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Abstract. A mixed lumped-differential mathematical model is proposed to analyze the extraction of metalic palladium 

Pd (II) present in a hydrochloric acid medium by using a polymeric liquid membrane with the extractant Aliquat 336 

immobilized in a PVC matrix. The Coupled Integral Equations Approach (CIEA) is employed in order to simplify the 

associated equations of species conservation and obtain improved lumped formulations. This technique is aimed at 

reducing the number of space variables involved in the mathematical formulation of the original problem through an 

averaging procedure on the coordinate(s) selected to be eliminated from the reformulated problem, employing 

Hermite’s approximations for integrals. In the present model, it was considered that a second-order chemical reaction 

occurs at the membrane interfaces. From the constructed model, the behavior of the metal concentration profiles to be 

extracted from the feeding phase is discussed in light of the influence of relevant parameters in the extraction process, 

such as, composition and thickness of the membrane, diffusion coefficient and extraction constant. Also, the proposed 

model results are verified against the fully differential formulation, previously solved through integral transforms, and 

compared with other models reported in the literature to demonstrate its consistency. 

 

Keywords: Lumped analysis, Mass transfer, Aliquat 336/PVC membrane, Palladium extraction, Coupled integral 

equations approach. 

 

1. INTRODUCTION 

 

In supported liquid membranes the liquid barrier material is selectively stabilized as a thin film with the aid of a 

support material, such as in membranes using Aliquat 336 as extractant immobilized in PVC, which is used as support 

material. The extractant Aliquat 336, also known as methyl tri-octyl-ammonium chloride, is a quaternary ammonium 

salt that is insoluble in water and made by methylation of the mixture tri(octyl-decyl) amine, which is capable of 

forming oil soluble salts of anionic species and neutral pH slightly alkaline. This extractant is widely used in the 

preparation of liquid membranes. In this case comprises a variety of anionic complex associations, employing it as a 

quaternary ammonium ion. It is also useful as an analytical tool in organic and biochemical activities (Cardoso, 2007). 

Argiropoulous et al. (1998), Kolev et al. (2000) and Wang et al. (2000) have studied the extraction efficiency of Pd 

(II), Cu (II), Cd (II) and Au (III) in hydrochloric acid solution using polymeric liquid membranes. Argiropoulous et al. 

(1998) conducted an experimental study for the extraction of Au (III) in supported liquid membrane consisting of 

Aliquat 336 in order to investigate the efficiency of membrane extraction of metal gold (III) and to investigate the 

influence of membrane composition in Aliquat 336, as well as of other metals present in the hydrochloric acid solution, 

indicating that the membrane is able to extract Au (III). The work of Kolev et al. (2000) emphasizes the study of an 

extraction model of palladium in hydrochloric acid solution using a supported polymer membrane Aliquat 336/PVC. 

The authors adjusted their model to extraction experimental data in order to obtain the values of the constant physical 

and chemical properties (diffusion coefficient and kinetic constants). Wang et al. (2000) were concerned with 

describing the influence of a given polymeric membrane extraction process for copper and cadmium, and applied a 

model in which the extraction mechanism was governed by chemical kinetics at the membrane interfaces and by 

diffusion within the membrane. The results were adjusted to the experimental values to provide values of the diffusion 

coefficients and kinetic constants of the complexation reaction between the extractant species (Aliquat 336) and the 

metal to be extracted. 

Cardoso (2007) and Macêdo et al. (2007) conducted research on modeling and simulation of metals extraction, 

namely, cadmium, gold and palladium in supported liquid membranes with Aliquat 336/PVC. In this study, the 
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extraction problem was modeled from the equations of species conservation and was solved using the Method of Lines. 

The model was verified by comparison with the experimental results of Argiropoulous et al. (1998), Kolev et al. (2000) 

and Wang et al. (2000). It was assumed that there is no symmetry condition across the membrane thickness because the 

membrane walls are separated by acidic aqueous solutions with different concentrations in relation to the metal of 

interest in the study. More recently, Cardoso (2010) has conducted a similar study employing the same model proposed 

by Cardoso (2007), but employing the Generalized Integral Transform Technique (GITT) for solving the involved 

nonlinear partial differential equations of the model, and verifying the previous obtained numerical solution.  

