

This work is organized as follows. In the second section the BBO is presented. The third section presents our
formulation for the application of BBO to the FDI via fault estimations. Subsequently, the IPS benchmark is introduced.
The Results section shows the set of test experiments. Finally, some concluding comments are presented.

2. BIOGEOGRAPHY- BASED OPTIMIZATION (BBO)

BBO is a new biogeography inspired global optimization algorithm (Simon, 2008) that was initially applied to opti-
mization problems with discrete domain, but has already been extended to continuous domain (Gonget al., 2010b), and
combined with other evolutionary algorithms such as Differential Evolution (Gonget al., 2010a).
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On each iteration BBO works with a set of solutions called ecosystemHn that is defined as a group onn habitats.
Each habitatHi ∈ Rm, with i = 1, 2, ..., n, is identified with a solution to the optimization problem and it is characterized
by a habitat suitability index (HSI) which is proportional to its suitability as residence for biological species. HSI is also
proportional to the number of species that contains the habitat. Good solutions will have better HSI than bad solutions.

The dynamic of the ecosystem is shown by means of migratory phenomena which is implemented by means of the Mi-
gration operator. Each habitatHi, with i = 1, 2, ..., n, can receive or donate species, and such capability is characterized
as proportional to the immigration rateλi and the emigration rateµi, respectively:

λi = I(1− Si

Smax
) (1)

µi = E
Si

Smax
(2)

where E and I denote the maximum rate for emigration and immigration, respectively;Si the number of species of the
habitatHi, andSmax the maximum number of especies in the ecosystem.

The valuesλ andµ also state the probability of each habitat to change its number of species from timet to time
(t + ∆t).

Ṗs =

 −(λs + µs)Ps + µs+1Ps+1 if S = 0
−(λs + µs)Ps + λs−1Ps−1 + µs+1Ps+1 if 1 ≤ S ≤ Smax − 1

−(λs + µs)Ps + λs−1Ps−1 if S = Smax

(3)

Each habitat can also suffer due to natural perturbations. This is implemented by means of the mutation operator and
the mutation ratemi for each habitatHi is computing by:

mi = mmax(1− Pi

Pmax
) (4)

wheremmax denotes the maximum mutation rate.
With the migration operator BBO can share the information between solutions. Additionally, the mutation operator

tends to increase the diversity of the population.
The basic pseudocode of BBO is described in Algorithm 1 (Simon, 2008).

Algorithm 1 Algorithm BBO
Initialize the BBO parameters:n, m, Smax, I, E, mmax, ∆t, iter
Generate the initial habitatHn randomly
For each habitat map theHSIi to the number of speciesSi, computeλi andµi, see Eq.(1) and Eq.(2).
for j = 1 to j = iter do

Migration , see Algorithm 2
Compute the probabilityPi of each habitatHi, see Eq.(3)
Mutation , see Algorithm 3
UpdateHSIi, λi andµi

end for

The pseudocode of Migration Operator for BBO is described in Algorithm 2, (Simon, 2008).

Algorithm 2 Migration
SelectHi with probability∝ λi

if Hi is selectedthen
for j = 1 to j = n do

SelectHj with probability∝ µj

if Hi is selectedthen
Randomly select a componentl, with l = 1, 2, ...,m, from Hj

ReplaceHi(l) with Hj(l)
end if

end for
end if

The pseudocode of Mutation Operator for BBO is described in Algorithm 3 (Gonget al., 2010b).
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Algorithm 3 Mutation
For each habitatHi compute its mutation ratemi, see Eq.(4)
for i = 1 to i = n do

for l = 1 to l = m do
SelectHi(l) with probability∝ µi

if Hi(l) is selectedthen
MutateHi(l) with Gaussian mutation

end if
end for

end for

3. BBO APPLIED TO FDI VIA PARAMETER ESTIMATION

Let be

ẋ (t) = f (x(t), u(t), θ) (5a)

y (t) = g (x (t) , θ) (5b)

the process model that represents as close as possible the physical laws which govern the process behavior (Isermann,
2005). The vector of state variables is represented byx(t) ∈ Rn. The measurable input signalsu(t) ∈ Rm and output
signalsy(t) ∈ Rp can be directly obtained by the use of physical sensors;θp ∈ Rj is the process parameters vector and
determines the model parameters vectorθ = [θp]t.

The components of the process parameters vector are identified with the components of physical process coefficients
vectorρ ∈ Rk, and in generalk 6= j. The variations of these coefficients are generally related with faults. The estimations
of the vectorθp will allow to detect the faults once the relationship betweenθp−ρ andρ−faults are established (Isermann,
1984). This divides the diagnosis into two steps, the first one considers the estimations of the parameters vectorθp,
permitting the detection; and the second includes the determination of the faults based on the mentioned relationships.
If j ≤ k the relationship between process parameters and physical coefficients will be not one- one and as consequence
some faults will be not separable (Isermann, 1984, 2005).

For estimatingθp, two main approaches have been considered: minimize the equation error or minimize the output
error. The first one permits the use of the least square estimator and it is also necessary the use of the derivatives of the
input and output data vector as well the use of filters for improving the numerical properties. In the second case numerical
optimization is necessary, and the resulting high computational time brings difficulties in the applications for real on-line
processes (Isermann, 2005). Some applications of evolutionary algorithms and neural networks have been reported in that
sense (Witczak, 2006; Yanget al., 2007)

In order to avoid the described problem of the FDI based on the parameters estimation we have considered the model
that also includes the faults. In this case the model (5a, b) considers that the influence of the faults is absolutely represented
by the fault parameters vectorθf ∈ Rl andθ = [θp θf ]t . This vector contains the information regarding magnitude of
each faultfl. That is the reason why the estimations of the vectorθf will allow diagnosing directly the system. This kind
of faults modelling has been widely used for other FDI model based methods such as parity space and observer approach
(Frank, 1990; Simaniet al., 2002; Ding, 2008) but not in the case of the methods based on parameters estimation.

Considering the process parameters vectorθp to be constant, the estimation of the vectorθf can be obtained from the
solution of the minimization problem

min F (θ̂f ) =
Ns∑
t=1

[
yt(θf )− ŷt(θ̂f )

]2

s.a θf(min) ≤ θ̂f ≤ θf(max)

(6)

whereNs is the number of sampling instants,ŷt(θ̂f ) is the estimated vector output at each time instantt, and it is obtained
from the model given by Eqs. (5a, b);yt(θf ) is the output vector measured by the sensors at the same instantt (Isermann,
2005). This procedure is represented in the Fig. 1.

For the solution of the optimization problem that was specified in Eqs. (5a, b), even in a noisy environment and with
independency of the linearity or not with respect to the parametersθf , bio-inspired algorithms can be applied. In the
present work the BBO is implemented.

The idea behind the application of BBO is to perform a robust and sensitive diagnose of the system, via direct fault
estimation, with an acceptable computational effort wich makes it feasible for the on-line diagnose and avoiding dividing
the diagnosis in two steps as the usual FDI parameter estimation methods require to do.
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Figure 1. Representation of the FDI based on parameter estimation.

4. STUDY CASE: INVERTED-PENDULUM SYSTEM (IPS)

This system is considered as a benchmark for control and diagnosis. It is formed by an inverted pendulum mounted on
a motor-driven car. The objective is to keep the beam perpendicular to the vertical position. Here it has been considered
only the two -dimensional problem where the pendulum moves only in the plane of the paper, see Fig.2.

Figure 2. Inverted- Pendulum system

The mathematical model of the IPS has been widely studied, see (Ding, 2008). The system is described by a state-space
representation of a linear time invariant system, affected by additive faults:

ẋ (t) = Ax(t) + Bu(t) + Eff(t) (7a)

y (t) = Cx(t) + Fff(t) (7b)

The state vector isx = [γ γ̇ x ẋ]t, whereγ andγ̇ are the angle of the pendulum with respect to the vertical position
and the angular velocity respectively;x and ẋ are the position and the velocity of the car respectively. The outputs of
the system arey = [γ x]t and the inputu(t) = F is the control force applied to the car. The relationship between each
element of the fault vectorf(t) = [f1 f2 f3]

t and the faults of the system is one to one:f1 causes undesired movement of
the car taking place in the actuator, this kind of fault is represented by an additive fault affecting the system inputF ; f2

represents a fault in the sensor ofγ andf3 identifies faults in the sensor that measuresx. The matricesA, B, C, Ed, Ff

are known and with appropiate dimensions:

A =


0 1 0 0

m+M
Ml g 0 0 0

0 0 0 1

−m
M g 0 0 0

 B =


0

− 1
Ml

0

− 1
M

 C =

[
1 0 0 0

0 0 1 0

]
Ef = [B0] Ff = [0I2x2]

Considering the system with the characteristicsM = 2 kg, m = 0.1 kg andl = 0.5 m, the following matrices are
obtained:
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A =