It is of interest in engineering practice, to propose simpler formulations of such partial differential systems, through 

a reduction of the number of space variables, since the local variation of concentrations is not of fundamental concern, 

by integration (averaging) of the full partial differential equations in one or more space variables, but retaining some 

information in the direction integrated out, provided by the related boundary conditions. Different levels of 

approximation in such mixed lumped differential formulations can be used, starting from the plain and classical lumped 

system analysis, towards improved formulations, obtained through Hermite-type approximations for integrals (Hermite, 

1878; Mennig et al., 1983). Such an approach known as the Coupled Integral Equations Approach, CIEA (Cotta and 

Mikhailov, 1997) has been already exploited in different heat transfer problems, including phase change problems, 

extended surfaces, heat exchangers analysis and drying problems (Aparecido and Cotta, 1989; Cotta et al., 1990; 

Scofano Neto and Cotta, 1993; Cheroto et al., 1997). 

In this context, the present study aims at employing the Coupled Integral Equations Approach (CIEA) (Cotta and 

Mikhailov, 1997) to obtain improved lumped-differential formulations for the analysis of palladium Pd (II) extraction 

from a hydrochloric acid solution using a supported polymer membrane Aliquat 336/PVC. The CIEA technique allows 

the reduction on the number of independent variables, this way, markedly reducing the complexity in the simulation 

process. The resulting system of reformulated ordinary differential equations is then solved through the subroutine 

DIVPAG from the IMSL Library (1991) and critical comparisons with experimental data and theoretical results are 

performed in order to assess the adequacy of the present approach. 

 

2. MATHEMATICAL FORMULATION 

 

A typical process with polymeric membrane is illustrated in Figure 1 below, in which it is assumed that the first 

compartment of the extraction cell has an acidic solution concentrated in metals of interest, such as palladium Pd (II) in 

hydrochloric acid (HCl), CB1, in the second compartment there is a dilute solution in the metals of interest, in the 

presence of HCl with concentration CB2. 

The composition of the polymer membrane consists of a mixture of Aliquat 336 and PVC. In the present model, we 

have assumed the following hypotheses: 
 

­ Elementary reversible reaction of order 2 for the metal palladium, Pd (II), and the extractant Aliquat 336 

occurs at the membrane interfaces (complexation in the exhaustion cell and decomplexation in the enrichment 

cell); 

­ The ion metal rate of extraction is influenced by the kinetics of chemical reaction that occurs on the membrane 

surface; 

­ The diffusion in the aqueous phase is neglected because the mass transport at this phase is fast and occurs by 

mechanical agitation; 

­ One-dimensional transient diffusion through the membrane by the complex species (Aliquat-metal) formed on 

the membrane interface. 
 

Mathematical modeling of this process is obtained via the equations of mass conservation for the chemical species 

in the extraction cell at a given temperature T, volume V and stirring angular velocity  in each half-cell, considering 

the extraction kinetics as a reversible elementary reaction of order 2: 
 

   
 

 

f1

b1

K

me aq meK

2A +B A B2
  (1.a) 

 

Here, A(me) represents the extractant in the membrane, Aliquat 336, B(aq) represents the metal in solution, [A2B](me) 

the metal that was inserted into the membrane and will be referenced for AB(me), and Kf1 and Kb1 are the forward and the 

backward kinetic rate constants, respectively, at the position x = 0 of the membrane. Similarly, 
 

 
     

b2

f2

K

me aqme K

A B 2A +B2
  (1.b) 

 

where, Kf2 and Kb2 are the forward and the backward kinetic rate constants, respectively, at the position x = δ of the 

membrane. 
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Figure 1. Schematic representation of the extraction cell: (1) Phase feed; (2) Phase of data collection; (3) Thermostatic 

bath; (4) Membrane and (5) Stirrer. 

 

The membrane diffusion occurs through a thin film as shown in Figure 2. On each side of the film there is a well-

mixed solution. Both solutions are diluted, and the solute diffuses through the membrane from the more concentrated 

solution, located at x = 0, to the lower concentration, located at x = δ. 
 

 
Figure 2. Extraction mechanism in the cell. 