0 1 0 0

20.601 0 0 0

0 0 0 1

−0.4905 0 0 0

 B =


0

−1

0

0.5

 C =

[
1 0 0 0

0 0 1 0

]
Ef =


0 0 0

−1 0 0

0 0 0

0.5 0 0

 Ff =

[
0 1 0

0 0 1

]

Let beθf = f(t), and considering the nature of the faults and the properties of the IPS, then the elements ofθf have
the following restrictions:

θf1 ∈ R : −1 ≤ θf1 ≤ 1 N

θf2 ∈ R : 0 ≤ θf2 ≤ 0.01 rad (8)

θf3 ∈ R : 0 ≤ θf3 ≤ 0.02 m

In order to make a direct diagnosis of the system we can achieve estimations ofθf = f(t). In that sense the inverse
problem of FDI that was formulated in Eq.(6) should be solved.

4.1 Data simulation

The behavior of the system was simulated under no faults and under different faulty situations. The direct problem
given by Eqs. (7a, b), was numerically solved with the fourth order Runge Kutta method. In Figs. 3 and 4 are shown two
different situations that were simulated.

Figure 3. Simulation with no faults and faultf1, corrupted with 5% level noise

5. RESULTS

With the aim to analize the merit of our proposal, direct diagnosis via estimations of the faults of the systems based
on the output error with BBO, three aspects have been considered: robustness, sensitivity and computing time. With this
goal in mind the IPS is diagnosed under the faulty cases exposed in Table 1.

Table 1. Faulty situations to be diagnosed in the IPS

Case 1 Case 2 Case 3
f1 0 0.5 -0.5
f2 0.01 0.01 0
f3 0.02 0.02 0.004

In order to diagnose the faults, the minimization problem formulated in Eq.(6) was implemented considering BBO.
All the implementations were based on the Algorithms 1-3 with MATLAB R2008a. The stopping criterion was the number
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Figure 4. Simulation with no faults and faultsf2 andf3, corrupted with 5% level noise

of iterationsiter = 100. The parameters of BBO weren = 30, m = 2, Smax = 30, I = 1, E = 1, mmax = 0.05 and
∆t = 0.1.

The number of repetitions was 30 in each case and two descriptive statistics were computed: arithmetic average
and variance. The abbreviations that were used in the tables areθ̄f andσθ̂f

for the arithmetic average and the variance,
respectively, of the estimations of the faulty parameters andt̄ for the arithmetic average of the computing time, in seconds.
It has been also computed the relationship[σθ̂fi

/θ̄fi]× 100 for each fault. All cases considered data with 5% of noise in
order to simulate the effect of disturbances.

In Table 2 are shown the results of the diagnosis for the proposed faulty situations of Table 1. The worst result is
observed in the estimation of the faultf1 which represents a fault in the actuator. For the second case the faultf1 is
detected but the estimation of the magnitude of the fault is a half of the real value. The best estimation of the actuador
fault was in the Case 3 which is characterized by no fault in sensor 1 and a small fault in sensor 2. The other two cases that
considered maximum values of faults for both sensors did not make a correct diagnose of the actuator fault. In all cases
the sensors faults were well diagnosed. The BBO permit robust and sensitive diagnose for sensor faults but for the case
of actuator faults did not give the same results. The preliminary results indicate that the presence and magnitude of the
actuator fault did not affect the diagnose of the sensor faults. On the other hand the diagnose of actuador fault seems to
be affected by the presense of sensors faults. In that sense other experiments have been considered and they are presented
in the Table 3.

Table 2. Diagnosis obtained in faulty situations of the Table 1: data with 5% of noise

Case 1 Case 2 Case 3
θ̄f [0.0468; 0.0095; 0.0180] [0.2450; 0.0095; 0.0181] [-0.623; 0.0005; 0.0030]
σθ̂f

[6.0e-003; 6.2e-008; 4.6e-007][4.0e-002; 8.3e-008; 1.5e-006][4.6e-003; 1.0e-007; 2.5e-007]
σθ̂fi

θ̄fi
· 100 [12.8205; 0.0007; 0.0026] [ 16.3265; 0.0009; 0.0083 ] [ 0.7384; 0.0200; 0.0083]

t̄ 75.3367 75.3481 75.066

In Table 3 are shown the new faulty situations that are introduced. The Case 4 presents only an actuator fault. The
Case 5 and the Case 6 also introduce fault in the sensor ofγ andx respectively.