 

In each compartment of the extraction cell occurs the same elementary reversible reaction of order 2, but with 

different physico-chemical parameters. At the position x = 0, there is the consumption of metal B(aq) through the 

reaction with kinetic constants Kf1 and Kb1. After the metal is consumed, it is transformed in a complex species, which 

is formed by the reaction of metal B(aq) in solution with the extractant Aliquat 336 present in the membrane at a given 

concentration. Then, this new species moves by diffusion to the other membrane edge, x = δ. At this surface, the 

metallic species is then consumed for the regeneration of the metal in the second compartment of the extraction cell 

with kinetic rate constants Kf2 and Kb2. This is due to the concentration gradient in the extraction cell, which favors the 

transport of the species AB(me) in the membrane, thus providing in this way different kinetic rate constants at each 

membrane edge. 

According to Cardoso (2007), the nonlinear partial differential model in dimensionless form for the transient 

diffusion of species A(me) and AB(me) in the membrane, with their respective initial and boundary conditions, are given 

by: 
 

       2 2
A A AB AB

2 2

, , , ,
;  ,  0 1,    0

             
       

  
 (2.a,b) 

   A AB,0 1;    ,0 0       (2.c,d) 

 
 

 
 

 
 

 
 A AB A AB

1 2 3 4

0, 0, 1, 1,
f 0, ;   f 0, ;   f 1, ;  f 1,  

       
       

   
 (3.a-d) 

 

where, f1(0,), f2(0,), f3(0,) and f4(0,) are defined as:  
 

                2 2
1 1 1 B1 A 1 AB 2 1 AB 1 1 B1 Af 0, 0, 0, ;    f 0, 0, 0, /                                (4.a,b) 

                2 2
3 2 AB 2 2 B2 A 4 2 2 B2 A 2 ABf 1, 1, 1, ;    f 1, 1, 1, /                                (4.c,d) 
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The following dimensionless groups were used in Eqs. (2) to (4) above: 
 

1

2 0
bb1 AA A AB B1 B2 AB

A AB B1 B2 1 12 0 0 0 0 0
A AA A B1 B1 A B1

KK CD C C C C Dx
;   ;    ;    ;    ;    ;   ;  ;     

D DC C C C D LC

t 
                 

 
 (5.a-i) 

2 2

1 2

2 0
b A b 0 0 f1 f 2

2 2 1 ex B1 2 ex B1 ex1 ex20
A b1 b2A B1

0 0
 A A

K C K K K
;  ;   K C ;   K C ;  K ;  K  

D K KD LC
C C

 
           (5.j-o) 

 

where, Kex1 and Kex2, are parameters with units m
6
/mol

2
. 

In addition, the following dimensionless kinetic equations in the exhaustion and enrichment cells are obtained for 

the metal B(aq) (Cardoso, 2007): 
 

 
        2B1

1 B1 A B11 1 AB

d
0, 0, (0) 1,      

d
;   at  =0 exhaustion surface

 
          


     (6.a,b) 

 
       

2B2
2 2 B2 A 2 AB B2

d
1, 1, ;   (0) 0,     at  =1 enrichment surface

d

 
              

 (7.a,b) 

 

To obtain the potentials θB1() and θB2() through the solution of Eqs. (6) and (7), it will also be necessary to 

calculate the potentials θA(,) and θAB(,) that will be obtained by the solution of Eqs. (2) and (3). For this purpose, 

we shall here employ the Coupled Integral Equations Approach (CIEA) in order to reduce the number of independent 

variables, and as a consequence the computational cost of the simulation, by lumping the system with respect to the 

space variable. 

 

3. SOLUTION METHODOLOGY 
 

In order to obtain improved lumped-differential formulations for the system given by Eqs. (2) to (7), we shall 

employ Hermite-type approximations for integrals in evaluating the spatially averaged quantities. Hermite(1878) 

developed a way of approximating an integral, based on the values of the integrand and its derivatives at the integration 

limits, in the form:  

 

i

i 1

x
( ) ( )
i 1 i

x
0 0

y(x)dx C  y D  y  



 

 

 

    (8.a) 

 

where y(x) and its derivatives y()(x) are defined for all x(xi-1,xi). Furthermore, it is assumed that the numerical values 

of y()(xi-1)yi-1
() for =0,1,2,…, and y()(xi)yi

() for =0,1,2,…,, are available at the end points of the interval. In such 

a manner, the integral of y(x) is expressed as a linear combination of y(xi-1), y(xi)yi-1
() and their derivatives, y()(xi-1) up 

to order =, and y()(xi) up to order =. This is called the H, - approximation (Cotta and Mikhailov, 1997). The 

resulting expression for the H, - approximation is given by: 

 

 i

i 1

x
(v) ( )1 1

i ii 1 i
x

0 0

3
i

y(x)dx C ( , )h y C ( , )( 1) h y O h



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 

 


          (8.b) 

 

where, 

 

i i i 1h x x   ,      
   

     

1 ! 1 !
C ,

1 ! ! 2 !


     
  

      
 (8.c,d) 

 

Three Hermite integration formulae were here selected for analysis, including the classical trapezoidal and corrected 

trapezoidal expressions, i.e.: 

 

     
2h h

0,0 1,1
0 0

h h h
H f (x)dx f (0) f (h) ;    H f (x)dx f (0) f (h) f '(0) f '(h)

2 2 12
                  (Trapezoidal Rule)                             (Corrected Trapezoidal Rule)

          (8.e,f) 

 
2h

0,1
0

h h
H f (x)dx f (0) 2f (h) f '(h)

3 6
     (8.g) 
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We now seek a simplified formulation for the partial differential system, through elimination of the spatial 

dependence, i.e., by integrating out the independent variable  over the domain 01, in Eqs. (2) to (7), so that a 

system of ordinary differential equations is obtained for the average and surface concentrations. Therefore, the 

definition of the average potentials for the species θA(η,τ) and θAB(η,τ) is taken as: 
 

A AB

1 1

A AB
0 0

( ) ;      ( )( , )d ( , )d               (9.a,b) 

 

The above definition above for the average potentials is employed in defining the integral operator to average the 

partial differential equations, Eqs. (2) and (3). For this purpose, such equations are integrated on the spatial variable η, 

over the domain [0,1], and the following simpler notation for the boundary potentials is adopted: 
 

A A0 AB AB0 A A1 AB AB1(0, ) ( );  (0, ) ( );  (1, ) ( );  (1, ) ( )                     (10a-d) 
 

Then, after the averaging process, it follows that: 
 

 
   

 
           A AB

3 1 4 2 i i i 2 i 2

d d
f f ;   f f ;    f f 0, ;   f f 1, ,  i=1,2

d d
 

   
             

 
 (11.a-f) 

 
     

 
     AB1

2 2B1 B2

1 1 A0 B1 1 AB0 2 2 A1 B2 2

d d
;    

d d


   
                         

 (11.g,h) 

       A AB B1 B20 1;  0 0;  0 1;  0 0         (12.a-d) 
 

To find the desired lumped formulation from Eqs. (11) and (12), it is necessary to find relationships among the 

boundary potentials θA0(τ), θAB0(τ), θA1(τ) and θAB1(τ), and the average potentials, to be obtained through approximation 

of the integrals that define the averaged potentials and fluxes, such as those given by Eqs. (8). 

 

3.1. Improved lumped-differential formulations 
 

A few different formulations were here considered by employing different approximation formulae for the averaged 

dimensionless concentrations, while keeping the trapezoidal rule (H0,0 approximation) for the average dimensionless 

mass fluxes. We now briefly describe each of these approximation options. 

 

Classical lumped analysis/H0,0 approximation 
 

One of the simplest possible approximations is the classical lumped analysis, assuming that the concentrations of 

Aliquat 336 and of the complex species do not vary significantly along the membrane thickness, due to be order of 

micrometers, thus allowing for the following approximations: 
 

   A0 A AB1 AB( ) ;  ( )           (13.a,b) 

 

H0,0/H0,0 approximation 
 

In this case, the trapezoidal rule (H0,0 approximation) is employed to approximate the average concentrations: 
 

   

   

A

AB

1

A A A A0 A1
0

1

AB AB AB AB0 AB1
0

( ) ;    

( )

( , )d (0, ) (1, ) / 2 ( ) ( ) / 2

( , )d (0, ) (1, ) / 2 ( ) ( ) / 2

  

  

               

               




 (14.a,b) 

 

H0,1/H0,0 approximation 
 

In this model, Equations (9) are approximated by Eq. (8.c), to yield: 
 

   A A0 A1 3 AB AB0 AB1 46 2[ 2 ] f ;   6 2[ 2 ] f( ) ( ) ( ) ( ) ( ) ( )                  
 