The results of the application of BBO to the situations of Table 3 are shown in Table 4. Initially the data were kept
corrupted with 5% level noise. The results indicate that the actuator fault can be correctly diagnosed with BBO when no
sensor faults are presented (Case 4). In the other two cases the diagnosis of the actuator fault is incorrect with the worst
result in Case 6 that contains fault in the sensor ofx. In all the cases the diagnosis of the sensor faults is correct. The
computing time is quite similar for the different cases, despite the number of faults affecting the system.

In order to analyze the performance of BBO with respect to robustness and sensibility, some experiments with the
faulty situations of Table 3 are considered. This time the data is corrupted with 10% level noise in order to simulate
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Table 3. Faulty situations to be diagnosed in the IPS

Case 4 Case 5 Case 6
f1 0.1 0.1 0.1
f2 0 0.01 0
f3 0 0 0.02

Table 4. Diagnosis obtained in faulty situations of the Table 3: data with 5% of noise

Case 4 Case 5 Case 6
θ̄f [0.1170; 0.0008; 0.0002] [ 0.2197; 0.0094; 0.0004] [ -0.0542; 0.0004; 0.0188]
σθ̂f

[1.7e-003; 1.8e-008; 7.3e-007][2.6e-003; 2.1e-008; 1.9e-008][8.6e-003; 3.0e-008; 1.4e-008]
σθ̂fi

θ̄fi
· 100 [1.4530; 0.0022; 0.3650] [ 1.1834; 0.0002; 0.0047] [ -15.8672; 0.0075; 0.0001]

t̄ 74.6885 74.8486 74.7741

disturbances that can affect the correct diagnosis. The results are shown in Table 5 and comparing with the results on
Table 4, it can be concluded that the performance of BBO is quite similar independently the level of noise contains in
data. In all the cases the diagnosis of the sensors faults was robust and sensitive. The computing time is similar in the
different levels of noise.

Table 5. Diagnosis obtained in faulty situations of the Table 3: data with 10% of noise

Case 4 Case 5 Case 6
θ̄f [0.1974; 0.0012; 0.0004] [ 0.2840; 0.0081; 0.0002] [-0.8459; 0.0003; 0.0138]
σθ̂f

[1.6e-003; 3.0e-007; 4.1e-007][3.0e-003; 7.2e-007; 5.5e-007][2.7e-004; 1.0e-008; 1.0e-006]
σθ̂fi

θ̄fi
· 100 [0.8105; 0.0250; 0.1025] [ 1.0563; 0.0089; 0.2750 ] [-0.0319; 0.0033; 0.0072]

t̄ 74.5261 74.5799 74.6200

In Table 6 are shown the results of diagnosis of the cases on the Table 3, but the number of iterations was reduced to
50. The noise is kept on10%. The quality of the estimations is quite similar to the ones obtained with 100 iterations, but
now the computing time was reduced on the half.

Table 6. Diagnosis obtained in faulty situations of the Table 3: noise of10% and 50 iterations

Case 4 Case 5 Case 6
θ̄f [0.1373; 0.0006; 0.0004] [ 0.2130; 0.0094; 0.0004] [ -0.1013; 0.0004; 0.0185]
σθ̂f

[5.2e-003; 7.4e-007; 1.0e-007][1.5e-003; 1.0e-008; 1.0e-008][1.2e-002; 9.0e-007; 1.2e-007]
σθ̂fi

θ̄fi
· 100 [3.7873; 0.1233; 0.0250] [ 0.7042; 0.0001; 0.0025] [ -11.8460; 0.2250; 0.0006]

t̄ 37.3246 37.5328 37.3398

6. CONCLUSIONS

This study indicates first that the use of mathematical models that represent directly the influence and magnitude of
the additive faults affecting the system are viable for the diagnosing of the system via faults estimation while avoiding
the division of the diagnosis into two steps which generally requires use of several techniques. As a second contribution
this study shows that the application of BBO is perfectly feasible for the development of fault diagnosis methods based
on faults estimation. The principal advantages are the easy generalization to other systems, the robustness, sensitivity and
that the computing time makes possible the on- line diagnose.

The poor results observed in the diagnosis of the actuator faults in presence of sensor faults are associated to the
structure of the problem considered and not with any limitation of BBO.

It is our interest to analyze the influence of the different parameters of BBO in the improvement of its behavior for
the FDI problem, basically in the area of robustness, sensitivity and computing time as well its hybridization with other
evolutionary algorithms.

It is also our concern to extend the proposed approach for multiplicative faults.
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