 (15.a,b) 
 

H1,1/H0,0 approximation 
 

Equations (9) are approximated by Eq. (8.b), the corrected trapezoidal rule, resulting in: 
 

       A A0 A1 1 3 AB AB0 AB1 2 412 6[ ] [f f ;   12 6[ ] [f f( ) ( ) ( ) (] ]) ( ) ( )                        (16.a,b) 
 

In all the above propositions, the average mass fluxes are approximated considering the trapezoidal rule, the H0,0-

approximation for the derivatives of the potentials θA(η,τ) and θAB(η,τ). Then, one finds the following approximate 

relations, respectively: 
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1
A A A

A A
0

( , ) (0, ) (1, )1
d (1, ) (0, )

2

       
        

   
  (17.a) 

1
AB AB AB

AB AB
0

( , ) (0, ) (1, )1
d (1, ) (0, )

2

       
        

   
  (17.b) 

 

Making use of the boundary conditions, Eqs. (3), and after substituting in Eq. (9), we obtain: 

 

         A1 A0 1 3 AB1 AB0 2 42[ ] f f ;  2[ ] f f( ) ( ) ( ) ( )               (18.a,b) 

 

After choosing one of the approximations described by Eqs. (13) to (16), combined with Eqs. (18), one reaches an 

algebraic system to determine the quantities θA0(τ), θAB0(τ), θA1(τ) and θAB1(τ), as functions of A ( ),  AB ( ),   θB1(τ) 

and θB2(τ). Once these boundary quantities have been determined, they are substituted into Eqs. (11) and (12) to 

complete the system of ordinary differential equations to be solved for A ( ),  AB ( ),   θB1(τ) and θB2(τ). 

 

 

4. RESULTS AND DISCUSSION 

 

A computational code was developed in the FORTRAN 95/2003 programming language and implemented on a Intel 

(R) Core (TM) 2 Duo 2.2 GHz micro-computer from the Laboratory of Processes Simulation of the School of Chemical 

Engineering at the Universidade Federal do Pará (LSP/FEQ/UFPA). The subroutine DIVPAG for initial value 

problems, with a relative error target of 10
-8

, was used together with the subroutine DNEQNF, both from the IMSL 

Library (1991), for the solution of the ordinary differential equations system, Eqs. (11) and (12), in conjunction with 

one of Eqs. (13) to (16), resulting from the classical, H0,0, H0,1 and H1,1 approximations for the average concentrations in 

the physical model of metals separation. Computations were then performed to calculate the potentials A ( ),  AB ( ),   

θB1(τ) and θB2(τ). 

Numerical results for the concentration distributions were obtained as a function of time and at the interface 

positions, for the case of a second order kinetics reaction, such as in the analysis of palladium Pd (II). Table 1 shows the 

diffusion coefficients and kinetic parameters used in the analysis of the composition influence and of Aliquat 336 

concentration (Kolev et al., 2000). 

 

 

Table 1. Model parameters for the computational simulation of palladium Pd (II) extraction. 

m  

(g) 

DA  
(m

2
/s) 

DAB  

(m
2
/s) 

Kb1  
(m/s) 

Kb2  

(m/s) 

Kf1  

(m
4
/mol.s) 

Kf2  

(m
7
/mol

2
.s) 

  

(m) 

L  

(m) 

CA0  

(g/g) 

CB0  

(mg/l) 

0.3876 2.995x10
-11

 1xDA 9.99x10
-9

 1xKb1 1.80x10
-9

 0.075xKf1 15 0.1 50% 80.4 

0.6134 5.30x10
-11

 1xDA 21.8x10
-9

 1xKb1 1.95x10
-9

 0.048xKf1 15 0.1 50% 78.8 

0.5628 2.10x10
-11

 1xDA 19.5x10
-9

 1xKb1 0.77x10
-9

 0.073xKf1 15 0.1 50% 39.5 

0.5596 0.45x10
-12

 1xDA 1.10x10
-9

 39xKb1 0.75x10
-10

 7.565xKf1 18 0.1 30% 41.3 

0.5440 0.70x10
-11

 1xDA 7.50x10
-9

 12xKb1 0.93x10
-10

 0.850xKf1 18 0.1 40% 41.3 

 

 

Figures 3 first of all provide a comparative analysis between the present CIEA results for the concentration 

evolution at the exhaustion, against those obtained with the Generalized Integral Transform Technique, GITT (Cotta, 

1993), as applied to the fully differential model of the membrane separation process, Cardoso (2010), for a truncation 

order of NT = 70 in the eigenfunction expansions. An excellent agreement could be observed, for all four examined 

approximation paths, in Figs.3.a-d. Figures 3 also show the influence of membrane mass at the same concentration of 

Aliquat 336 (50%), and membrane of 15 µm. It is observed in these figures that the higher extraction of Pd (II) occurs 

with membranes of larger mass (membrane with 0.6134g). This leads to a larger amount of extractant in 50% of Aliquat 

336. These theoretical results obtained by the CIEA approach, employing combinations of Hermite approximations 

(Classical Approach/H0,0, H0,0/H0,0, H0,1/H0,0 and H1,1/H0,0) are then shown to agree also quite well with those 

experimentally obtained by Kolev et al. (2000). 
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(a)                    (b) 

 

    
(c)                    (d) 

Figure 3. Comparison of exhaustion concentration evolutions obtained with the CIEA (lumped-differential model) and 

the GITT (fully differential model) approaches and the experimental data of Kolev et al. (2000) for the influence of the 

mass of Aliquat 336: (a) Classical Approach/H0,0; (b) H0,0/H0,0; (c) H0,1/H0,0; (d) H1,1/H0,0. 

 

 

The analysis of the membrane concentration influence on the extraction of Pd (II) was performed with 

concentrations of 30% and 40% m/m of Aliquat 336, in Figures 4. It is observed that the extraction of Pd (II) is more 

efficient at higher concentrations of Aliquat 336 (40%). This behavior is due to the higher amount of extractant present 

in higher concentrations of Aliquat 336. However, in this situation, the theoretical results obtained by the CIEA with the 

classical approach/H0,0, for the analysis of the membrane with 30% of Aliquat 336, does not seem to agree quite well 

with those obtained experimentally by Kolev et al. (2000) as well as with those from the partial differential model 

solved by the GITT approach. Clearly in this case the assumption of a practically uniform concentration distribution is 

not the most adequate. The other combinations H0,0/H0,0, H0,1/H0,0 and H1,1/H0,0 led to excellent results for the case of 

extraction of Pd (II) under the influence of the concentration of Aliquat 336 in membrane content of 30% Aliquat 336. 
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(c)                    (d) 

Figures 4. Comparison of exhaustion concentrations evolution obtained with the CIEA (lumped-differential model) and 

the GITT (fully differential model)approaches and the experimental data of Kolev et al. (2000) for the influence of the 

concentration of Aliquat 336: (a) Classical Approach/H0,0; (b) H0,0/H0,0; (c) H0,1/H0,0; (d) H1,1/H0,0. 

 

 

Table 2 presents a more direct comparison between the exhaustion concentration results obtained in the present 

study from the improved lumped formulations with those obtained by solving the full partial differential model with the 

GITT, as detailed in Cardoso (2010). For the cases analyzed in the extraction of Pd (II), it has been observed that all 

combinations of Hermite approximations used to obtain the solution led to excellent agreement with those obtained by 

GITT in the cases with 50% of Aliquat 336, with deviations below 2%, while in the cases for 40% and 30% of Aliquat 

336, more significant deviations in the predicted concentrations in the extraction of Pd (II) were encountered. The 

results for the classical approach were those of larger deviations, reaching almost 10% in the case of 40% of Aliquat 

336. The results obtained by the higher order approximation H1,1/H0,0 were those that led to the smallest deviations for 

all cases analyzed. Nevertheless, the resulting formulation for this higher order approximation is as straightforward as 

the previous ones considered. 
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Table 2. Comparison of the present results of the exhaustion concentration with those obtained by GITT approach for 

η=0 (exhaustion surface) and different times for the extraction of Pd (II). 

Membrane 

composition 

t  

(h) 

θB1(τ) 

Classical 

Approach

/H0,0 

 

(%) 
H0,0/H0,0 

ε  

(%) 
H0,1/H0,0 

ε 

(%) 
H1,1/H0,0 

ε  

(%) 
GITT 

50% Aliquat 336 

0.3876 g  

α1 = 0.001244 

0.06 0.75171 0.18 0.75307 0.00 0.75316 0.01 0.75316 0.01 0.75307 

0.30 0.63040 0.26 0.63211 0.01 0.63215 0.02 0.63215 0.02 0.63204 

0.60 0.48831 0.42 0.49045 0.02 0.49049 0.03 0.49049 0.03 0.49036 

3.00 0.05803 0.03 0.05805 0.01 0.05805 0.01 0.05805 0.01 0.058047 

6.00 0.05715 0.00 0.05715 0.00 0.05715 0.00 0.05715 0.00 0.057146 

 0.01

413 

         

50% Aliquat 336 

0.6134 g  

α1 = 0.001566 

0.06 0.72598 0.21 0.72756 0.00 0.72761 0.01 0.72761 0.01 0.72753 

0.30 0.48072 0.52 0.48330 0.02 0.48333 0.02 0.48333 0.02 0.48322 

0.60 0.22706 1.16 0.22983 0.04 0.22985 0.05 0.22985 0.05 0.22973 

3.00 0.03908 0.00 0.03908 0.00 0.03908 0.00 0.03908 0.00 0.03908 

6.00 0.03908 0.00 0.03908 0.00 0.39081 0.00 0.03908 0.00 0.03908 

 0.02

800 

         

50% Aliquat 336 

0.5628 g  

α1 = 0.007199 

0.06 0.59919 0.80 0.60372 0.05 0.60415 0.02 0.60415 0.02 0.60402 

0.30 0.30690 1.41 0.31139 0.03 0.31141 0.04 0.31141 0.04 0.31130 

0.60 0.11647 1.69 0.11852 0.04 0.11852 0.04 0.11852 0.04 0.11847 

3.00 0.05482 0.00 0.05482 0.00 0.05482 0.00 0.05482 0.00 0.05482 

6.00 0.05482 0.00 0.05482 0.00 0.05482 0.00 0.05482 0.00 0.05482 

 0.01

296 

         

40% Aliquat 336 

0.5596 g  

α1 = 0.017172 

0.06 0.91455 2.23 0.93557 0.01 0.93995 0.48 0.93995 0.48 0.93546 

0.30 0.74750 6.25 0.79719 0.01 0.80022 0.36 0.80022 0.36 0.79731 

0.60 0.63411 7.93 0.68868 0.01 0.69081 0.30 0.69081 0.30 0.68876 

3.00 0.29255 9.16 0.32202 0.00 0.32260 0.17 0.32260 0.17 0.32204 

6.00 0.17737 5.49 0.18769 0.00 0.18786 0.10 0.18786 0.10 0.18768 

 0.00

417 

         

30% Aliquat 336 

0.5440 g  

α1 = 0.009460 

0.06 0.84778 0.85 0.85479 0.03 0.85525 0.02 0.85525 0.02 0.85508 

0.30 0.51546 3.38 0.53353 0.01 0.53359 0.02 0.53359 0.02 0.53347 

0.60 0.29009 4.81 0.30479 0.01 0.30482 0.02 0.30482 0.02 0.30475 

3.00 0.06069 0.13 0.06077 0.00 0.06077 0.00 0.06077 0.00 0.06077 

6.00 0.05981 0.00 0.05981 0.00 0.05981 0.00 0.05981 0.00 0.05981 

approach Hermite GITT

GITT

 = 100%
  

 


. 

 

5. CONCLUSIONS 

 

A study of the palladium extraction process using supported liquid membranes (PLMs) was undertaken in this work. 

Equations of mass conservation of the involved chemical species were reformulated with the Coupled Integral 

Equations Approach, CIEA, that promoted a significant simplification of the problem formulation, yielding improved 

lumped models and low-cost computational simulations for all the cases considered. The present CIEA results were 

compared with the experimental results obtained by Kolev et al. (2000) and also with the fully differential model 

solution (Cardoso, 2010) as obtained by the Generalized Integral Transform Technique, GITT, demonstrating the 

consistency of the achieved results for the palladium extraction. The CIEA has been shown to be a recommendable 

alternative to solving problems based on nonlinear formulations for mass diffusion in polymeric membranes for the 

extraction of metals, markedly simplifying the derivation and simulation efforts. 
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